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Abstract: Change detection from synthetic aperture radar (SAR) images is of great significance for
natural environmental protection and human societal activity, which can be regarded as the process
of assigning a class label (changed or unchanged) to each of the image pixels. This paper presents a
novel classification technique to address the SAR change-detection task that employs a generalized
Gamma deep belief network (gΓ-DBN) to learn features from difference images. We aim to develop
a robust change detection method that can adapt to different types of scenarios for bitemporal
co-registered Yellow River SAR image data set. This data set characterized by different looks, which
means that the two images are affected by different levels of speckle. Widely used probability
distributions offer limited accuracy for describing the opposite class pixels of difference images,
making change detection entail greater difficulties. To address the issue, first, a gΓ-DBN can be
constructed to extract the hierarchical features from raw data and fit the distribution of the difference
images by means of a generalized Gamma distribution. Next, we propose learning the stacked spatial
and temporal information extracted from various difference images by the gΓ-DBN. Consequently,
a joint high-level representation can be effectively learned for the final change map. The visual
and quantitative analysis results obtained on the Yellow River SAR image data set demonstrate the
effectiveness and robustness of the proposed method.

Keywords: change detection; synthetic aperture radar (SAR); generalized Gamma deep belief network

1. Introduction

Change detection can be regarded as a classification procedure that classifies pixels into
changed and unchanged classes. With the use of various feature learning and classification
technologies, change detection can be used to acquire land cover change information from
two images taken in the same area at two different times. This interesting task features a
wide range of applications related to environmental monitoring [1,2], urban studies [3],
forest monitoring and damage assessment [4,5], risk analysis, etc. SAR sensors are active
microwave sensors and have been widely used for change detection tasks, because SAR
images can be acquired under inclement weather conditions at any time. Thus, SAR image
change-detection techniques are applicable in a wide range of fields. In this paper, we
focus on the change detection in the Yellow River Estuary area related to changes in water
and farmland by analyzing two synthetic aperture radar (SAR) images captured over the
study area.

Monitoring changes in the Yellow River Estuary area of China is of great significance
for human societal activity and natural resource protection. A large amount of sediment
is deposited in the Yellow River channel and estuary area every year, which has changed
the topography of the rivers and estuaries. In order to support navigation and production
safety, changing topographical information is of significant value. In this paper, we focus
on change detection in the Yellow River Estuary area, which is defined as identifying
significantly changed areas in farmland, coastline and river by analyzing two SAR images
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captured over the same geographical area. The Yellow River Estuary data set, which
comprises four-look data and a single-look data, is characterized by different looks, which
means that the two images are affected by different levels of speckle. The huge difference
in speckle noise level between the two images complicates the change detection process [6].

There has been a long-term effort to detect changes in SAR images in an unsupervised
manner. Thresholding and clustering are two widely used classical algorithms for detecting
changes in an unsupervised manner. However, the existence of speckle noise makes it
difficult to separate opposite classes. Therefore, by incorporating spatial information, these
two classical change-detection techniques can greatly improve the final detecting result.
Jia et al. proposed to embed a priori knowledge into the expectation-maximization (EM)
iteration process, which specifies the spatial characteristics of the pixel classes through
Dempster–Shafer evidence theory [7]. Celik proposed a simple and effective satellite
image change-detection algorithm that applies k-means clustering to principal component
analysis (PCA) feature vectors constructed from nonoverlapping blocks of the absolute-
value of difference in intensity of two images [8]. Local neighborhood information has
also been incorporated into the multiple kernel k-means clustering objective function to
resist speckle for SAR change detection [9]. Although traditional methods lead to great
successes, their performance is limited by the artificially designed features extracted from
SAR images.

Due to their capacity to learn multilevel feature representations, deep neural networks
have received widespread attention in recent years. Classical deep neural works, such as
convolutional neural networks (CNNs), deep belief networks (DBNs) and deep autoen-
coder networks (DAENs), have been constructed to address the SAR change detection
problem. Gao et al. proposed introducing the dual-tree complex wavelet transform into
CNNs for SAR change detection to effectively reduce the effect of speckle noise [10]. Focus-
ing on the training dataset diversity, Samadi et al. proposed training the DBN using the
input images and their morphological features [11]. By utilizing the pseudo labels obtained
from a clustering algorithm, Gong et al. proposed constructing deep architectures using
two steps: unsupervised feature learning and supervised fine-tuning [12]. In addition,
considering that superpixels can tightly adhere to real change image boundaries, a stacked
contractive autoencoder (sCAE) was presented to extract the temporal SAR image change
feature [13]. Change detection using deep neural networks in SAR images is a complicated
process, and it can be affected by many factors. The challenges for change detection are
summarized as follows.

Speckle noise: speckling increases the overlap between opposite-class pixels in the
histogram of the difference image, making it difficult to separate opposite classes. Ex-
isting change detection methods cannot detect all the ground object changes affected by
speckle noise.

Fuzzy edge of changed regions: in detecting the change information from SAR im-
ages, changed regions may include a variety of ground object change information at the
same time, whose characteristics are quite different. Due to the lack of prior knowledge,
there is a competitive relationship between changed regions and background regions,
resulting in a fuzzy edge in the changed region, which is difficult to determine.

Limited data set: a large number of weights needs to be adjusted in the training
process of deep neural network models, which makes it easy to cause the loss function to
fall into the local minimum due to improper weights, resulting in poor change detection. To
obtain ideal weights, enough training samples need to be fed into the deep neural network
for model training. However, collecting labeled data is a time-consuming, laborious and
even impractical task.

Due to the capacity of the DBN to learn the statistical characterization of SAR images,
the dependencies among each unit of the observed variables are learned by the DBN to
model the generative procedure of SAR images. Specifically, the DBN can be treated as a
multi-layer generative model composed of restricted Boltzmann machines (RBM) [14] as
its modules. The hierarchical structure of SAR images is built by DBNs with constraints
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l1, l2 and l1/2 [15] for SAR image target recognition. Furthermore, a Wishart-DBN [16]
was proposed for SAR image classification by employing prior knowledge of SAR images.
The accuracy of many SAR image change detection methods relies on the accuracy of the
given statistical model at expressing the changed information. This is because speckle
noise existing in SAR images leads to a high level of uncertainty between changed and
unchanged regions. Several widely used probability distributions for SAR image modeling
can be viewed as special cases of the generalized Gamma distribution (gΓD), such as
Rayleigh, exponential, Weibull and Gamma distributions. Therefore, the gΓD is considered
to offer strong descriptive ability as the statistical model of difference images.

The two images of the Yellow River SAR image data set are single-look image and
four-look image, respectively. This means that the influence of speckle noise on one
image is much greater than on the other. The huge difference in the speckle noise level
complicates the processing of change detection, since this increases the uncertainty between
changed and unchanged pixels in the histogram of the difference images. In this paper,
a gΓ-DBN is investigated for detecting changes in the Yellow River Estuary SAR image
data set. Firstly, after studying the characteristics of various difference images, a gΓ-DBN
was constructed to extract hierarchical features from raw data and fit the distribution of
difference images. Next, the high-order statistical characteristics of changed and unchanged
pixels in difference images were acquired by the constructed gΓ-DBN to provide a unique
interpretation of changes and background from bitemporal SAR images. As a consequence,
a final change map was generated based on the extracted discriminative information using
gΓ-DBN.

2. Proposed Method

Let us consider two co-registered SAR images X1 = {x1,1, x1,1, . . . , x1,N} and
X2 = {x2,1, x2,1, . . . , x2,N}, which are composed of N pixels and acquired over the same area
at two different times, t1 and t2, respectively. SAR image change detection can be regarded
as a classification procedure, in which pixels in difference image X = {x1, x2, . . . , xN} ∈ RN

are classified as changed or unchanged. The general framework of the proposed method,
which is composed of three steps, is presented in Figure 1.
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Figure 1. Illustration of the proposed framework. Figure 1. Illustration of the proposed framework.

Step 1 (Difference Image Generation): Three difference images are generated by the mean-
ratio detector, the neighborhood-based ratio operator and the ratio operator, respectively.
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Step 2 (Training Sample Construction): Pixel vectors constructed by corresponding pixel
patches from difference images are utilized as the to-be-selected training data. The PCA-
kmeans algorithm is adopted to classify the pixel vectors into three clusters, of which those
at a close distance from the cluster center are taken as training samples.
Step 3 (Classification by gΓ-DBN): The training samples generated in Step 2 are fed into the
gΓ-DBN for model training. After training, all the pixel vectors from the original difference
images are fed into the learned gΓ-DBN for classification, before the final change map
is generated.

2.1. Difference Images Generation

The generation of the difference image is usually the first step in the traditional
change-detection process. The change information in radar backscatter can be obtained
by comparing the intensity values between images taken on two dates. Potential change
information can be reflected by all kinds of clues about real changes. A series of difference
image generation techniques have been proposed. The mean-ratio detector preserves the
mean value in the local region, which modifies the local texture and may be adverse to
detecting changes [17]. The neighborhood-based ratio operator considers the scene hetero-
geneity in local areas and is not influenced by scenes with different kinds of changes [1].
The ratio operator can better adapt to the statistical characteristics of SAR data and is
very resistant to calibration errors. However, it is quite sensitive to the presence of image
speckles [18]. Difference image generation techniques feature their own strengths and yield
effective results for change detection in SAR images; each technique inevitably leads to a
loss of feature information reflecting the real change. To jointly learn features from various
difference images, in this paper, various difference images are fully considered to capture
high-level statistical feature representation. The training samples are constructed from the
difference images. This approach is implemented to acquire better changed and unchanged
information representations than that obtained from a single difference image.

In many traditional SAR image change-detection methods, the accuracy of the result
depends on the given statistical model and whether the model can accurately express
the changed information. This is because SAR images suffer from speckle noise, which
increases the uncertainty between changed and unchanged pixels in the histogram of the
difference images. Several probability distributions that are widely used for modeling the
opposite class pixels of difference images offer limited accuracy for describing the change
information between bitemporal SAR images. Gaussian, exponential, Rayleigh, Weibull
or Gamma distributions may be suitable for some kinds of changed regions, but not for
others. These can be viewed as special cases of a generalized Gamma distribution (gΓD)
with different parameters. The generalized Gamma distribution (gΓD) is considered to
feature strong descriptive ability as the statistical model of difference images. Therefore,
in this paper, we propose to model the difference images using the gΓD to jointly learn
statistical features from various difference images for difference scenarios. Probability
density distributions of the opposite class pixels from the Farmland data set are plotted
in Figure 2. After studying the characteristics of the opposite class pixels from various
difference image pixels, the generalized Gamma distribution was found to accurately
express the change information and background and was used as the statistical model for
the difference images.
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Figure 2. Histograms of opposite class pixels for various difference images obtained by (a) mean-ratio detector
(b) neighborhood-based ratio operator and (c) ratio operator.

2.2. Training Sample Construction

Pixel vectors constructed by corresponding pixel patches from difference images were
utilized as the to-be-selected training data. The PCA-kmeans algorithm was adopted to
classify the pixel vectors into three clusters, of which those at a close distance from the
cluster center were taken as the training samples. Let i ∈ {1, 2, . . . , n} be a set of integers
indexing the N pixels. Image patches centered at the corresponding pixel xi are extracted
from the three difference images. Let PMR

i represent an image patch centered at pixel xi in
the mean-ratio detector XMR. PNR

i and PR
i represent image patches centered at pixel xi in

the neighbourhood-based ratio and radio operator, XNR and XR, respectively. The size of
each patch is ω × ω. All the difference image patches XMR, XNR and XR corresponding
to pixel xi are reshaped into pixel vectors and concatenated into a single pixel vector Pi.
Thus, the size of Pi is 3× ω2. After the obtaining pixel vectors of all the image pixels, a
PCA-kmeans algorithm is applied to classify the pixel vectors into three groups: (1) the
changed class, Ωc, among which pixels with a close distance to the cluster center. This
means these pixels feature a high probability of being changed; (2) the unchanged class
Ωu, among which pixels feature a high probability of being unchanged as well; and (3) the
fuzzy class, Ω f . It is difficult to assign an accurate label to pixels belonging to Ω f , since the
speckle noise increases the uncertainty between the opposite class pixels in the difference
image. Therefore, pixels belonging to Ωc and Ωu are utilized to generate training set T.
A smaller number of real samples with a high probability of constructing the training set
could lead to overfitting of the model. By contrast, selecting a large number of samples
results in some training samples featuring incorrect class labels, which would negatively
affect model training. Furthermore, it should be noted that the changed and unchanged
image samples featured an imbalance in their distribution. Therefore, we generated virtual
samples based upon these real samples in training set T using the means proposed by
Gao et al. to expand the training set T and ensure that the positive and negative samples
were equally distributed [10]. Then samples in T were fed into the gΓ-DBN to train the
constructed deep neural network model, which is described in the following subsection.

2.3. Classification by a Generalized Gamma Deep Belief Network

DBN can directly model the generative procedure of SAR images, and can effectively
learn a statistical model from input data via nonlinear mapping. The SAR image change-
detection task is widely considered a classification problem. Because the DBN can be used
to learn the statistical dependencies among each unit of observed variables, a gΓD-based
DBN is constructed by stacking the RBMs in a hierarchical manner to learn the discrim-
inative information from difference images. Therefore, a DBN is suitable for capturing
high-level discriminant features for land cover change detection. The aforementioned
difference image generation techniques have been widely utilized in the traditional SAR
image change detection techniques and have achieved great success. However, because of
the existence of speckle noise, probability distributions offer limited accuracy in describing
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the change information between bitemporal SAR images. Thus, utilizing the high represen-
tation learning capacity of deep neural network models, a gΓB-RBM was used to learn the
statistical dependencies between the visible variables and the hidden nodes for modeling
the difference images [19].

The input pixel vector Pi ∈ T was employed as n visible variables v = (v1, v2, . . . vn) ∈
[0, 1]n. In addition, m hidden nodes h = (h1, h2, . . . hm) ∈ {0, 1}m were utilized to model
the statistical relations between visible variables as the output of gΓB-RBM. The joint
probability of gΓB-RBM can be expressed as:

p(v, h; θ) =
1

Z(θ)
exp(−E(v, h; θ)) (1)

where E(v, h; θ) is the energy function, and θ represents the model parameters. The
partition function Z(θ) can be calculated by Z(θ) = ∑v,h exp(−E(v, h; θ)). The energy
function of gΓB-RBM can be defined as:

E(v, h; θ) = −
m

∑
i=1

n

∑
j=1

Wijhi ln vj −
n

∑
j=1

(
vβ

j − bj ln vj

)
−

m

∑
i=1

cihi (2)

where θ = {W, b, c}. And W =
(
Wij
)

is a weight matrix in which each element Wij is
a real-valued weight associated with the edge between visible unit (input data Pj) and
hidden unit hi. b =

(
bj
)

and c = (ci) are biases associated with the visible and hidden
nodes, for i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}, respectively. The value β is the power of
gΓD [20]. Next, the conditional probability of gΓB-RBM is given by:

p
(
vj = Pj

∣∣h; θ
)
=

p
(
vj = Pj, h; θ

)
p(h; θ)

∝ Pj
bj+∑m

i=1 Wijhi exp
(
−Pj

β
)

(3)

p(hi = 1|v; θ) = sig

(
n

∑
j=1

Wij ln vj + bi

)

where sig(·) is the logistic function, defined as sig(x) = (1 + exp(−x))−1. Therefore, the
probability that gΓB-RBM assigns between the visible and hidden nodes is determined by
the input data Pj, weights W and biases b. Similar to [19,21], a batch-wise based gΓB-RBM
training is implemented in Algorithm 1.

A discriminative gΓ-DBN that consists of an input layer, four hidden layers and one
prediction layer is presented in Figure 1. The gΓ-DBN network architecture can be de-
scribed as {I1, G2, B3, B4, B5, O6}. The value I1 is the input layer, where the input image
pixel vectors are of the size n. The value G2 is a gΓB-RBM layer. The values B3, B4 and B5
are Binary-RBM layers. The value O6 is a softmax layer with two units to generate labels for
change map. As a consequence, training samples in T are fed into the constructed gΓ-DBN
for model training. Therefore, four major parts are concluded for the constructed gΓ-DBN
training to deal with SAR image change detection task: gΓ-RBM learning, standard binary
RBMs learning, adding a prediction layer and fine tuning, all of which tune weights of
the gΓ-DBN with pseudo labeling information obtained from Step 2 (Training Samples
Construction) via a backpropagation procedure. After training, all the pixel vectors from
the original difference images are fed into the learned gΓ-DBN for classification, before the
final change map is generated.
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Algorithm 1. The gΓB-RBM update for a mini-batch of size Ns.

Input: A gΓB-RBM with n visual nodes and m hidden nodes and training batch S.
Output: The gradient approximation of model parameter:∆Wij, ∆bj and ∆ci, for i ∈ {1, 2, . . . , m}
and j ∈ {1, 2, . . . , n}.

Initialization: ∆Wij = 0, ∆bj = 0 and ∆ci = 0;
for all v = (v1, v2, . . . vn) ∈ S do

v(0) ← v ;
for k = 1 to K− 1 do
∀i ∈ {1, 2, . . . , m}, sample h(k)i ∼ p

(
hi

∣∣∣v(k));

∀j ∈ {1, 2, . . . , n}, sample v(k+1)
i ∼ p

(
vj

∣∣∣h(k)
)

;

end for
for 1 ≤ i ≤ m and 1 ≤ j ≤ n do

Update ∆Wij: ∆Wij ← ∆Wij + p
(

hi = 1
∣∣∣v(0))· ln vj

(0) − p
(

hi = 1
∣∣∣v(K))· ln vj

(K) ;

Update ∆bj: ∆bj ← ∆bj + ln vj
(0) − ln vj

(K) ;

Update ∆ci: ∆ci ← ∆ci + p
(

hi = 1
∣∣∣v(0))− p

(
hi = 1

∣∣∣v(K)) ;

end for
end for
return ∆Wij, ∆bj and ∆ci.

3. Results
3.1. Experimental Setting

Quantitative and qualitative evaluations were utilized to compare the proposed
method with related state-of-the-art methods on the Yellow River Estuary data set to
demonstrate its effectiveness. This data set was acquired by the Radarsat-2 sensor in the
C-band with polarization HH in “strip-map” mode over Dongying in Shandong Province,
China, on 18 June 2008 and 19 June 2009, respectively. The spatial resolution was approx-
imately 8 m × 8 m. More specifically, this data set is characterized by different looks.
The image taken in 2008 is four-look data, but the one taken in 2009 is single-look data,
which means that the two images are affected by different levels of speckle. The huge
difference in speckle noise level between the two images complicates the change detection
process. The original size of these two SAR images was 7666 × 7692 pixels. The details are
difficult to illustrate; thus, we selected three typical areas located at different geographic
sites with dissimilar types of changed regions. These three data sets were constructed by
integrating prior information with photo interpretation, including Farmland, River and
Coastline (detailed in reference [6]), as demonstrated in Figure 3. It is considered that the
three regions can effectively reflect the changed characteristics of the Yellow River Estuary
between two times. Figure 3a,b present a block of landlocked farmland, of which the
changed regions are relatively large and regular. The available ground truth depicted in
Figure 3c was created by integrating prior information with photo interpretation based on
the input images. Figure 3d–f depict a section of an inland water area, which were selected
because the changed regions are concentrated on the borderline of the Yellow River and
comparatively difficult to accurately detect. The change in the coastline area is presented
in Figure 3g–i, where the changed regions are on the surface of the sea, along the coastline.
For this data set, the changed and unchanged pixels were distributed extremely unequally
(1075 changed pixels and 124,925 unchanged pixels in the ground truth map).
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To perform a broader comparison, four comparative methods were considered:
(1) PCA-kmeans [8], which extracts eigenvectors with PCA and accomplishes change
detection through k-means; (2) CWNN [10], which introduces dual-tree complex wavelet
transform into CNNs for SAR change detection; (3) DBN [12], which obtains unsupervised
feature learning and supervised deep belief network fine-tuning, then produces a final
change map; and (4) JDBN, which jointly adopts three difference image samples as the
input to train the DBN model. In the following implementations, image pixels from Ωu and
Ωc considered as training samples were about thirty percent of the total image patch sam-
ples. Next, virtual samples were generated based upon these real samples in accordance
with [10], to ensure that the positive and negative samples were equally distributed [10].
The power of gΓD β was set to 2, as recommended in the work of [19]. Note that, to make
the comparison realistic, we applied the Lee filter on the bitemporal images to reduce the
effect of speckle noise before generating the difference image.

As mentioned above, the gΓ-DBN network can be described as {I1, G2, B3, B4, B5, O6}.
The value I1 is the input layer, where the input pixel vector Pi is employed as n visible
variables, which are determined by the size of the input image pixel vectors 3×ω2. The
value G2 is a gΓB-RBM layer with m hidden nodes, which is set to 170. The values B3, B4
and B5 are Binary-RBM layers, in which the hidden nodes are fixed at 250, 200 and 100,
respectively. The value O6 is a softmax layer with two units to generate labels for change
map. As a consequence, a 75-170-250-200-100-2 network is used. Every hidden layer is
pretrained 50 passes through the entire training set, with the batch size Ns being fixed at 100.
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The performance of the-state-of-art change detection methods can be compared using
visual and quantitative analyses after obtaining the final change detection map. Four
quantitative evaluations were adopted in this study for performance evaluation: false
positives (Nfp), i.e., unchanged pixels that are identified as changed ones; false negatives
(Nfn), i.e., changed pixels that are categorized as unchanged ones; overall errors (Noe), i.e.,
the sum of Nfp and Nfn; and kappa coefficient (κ) [22].

3.2. Reliability of the Training Sample Construction Method

A set of experiments were conducted to prove the reliability of PCA-kmeans algorithm
by comparing with a supervised deep learning algorithm. The experiments were carried
out on the three data sets (Farmland, Coastline and River), for each of which training
and testing were respectively implemented on the same image in both methods. The
samples used for training were selected by the rule described in “Step 2 (Training Samples
Construction)”. The image pixels from Ωu and Ωc considered as training samples were
about thirty percent of the total image patch samples. Next, virtual samples were generated
based upon these real samples to ensure that the positive and negative samples were
equally distributed. To ensure fairness, in the two methods, we used the same JDBN
network topology and the same training set. However, it should be noted that the training
set featured different labels in different methods. In the supervised method, the labels
were given according to the ground truth, and in JDBN, the labels were given according to
the pre-classification results. Although the testing set featured all the pixels of an image,
we calculated the evaluation criteria by using the change detection results obtained from
the JDBN.

Figure 4 presents the final maps of the three data sets. It can be seen that JDBN
achieved similar results to the supervised method. After all, because the samples were
from virtual samples in JDBN, there were some obvious false alarms or missed alarms.
Furthermore, a quantitative comparison between the two methods on the three data sets
is presented in Table 1. For the Farmland data set, the κ yielded by JDBN equaling to
0.8956 approached the value of 0.8931 obtained by the supervised method. For the River
data set, the κ yielded by JDBN was 0.8019, a little lower than but close to the value of the
supervised method. Furthermore, for the Coastline data set, the κ yielded by JDBN was
0.8932, similar to that of the supervised method. In conclusion, JDBN can exert similar
effects to the supervised method on the change detection, which demonstrates that it is
feasible to use the training sample construction method.
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Table 1. Quantitative evaluation of the three data sets.

Data Sets Methods Nfn Nfp Noe κ

Farmland data set
Supervised 469 604 1073 0.8931

JDBN 456 656 1112 0.8898

River data set
Supervised 865 870 1795 0.7893

JDBN 892 887 1779 0.7837

Coastline data set
Supervised 96 145 241 0.8894

JDBN 99 145 244 0.8879

3.3. Performance of the Deep Learning Method

The goal of this section is to investigate the sensitivity of the proposed methods to
the size of image patch ω, since this variable plays a critical role in network training. We
demonstrate the effect of the image patch size ω on the SAR image change detection perfor-
mance for gΓ-DBN using three real data sets, as described above. In these experiments, we
evaluated the performance of the proposed method in varying the size of the image patch
with 3× 3, 5× 5 and 7× 7. Table 2 provides the change detection results under varying
ω. Figure 5 depicts the final maps of the three sizes. It presents the worst performance
when ω is set to 3. Because its change detection map features many white spots on the
background.Making use of large image patches, noisy spots can be effectively suppressed
due to the spatial information extracted by gΓ-DBN. With large image patches, the final
maps produce many false alarms because of the loss of detailed information in the edge
and texture regions. As demonstrated in the figure, the proposed method with ω being set
to 5 exhibited the best performance in terms of Noe and κ. Furthermore, ω was fixed at 5 in
the following subsections.

Table 2. Quantitative evaluation of image patch size ω in three data sets.

Data Set
3 × 3 5 × 5 7 × 7

Noe κ Noe κ Noe κ

Farmland 1395 0.8597 1047 0.8956 944 0.9060
River 1843 0.7699 1595 0.8019 1664 0.7978

Coastline 238 0.8882 225 0.8932 255 0.8824

3.4. Results and Analysis of the Real Data Sets

To evaluate the performance of the proposed gΓ-DBN in the Yellow River Estuary
data set, we first conducted experiments on the Farmland data set. The quantitative
results are presented in Table 3 and Figure 6a–f. Compared with that of other SAR image
change-detection methods, i.e., the traditional PCA-kmeans method and three neural
network-based methods, CWNN, DBN and JDBN, the performance of gΓ-DBN was good.
As Table 3 demonstrates, CWNN and DBN feature a large Noe and the Noe for JDBN was
better, up to 1112. This illustrates the performance of the joint feature learning strategy.
The Noe for gΓ-DBN was 1047, much better than that of other comparative methods. In
addition, gΓ-DBN presented the best result in terms of κ (0.8956) because κ is a stationary
term used to evaluate the agreement of the final change map. The value Nfp presents
unchanged pixels that are identified as changed pixels. The final map features many white
spots in the background, leading to a large value of Nfp. Furthermore, Nfn denotes changed
pixels that are categorized as unchanged pixels. The worst result for Nfn was caused by
the loss of detail information in the edge and texture regions on the final change detection
map. Additionally, the values of Nfn and Nfp jointly determined κ. These results indicate
that gΓ-DBN outperformed DBN. Clearly, gΓ-DBN can provide more accurate statistical
dependencies between the visible variables and the hidden nodes for difference images.
The dependency exerted a considerable effect on the final change map. A direct comparison
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is shown in Figure 6b,f: fewer noise points were wrongly detected as changes by gΓ-DBN
and PCA-kmeans.
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Figure 5. Change detection maps obtained by using different sizes of image patch in three SAR data sets. Farmland data set:
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Table 3. Quantitative evaluation of the Farmland data set.

Methods Nfn Nfp Noe κ

PCA-kmeans 135 1440 1575 0.8366
CWNN 1570 57 1627 0.8104

DBN 1053 874 1927 0.8025
JDBN 456 656 1112 0.8898

gΓ-DBN 458 589 1047 0.8956

The second data set used for performance comparison was the River data set, which
reflects the change in a typical River area. Specifically, the bank of the River narrowed from
2008 to 2009, and an expanded pond was located in the bottom right corner. Table 4 lists
the quantitative analysis results from the River data set. Figure 6g–l provide the change
maps of all the comparison methods. Similar to the results from the Farmland data set,
gΓ-DBN outperformed the other methods and achieved the best results in terms of Noe
and κ. Moreover, noise points appeared in the maps of the PCA-kmeans and CWNN, as
highlighted in Figure 6h,i, leading to a large Nfp. However, the edge regions on the change
map of DBN were not well retained in Figure 6j, resulting in a large Nfn.
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Figure 6. Depicts the change maps obtained by four comparative methods in three SAR image data sets. Farmland
data set: (a) ground truth; (b) PCA-kmeans; (c) CWNN; (d) DBN; (e) JDBN; (f) gΓ-DBN. River data set: (g) ground
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Table 4. Quantitative evaluation of the River data set.

Methods Nfn Nfp Noe κ

PCA-kmeans 581 2050 2631 0.7260
CWNN 722 1006 1728 0.7965

DBN 1298 842 2040 0.7258
JDBN 892 887 1779 0.7837

gΓ-DBN 892 703 1595 0.8019

Table 5 presents the quantitative evaluation results from the Coastline data set, and
the visual results are provided in Figure 6m–r. For this data set, the changed area was
relatively small. It can be observed that the Noe results of these methods were relatively
low. From Figure 6p,q,r, it is clear that the change maps lost detailed change information in
the left corner, resulting in a large Nfn. According to Noe and κ, gΓ-DBN performed the
best. As detailed in Figure 6n,o, more outliers were detected as changes by PCA-kmeans
and CWNN because of the influence of speckle noise, leading to a large Nfp.

Table 5. Quantitative evaluation of the Coastline data set.

Methods Nfn Nfp Noe κ

PCA-kmeans 29 445 474 0.8134
CWNN 22 375 397 0.8398

DBN 178 96 274 0.8664
JDBN 99 145 244 0.8879

gΓ-DBN 125 100 225 0.8932
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4. Conclusions

This paper proposed a novel change-detection method for bitemporal SAR images of
the Yellow River Estuary data set. The main contributions of this paper can be summarized
in the following three aspects: firstly, in considering the gΓD’s strong ability to describe
the statistical model of difference images, a gΓ-DBN was constructed to achieve more
accurate statistical dependencies between the visible variables and the hidden nodes for
the difference images. Secondly, the gΓ-DBN was trained in an unsupervised manner
with the pseudo labeling technique due to the clustering algorithm and virtual samples to
overcome the issue of limited training samples. Finally, the trained gΓ-DBN was utilized to
jointly learn discriminative features from various difference images for the final change
detection map. The experiments on the data sets with dissimilar types of changed regions
demonstrate that the proposed gΓ-DBN method is superior to related methods, namely
PCA-kmeans, CWNN, DBN and JDBN, at accurate change detection.
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