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Abstract: Nanostructured TiO2 films were deposited onto Indium Tin Oxide (ITO) and glass sub-
strates by dc reactive magnetron sputtering at different substrate inclination angles. The structural
and optical properties of the deposited films were studied by X-ray diffraction, scanning electron
microscopy and UV–Vis spectrophotometer, respectively. Dye-sensitized solar cells (DSSC) were
assembled using these TiO2 films as photoelectrodes and the effect of the substrate inclination angle
in the preparing process of TiO2 films on the DSSC conversion efficiency was studied.

Keywords: dye-sensitized solar cells; DSSC; inclined substrate deposition; glancing angle deposition;
TiO2 thin film; sputtering; nanostructure

1. Introduction

Titanium dioxide has been used in a wide range of applications because of its useful
electrical and optical properties, such as high dielectric constant, high electrical resistivity,
high refractive index, excellent optical transmittance in the visible range, non-toxicity,
low cost and large band gap [1–5]. TiO2 film with a nanoporous structure is needed for
applications in the solar cell and catalyst areas [6–9]. Oblique angle deposition, also called
glancing angle deposition or inclined substrate deposition, generally produces film with a
nanostructure. The oblique angle flux incidence enhances atomic shadowing and creates
an inclined columnar microstructure under conditions of limited adatom diffusion. This
technique is usually combined with the physical vapor deposition technique [10–13]. It is
well known that the sputtering technique is a standard industrial production technique.
The deposition parameters are very easy to control, and the deposited films generally
have a good adhesion with the substrate. It is widely used for large area thin-film fab-
rications [14–17]. Generally, the glancing angle deposition technique is associated with
evaporation processes. Recently, Gormier et al. demonstrated that a TiO2 nanostructure
could be obtained with the sputtering technique by the substrate inclination [12]. However,
they only got a nanostructure at 80◦ inclination with the post-annealing process. In this
work, TiO2 films are prepared on the ITO and glass substrate combined with a tilted sub-
strate. The effect of the substrate inclination angle on the structural and optical properties
of deposited TiO2 films are reported. The dye-sensitized solar cells are assembled using
these TiO2 films and the performance of the solar cells is also studied.

2. Experimental Details

TiO2 thin films were deposited on the commercial ITO (sheet resistance of 20 Ω per
square) substrates by the dc reactive magnetron sputtering technique using a commercial
sputtering system equipped with a turbo molecular pumping system. The target was a
titanium metal disk (60 mm in diameter and 3 mm in thickness) with a purity of 99.99%.
The chamber was pumping down to 1 × 10−3 Pa before the gases were introduced. The

Molecules 2021, 26, 3122. https://doi.org/10.3390/molecules26113122 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6071-3502
https://www.mdpi.com/article/10.3390/molecules26113122?type=check_update&version=1
https://doi.org/10.3390/molecules26113122
https://doi.org/10.3390/molecules26113122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26113122
https://www.mdpi.com/journal/molecules


Molecules 2021, 26, 3122 2 of 9

oxygen and argon gases (99.99% purities) were introduced into the chamber through the
mass flow controllers. The oxygen partial pressure and the total sputtering pressure in
the chamber were 0.5 Pa and 1.3 Pa, respectively. The sputtering was carried out using a
constant current mode. The sputtering current was kept at 0.5 A and the sputtering power
was about 190 W. In order to remove surface contaminants of the target, pre-sputtering
was done for 20 min with a shutter covering the substrate. The substrate was fixed on a
specially designed apparatus which can incline the substrate for different angles in relation
to the horizontal. The distance between the target and the center of the substrate was
kept at 60 mm. The substrate inclination angle was adjusted from 0◦ to 85◦. However,
the experimental results for the 30◦ and 45◦ inclination angles were very similar to that
without inclination of the substrate. Therefore, they are not shown in the results. The
deposition time was 180 min. The transmittance of the films was measured using a Jasco
V-550 UV–Vis spectrophotometer (Tokyo, Japan). The XRD measurements were done using
a Rigaku miniflex goniometer (30 kV, 15 mA) (Tokyo, Japan). The morphologies of the
films were studied using a field emission scanning electron microscope (FE-SEM).

The deposited TiO2 films were sensitized with N719 (Ru(II)L2(NCS)2:2TBA, where
L = 2,2′-bipyridyl-4,4′-dicarboxylic acid) dye by soaking the films in an ethanolic solu-
tion of N719 dye (0.5 mM) for 24 h at room temperature. The counter-electrode was
made by sputtering Pt onto FTO glass and the electrolyte was composed of 0.1 M I2,
0.1 M LiI, 0.6 M 1-hexyl-3-methylimidazolium iodide, and 0.5 M 4-tert-butylpyridine in
3-methoxypropionitrile. The photocurrent-voltage measurements were carried out with a
Princeton 2273 applied research electrochemical system (Oak Ridge, TN, USA), a 500 W
Xenon lamp under AM 1.5 G illumination, and a water filter was used. The light intensity
was adjusted to 100 mW/cm2. Cells with an active area of 0.15 cm2 were tested.

3. Results and Discussion

Figure 1 shows the deposition rate of TiO2 films prepared at different substrate incli-
nation angles. The film thickness was measured by SEM and results are listed in Table 1. It
can be seen that the deposition rate decreased as the inclination angle increased. Poxson
et al. [18] have proposed an analytic model that accurately predicts the deposition rate
of nanoporous films made by oblique-angle deposition. They predict a decrease of the
deposition rate with increase of the substrate inclination angle, which has been proved
by the experimental results of SiO2 and ITO films. The result shown in Figure 1 is in
agreement with this prediction. Although the deposition rate for TiO2 films also decreased,
the descent rate was lower than the theoretical expectation and experimental results for
SiO2 and ITO films. This difference may result from the different deposition techniques.
Generally, oblique-angle deposition is applied with the evaporation technique. In this
work, the sputtering technique was used.

Table 1. Photovoltaic performance of the dye-sensitized solar cells (DSSC) based on TiO2 electrodes prepared at different
inclination angles.

Inclination Angle (◦) Voc (V) Jsc (mA/cm2) FF η (%) Thickness (nm)

0 0.59 2.06 0.75 0.91 540
65 0.62 3.48 0.73 1.58 480
85 0.63 4.29 0.70 1.89 400

The FE-SEM top-view images of the TiO2 film deposited at different substrate inclina-
tion angles are shown in Figure 2a–c. The cross-section view image of TiO2 film prepared
at 85◦ substrate inclination angle is shown in Figure 2d. Our previous results have shown
that a TiO2 nanorod structure can be formed at high sputtering pressure [17]. However,
the inclination of the substrate angle was much more favorable for this structure, as can
be seen from the top-view images. It can be seen that although the nanorod structure can
be formed without substrate inclination, the inclination of the substrate was favorable
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for the separation of these nanorods as shown in Figure 2a–c, which means the porosity
of the film increased with increase of the substrate inclination angle. A high substrate
inclination angle will lead to more anisotropic atomic shadowing and result in more voids
to be incorporated into the film [18].
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Figure 1. The deposition rate of TiO2 film as a function of the inclination angle of the substrate. 
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section view of the sample prepared at 85◦ inclination angle).



Molecules 2021, 26, 3122 4 of 9

Figure 3 shows the XRD patterns of the TiO2 films deposited onto ITO substrates at
different substrate inclination angles. For comparison, the XRD pattern of the ITO substrate
is also shown in the figure. Only the anatase phase of TiO2 is observed. All the films show a
preferred orientation along the (220) direction. This preferred orientation is much enhanced
with increase of the substrate inclination angle. The intensity ratio of (220) diffraction peak
to (101) diffraction peak for TiO2 films prepared at different substrate inclination angles has
been plotted in Figure 4. It can be seen that this ratio increased as the substrate inclination
angle increased. It means that the substrate inclination is favorable for nanorod formation
as the TiO2 nanorod grows along the (220) direction [19].
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Figure 5 shows the optical transmission spectra of the TiO2 films deposited onto
the glass substrates at different substrate inclination angles. The transmittance of the
glass substrate without film is also shown in the figure. In some wavelength regions, the
transmittance of the TiO2 films was higher than the bare glass substrate, which comes
from the volume inhomogeneity of the deposited films. The inhomogeneity causes a small
fluctuation of the refractive index and results in this phenomenon. It can be seen from the
figure that the transmittance in the visible region was high for the film prepared at a high
substrate inclination angle. The film prepared at a high substrate inclination angle was
thinner than that prepared at a low inclination angle, which may cause a decrease of the
transmittance. In addition, TiO2 film prepared at a high substrate inclination angle showed
a better separated nanorod structure than that prepared at a low substrate inclination angle,
which may also have contributed to the improvement of the optical transmission. It can be
also seen from Figure 5 that the optical band gap moved to a short wavelength for the film
prepared at a high substrate inclination angle. The optical band gap of TiO2 films can be
estimated by the following equation:

αhν = A
(
hν− Eg

)m (1)

where α is the absorption coefficient, hν is the photon energy, A is the constant which
depends on the effective mass of the charge carrier in the material, Eg is the optical
band gap and m is the exponent defined by the mechanism of the photon absorption of
the semiconductor and is theoretically equal to 1

2 and 2 for direct and indirect allowed
transition, respectively [20]. Therefore, by the extrapolation of the linear part of the curve
(αhν)2 − hν or (αhν)1/2 − hν to the zero value of the ordinate, the optical band gap Eg
can be obtained from the intercept of abscissa for direct and indirect transitions. As TiO2 is
an indirect transition band gap material, (αhν)1/2 versus photon energy (hν) were plotted
for TiO2 films prepared at different substrate inclination angles, as shown in Figure 6. It
can be seen that the optical band gap was about 3.37 eV, 3.40 eV, and 3.42 eV for TiO2
films prepared at 0◦, 65◦, and 85◦ substrate inclination angles, respectively. As can be seen
from the SEM images, the sample prepared at a high substrate inclination angle had a
better nanostructure than that prepared at a low substrate inclination angle. This may have
implications for the quantum confinement effect and result in a blue shift of the optical
band gap.
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Figure 6. (αhν)1/2 as a function of the photon energy (hν) for TiO2 films prepared at different
substrate inclination angles.

By fitting the transmittance, the refractive index as a function of the wavelength for the
films prepared at different substrate inclination angles is obtained, as shown in Figure 7. It
can be seen that the film prepared at a low substrate inclination angle had a high refractive
index. It is well known that the film packing density is related to the refractive index.
High refractive index film has a high packing density. The high substrate inclination angle
produces film with high porosity and results in a low refractive index. This structure was
confirmed by SEM measurement, as shown in Figure 2.
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Photocurrent density-voltage characteristics of DSSCs assembled with TiO2 films
prepared at different substrate inclination angles as photoelectrodes are shown in Figure 8.
The noise increased as the inclination angle increased. As the inclination angle increased,
the deposition rate decreased (Figure 1). Low deposition rate results in a decrease of the
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thickness and may cause the increase of noise. The photoelectric conversion efficiency was
calculated using the equation:

η =
JscVocFF

Pin
× 100 (2)

where η is the conversion efficiency, Jsc is short-circuit current density, which depends on
the charge injection and transportation, Voc is the open circuit voltage, which is most likely
related to the difference between the Fermi level of the semiconductor electrode and redox
potential in the electrolyte, and FF is the fill factor, which is related to functioning of the
TiO2/electrolyte interface. The higher the recombination of conduction band electrons
with the electrolyte, the lower will be FF [21], and Pin is incident light energy. The values of
Voc, Jsc, FF, and calculated conversion efficiency are listed in Table 1. It can be seen from
Figure 8 that the photocurrent density improved greatly by using TiO2 film prepared at
a high substrate inclination angle. Although the open circuit voltage and the fill factor
also showed a small variation for DSSC assembled with TiO2 film prepared at different
substrate inclination angles, the conversion efficiency was dominated by photocurrent
density, as shown in Table 1. The photocurrent density is related to both electron density
and electron mobility. By increasing the substrate inclination angle, the porosity of the
deposited TiO2 film increased, which was confirmed both by SEM measurement and by the
calculation of the refractive index. The increase of the porosity of the TiO2 film improves
the absorption of the dye molecules and results in the increase of the electron density.
The absorbance of TiO2 films prepared at different substrate inclination angles, after they
are sensitized by dye, were measured as shown in Figure 9. It clearly shows that the
TiO2 film prepared at a high substrate inclination angle had high absorbance after dye
absorption. This means that the TiO2 prepared at a high substrate inclination angle can
absorb more dye molecules than that prepared at a low substrate inclination angle, which
will produce a high electron density and result in a high photocurrent density. Further, the
nanorod crystallinity improved as the substrate inclination angle increased, which was
shown in XRD patterns. This improvement of the crystallinity may result in an increase
of the electron mobility and then an increase of the photocurrent density too. It can be
seen from Table 1 that the conversion efficiency increased significantly by using TiO2 film
prepared at an 85◦ substrate inclination angle as a photoelectrode, which means it is an
efficient way to improve the conversion efficiency of dye-sensitized solar cells.
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4. Conclusions

Nanostructured TiO2 films were deposited onto ITO and glass substrates by dc reac-
tive magnetron sputtering at different substrate inclination angles. The deposition rate
decreased with an increasing substrate inclination angle. All the films showed an anatase
phase with a preferred orientation along the (220) direction and a nanorod structure. As
the substrate inclination angle increased, the preferred orientation along the (220) direction
was enhanced and the voids between nanorods increased; the optical band gap increased
and the refractive index decreased. Dye-sensitized solar cells were assembled with these
TiO2 films. Conversation efficiency was dominated by photocurrent density. By using TiO2
film prepared at an 85◦ substrate inclination angle as an electrode, the conversion efficiency
was double compared to that using TiO2 film prepared without substrate inclination as
an electrode.
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