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Current automated external defibrillators mandate interruptions of chest compression to avoid the effect of artifacts produced by
CPR for reliable rhythm analyses. But even seconds of interruption of chest compression during CPR adversely affects the rate
of restoration of spontaneous circulation and survival. Numerous digital signal processing techniques have been developed to
remove the artifacts or interpret the corrupted ECG with promising result, but the performance is still inadequate, especially for
nonshockable rhythms. In the present study, we suppressed the CPR artifacts with an enhanced adaptive filtering method. The
performance of the method was evaluated by comparing the sensitivity and specificity for shockable rhythm detection before and
after filtering the CPR corrupted ECG signals.The dataset comprised 283 segments of shockable and 280 segments of nonshockable
ECG signals during CPR recorded from 22 adult pigs that experienced prolonged cardiac arrest. For the unfiltered signals, the
sensitivity and specificity were 99.3% and 46.8%, respectively. After filtering, a sensitivity of 93.3% and a specificity of 96.0% were
achieved. This animal trial demonstrated that the enhanced adaptive filtering method could significantly improve the detection of
nonshockable rhythms without compromising the ability to detect a shockable rhythm during uninterrupted CPR.

1. Introduction

Early defibrillation is critical for the survival of patient who
suffered from cardiac arrest [1, 2]. However, the application
of high quality of cardiopulmonary resuscitation (CPR)
introduces strong artifact components into the electrocar-
diogram (ECG) signal, which reduces the accuracy of the
shock/nonshock decision of automated external defibrillators
(AEDs) [3]. Thus, chest compressions (CC) are mandated to
be interrupted in the current AEDs in order to perform a
reliable rhythm analysis and provide appropriate defibrilla-
tion prompt to the rescuers. But even seconds of interruptions
of CC adversely affects the rate of restoration of sponta-
neous circulation (ROSC) and survival [4]. According to an
experimental study, the likelihood of successful resuscitation
decreased as much as 50% with a 20-second interruption of
CC [5]. Actually, clinical studies have also confirmed that
longer pauses in CC before and after defibrillator shocks

were independently associated with a decrease in survival
to hospital discharge [6, 7]. When the hands-off intervals
were minimized, significantly better outcomes were achieved
and reported [8, 9]. Therefore, the latest guidelines from the
AmericanHeartAssociation (AHA) and theEuropeanResus-
citation Council (ERC) recommended minimizing these
hands-off intervals between compression and shock [10, 11].

If accurate cardiac rhythm analysis can be performed
during CPR, these interruptions will be minimized or totally
avoided. During the last decade, numerous digital signal
processing techniques have been developed to remove the
artifacts or interpret CC corrupted ECG during CPR. Sensi-
tivity and specificity are the proportion of correctly identified
shockable and nonshockable rhythms, respectively, and are
used to evaluate the performance of artifact suppression
method. Algorithms removing artifacts using only the ECG
signal, including independent component analysis (ICA) [12]
and coherent line removal algorithm [13], have improved the
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sensitivity to 99.8% and the specificity to 83.2% for detecting
a shockable rhythm. Methods filtering the CPR artifact
using additional references, such as Gabor multipliers [14],
Kalman filter [15], adaptive filter [16–19], and multichannel
recursive adaptive matching pursuit (MC-RAMP) filter [20],
have improved the sensitivity and specificity to 95.6% and
90.5%. To identify a shockable rhythm during CPR, Li et
al. [21] searched the identifiable components directly in
the corrupted ECG signal using morphology consistence
evaluation. A sensitivity of 93.3% and specificity of 88.6%
were reported in a dataset which consisted of 229 victims
during out-of-hospital cardiac arrest. Although the sensitivity
for detecting a shockable rhythm was significantly improved
with the application of these techniques, the specificity was
still below the 95% limit recommended by theAHA task force
onAEDs for accurately detecting nonshockable rhythms [22].
Further studies are, therefore, still required to analyze the
interaction between the artifact and underlying rhythms and
to improve the accuracy of nonshockable rhythm decision
[23, 24].

In the present study, the effects of CC on signal-to-noise
ratio (SNR) at different types of underlying rhythms (ven-
tricular fibrillation (VF), pulseless electrical activity (PEA),
and asystole (ASY)) were firstly analyzed in an adult porcine
model of prolonged cardiac arrest and CPR. An enhanced
adaptive filtering method was then developed to suppress the
CPR artifact and evaluated by comparing the sensitivity and
specificity for shockable rhythm detection before and after
filtering.

2. Materials and Methods

2.1. Experiment Procedure and Data Collection. The exper-
imental data were collected from 22 male adult pigs that
experienced prolonged cardiac arrest and CPR. The porcine
model has been well established to simulate real out-of-
hospital scenarios due to the fact that heart size, blood
pressure, and heart rate are similar to those in humans
[25]. Anesthesia was initiated by intramuscular injection of
ketamine (20mg/kg) andwas completed by ear vein injection
of sodium pentobarbital (30mg/kg). VF was electrically
induced by applying a 5mA alternate current through a
pacing catheter in the right ventricle. CPR, including CC
and ventilation, was begun after 6 minutes of untreated
VF (Group A) in 14 animals [26]. The compression depth
(CD) was randomized to either 25% or 17% of the anterior
posterior diameter of the chest during the first 4 minutes
of CPR and 20–25% after 4 minutes. In another 8 animals
with the same weight and chest size, CPR was begun after
11 minutes of untreated VF (Group B). CD was comparable
to 20–25% of the anterior posterior diameter of the chest.
For all of the animals, manual CC were performed by two
experienced emergency medical doctors at a rate above 100
per minute. The animals were manually ventilated with a
bag-valve device during CPR. CC were synchronized to
provide a compression/ventilation ratio of 30 : 2 with equal
compression-relaxation intervals. After 2 minutes of CC in
Group A and 6 minutes of compression in Group B, a

defibrillation was attempted with a single 120 J rectilinear
biphasic shock. One dose of epinephrine (30𝜇g⋅kg−1) was
given through the right atrial catheter after 2 minutes of
CPR in Group B. CC were immediately resumed followed
by ECG rhythm analysis within 5 seconds until confirmation
of spontaneous circulation. If spontaneous circulation was
not restored, CC were continued for another 2 minutes, after
which defibrillation was attempted with another single 120 J
shock.This sequence was repeated for amaximumof 5 cycles.

The ECG, acceleration, and transthoracic impedance
(TTI) waveform were continuously measured and recorded
through a data acquisition system supported by Windaq
hardware/software (Dataq Instruments Inc., Akron, OH,
USA) at a sample rate of 300Hz. During CC, the acceleration
and TTI signals also served as feedback to control the
compression rate and depth. The ECG was measured from
the output of a commercial defibrillator (M-Series, Zoll
medical corporation, Chelmsford, MA, USA) with the use
of a hard gel type of adult defibrillation/pacing pads (stat-
padz, Zoll Medical Corporation, Chelmsford, MA, USA)
that were applied with an anterior to lateral placement. TTI
waveform was recorded through a user designed circuit
which was parallelly connected with the defibrillator using a
sinusoid-wave excitation current of 2mA and 30 kHz across
the defibrillation pads. The acceleration signal was recorded
from an accelerometer-based handheld CPR device (CPR-D-
padz, Zoll Medical Corporation, Chelmsford,MA, USA) that
was placed on the surface of the animal’s chest just above the
heart and underneath the rescuer’s hands during CC.

Data were analyzed offline through user designed soft-
ware usingMatlab (TheMathWorks, Inc., Natick, MA, USA).
ECG, together with acceleration and TTI signals during
CPR, was extracted and annotated from the digitalized
experimental records.TheCDwas calculated from the double
integration of acceleration signal. Each segment consisted of
4-second corrupted signal and 3-second artifact-free signal,
either during ventilation or during rhythm analysis. These
segments were then annotated as VF, PEA, or ASY by an
experienced emergencymedical doctor. As shown in Figure 1,
a disordered electrical activity without the presence of obser-
vational QRS and with the peak-to-peak voltage greater than
0.1mV was annotated as VF. The presence of at least one
QRS complex in a segment was classified as PEA. A segment
with peak-to-peak voltage less than 0.1mV was annotated as
ASY. Segments with rhythm transitions or defibrillation were
excluded from the dataset.

2.2. Estimation of SNR. To investigate the effects of CC
on SNRo (before filtering) at different types of underlying
rhythms (VF, PEA, and ASY) and performance of the
proposed filtering method, we estimate the SNRo and the
SNRf (after filtering) of the CPR corrupted ECG based on
the contiguous artifact-free signal [27]. Assuming that the
underlying ECGandCPR artifact are uncorrelated, the power
of CPR artifact can be obtained through subtracting the
power of corrupted ECG by the power of clean ECG. Figure 2
shows the examples of signal selection for SNRo estimation in
each segment. A 3-second corrupted ECG signal and another
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Figure 1: Segments of ECG and reference signals during cardiopulmonary resuscitation (CPR). (a) Ventricular fibrillation with and without
chest compression (CC). (b) Pulseless electrical activity (PEA) without and with CC. (c) Asystole (ASY) with and without CC. TTI:
transthoracic impedance.
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Figure 2: Examples of signal selection for SNR estimation. The CPR corrupted signal was selected either from the latest 3 seconds of chest
compression (CC) (a) or 1 second after the beginning of CC (b).
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3-second artifact-free signal are used to calculate the SNRo
with the following equation:

SNR = 10 ⋅ log
10

(
𝜎
2

𝑠

𝜎2
𝑥

− 𝜎2
𝑠

) , (1)

where 𝜎2
𝑠

is the variance of underlying ECG signal and 𝜎2
𝑥

is the variance of corrupted ECG signal. The SNRf is also
estimated with (1), except that the variance of underlying
ECG is calculated by the filtered uncorrupted 3-second signal,
and the variance of artifact is calculated by the subtraction of
the variance of underlying ECG and the variance of filtered
corrupted ECG signal.

The estimation is based on the hypothesis that time-
limited VF and ASY can be considered quasi-stationary
signal. On the other hand, since the energy of a normal sinus
rhythm depends on the number of QRS complexes appearing
within a segment, we therefore exclude the segments that
have unequal numbers of QRS complex within the selected
artifact-free and corrupted ECG signals when the underlying
rhythm is annotated as PEA.

2.3. The Enhanced Adaptive Filtering Method. To suppress
the CC related artifacts (CC-artifact), an enhanced adaptive
filteringmethod is developed by estimating the proportion of
artifact within the CPR corrupted ECG signal. The flowchart
of the proposed method is shown in Figure 3.

The corrupted ECG and reference (TTI) signals are firstly
preprocessed by a 4th order Butterworth band-pass filter
(0.2–45Hz) to remove offset and high frequency noise. The
power spectral density (PSD) of reference and preprocessed
ECG signals are then calculated through dividing the square
of the amplitude of fast Fourier transform (FFT) by the length
of data points. The frequency of CC 𝑓CC is obtained by the
PSD of TTI:

𝑓CC = argmax
𝑓

𝑃TTI (𝑓) . (2)

The power of artifact is computed through the PSD of
corrupted ECG with the use of 𝑓CC and its harmonics. The
proportion of the artifact power pro is calculated by

pro =
∑
𝑁

𝑘=1

𝑃
𝑆

(𝑘 ⋅ 𝑓CC)

∑
𝑓𝑆/2

𝑓=0

𝑃
𝑆

(𝑓)

, (3)

where 𝑘 is the order of harmonics (𝑁 = 3) and 𝑓
𝑠

is the
sampling rate.

The proportion of the artifact power is then compared
with a predefined threshold. If the proportion pro is greater
than the preset threshold, the adaptive filter will be applied to
the ECG signal to suppress the CPR artifact.

In this enhanced adaptive filtering method, normalized
least mean squares (NLMS) is used to adjust the coefficient
matrix of adaptive filter, and the step size is dynamically
adjusted by the estimated artifact proportion pro:

𝑊(𝑛) = 𝑊 (𝑛 − 1) +
𝜇 ⋅ pro
‖𝑋‖
2

⋅ 𝑋 (𝑛 − 1) ⋅ 𝑒 (𝑛) . (4)

ECG and reference signals

Preprocess

Calculate the power spectral density of 
ECG and reference signals

Calculate the proportion of 
artifact power pro 

Pro > threshold?  

Yes

Adaptive filter

C alculate the power spectral 
density of filtered ECG signal

No

Rhythm analysis

Figure 3: Flowchart of the enhanced adaptive filtering method.

The step size 𝜇 is limited by the norm of reference signal ‖𝑋‖
and proportion of artifact pro.The coefficient matrix𝑊(𝑛) at
state 𝑛 is decided by the previous state𝑊(𝑛−1), the reference
signal TTI𝑋(𝑛 − 1), and the estimated ECG signal 𝑒(𝑛):

𝑒 (𝑛) = 𝑠in (𝑛) − 𝑊 (𝑛)𝑋 (𝑛) , (5)

where 𝑠in(𝑛) is the input corruptedECGsignal and𝑊(𝑛)𝑋(𝑛)
is the estimated CPR artifact.

After filtering, the proportion of artifact pro of the filtered
signal is recalculated to assess the SNRf level. If pro is still
greater than the preset threshold, another iteration of filtering
process will be applied to the filtered signal with updated step
size. Otherwise, the filtered ECG signal will be outputted for
rhythm analysis. In this study, the length of the coefficient
𝑊(𝑛) is 21, and the step size 𝜇 is 0.15.

In order to compare the performance with the traditional
fixed coefficient high-pass filter [28], a 4th order Butterworth
high-pass filter is performed to the corrupted ECG signal
to suppress the CPR artifact. Since the average compression
rate is 2.11 Hz in this study, the cutoff frequency is 6.5Hz to
remove the first 3 harmonics of the artifact.

2.4. Rhythm Classification Algorithm. To evaluate the perfor-
mance of the proposedmethod, the sensitivity and specificity
for detecting a shockable rhythm before and after filtering
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Table 1: Estimated signal-to-noise ratio (SNR) for pulseless electrical activity (PEA), ventricular fibrillation (VF), and asystole (ASY) before
and after filtering.

Unfiltered Adaptive filter High-pass filter
Medians (dB) (25/75 percentiles)

VF −9.3 (−14.9/−3.6)△△ 0.2 (−5.1/4.5)∗∗ 0.1 (−4.2/0.9)∗∗

PEA −6.2 (−9.0/−1.12)△△ 0.1 (−3.6/3.4)∗∗ −2.0 (−7.4/−0.6)∗∗

ASY −21.2 (−24.2/−18.5)△△ −12.7 (−15.0/−4.4)∗∗ −7.1 (−10.7/−6.3)∗∗

Range (dB) (min./max.)
VF −26.1/9.6 −18.2/20.0 −19.7/20.4
PEA −16.0/9.9 −7.6/19.9 −14.0/14.7
ASY −31.6/−10.0 −20.6/2.4 −18.4/1.7

∗∗Compared with unfiltered signal, 𝑃 < 0.001; △△comparison among rhythm types, 𝑃 < 0.001.

are compared with an established rhythm classification algo-
rithm named phase space reconstruction (RSR) [29, 30].This
specific algorithm is selected because it can provide accurate
rhythm classification within a relative short time window. In
this method, signal 𝑠(𝑡) is plotted on 𝑥-axis and 𝑠(𝑡+𝜏)with a
delay time of 𝜏 is plotted on𝑦-axis to form a two-dimensional
phase space diagram. A 40 × 40 grid is produced and the
number of boxes visited by the signal is counted. Ratio 𝑟 is
calculated through dividing the area that is filled with signal
curve 𝐵V by the total area of the diagram 𝐵

𝑎

. In the current
study, the maximum number of data points visited in the box
𝐶max is used to modify the ratio 𝑟 which is used to classify
PEA and VF:

𝑟


=
𝐵V

𝐵
𝑎

+
1

𝐶max
. (6)

The average peak-to-peak amplitude of the filtered signal
𝐴
 is used to detect ASY. The 3- second ECG signal is

split into 3 rectangular nonoverlapping windows. And the
difference between maximum and minimum of the signal in
eachwindow is calculated and the average of these differences
is represented as the value of 𝐴.

A 3-second rectangular window is used to perform PSR,
and the value of 𝜏 is 0.5 seconds. The threshold of the ampli-
tude 𝐴 and the ratio 𝑟 are optimized with the artifact-free
ECG signals to produce the optimum sensitivity/specificity
values. The classification criteria are presented as

𝐴


≤ 0.1mV ASY

𝐴


> 0.1mV, 𝑟 ≤ 0.24 PEA

𝐴


> 0.1mV, 𝑟 > 0.24 VF.

(7)

2.5. Statistical Presentation. The distributions of SNRo of the
CPR corrupted ECG signal did not pass the Kolmogorov-
Smirnov normality test andwere presented asmedians (25/75
percentile).TheWilcoxon rank sum test was used for median
values comparison. The relationship between SNRo and CD
was tested with Pearson correlation coefficients.

The performance of the filtering method was expressed
as sensitivity and specificity. Sensitivity and specificity of
ECG signals before and after filtering were compared with

the classification results of artifact-free ECG signals using
Chi-square test. A 𝑃 value of 0.01 was considered significant.

3. Results

The average duration of CPR was 6.8± 3.2minutes. A total of
624 segments were extracted and 61 segments were excluded
according to the exclusion criteria. Finally, a total of 563 CC
related segments, including 283 VF, 208 PEA, and 72 ASY,
were obtained for the study. The amplitude of artifact-free
ECG signals was 0.7 ± 0.6mV for VF, 0.8 ± 0.6mV for PEA,
and 0.05±0.04mV for ASY.The amplitude of corrupted ECG
signals was 2.1 ± 1.2mV for VF, 1.9 ± 0.8mV for PEA, and
1.0 ± 0.7mV for ASY.

3.1. Relationship between CC and SNR. A total of 107 seg-
ments of PEA were used for SNR estimation because the
numbers ofQRS complexwithin the selected artifact-free and
corrupted ECG signals were equal. Table 1 shows themedians
(25/75 percentiles) andminimum andmaximum value of the
estimated SNR based on annotated underlying rhythms. A
relative lower SNRo was observed for VF compared with that
of PEA (𝑃 < 0.001) and the SNRo of ASY was significantly
lower than PEA and VF (𝑃 < 0.001). After filtering with the
proposedmethod and high-pass filter, the SNRfs were greatly
improved in all of the rhythms (𝑃 < 0.001).

The linear regression result between SNRo and CD is
shown in Figure 4. The SNRo of the full database was nega-
tively correlated with the CD (𝑟 = −0.227, 𝑃 < 0.001). When
each of the rhythms was investigated individually, negative
correlation between CD and SNRo was only observed in VF
(𝑟 = −0.239 and 𝑃 < 0.001).

3.2. Performance of the Enhanced Adaptive Filtering Method.
Table 2 shows the rhythmclassification results for the artifact-
free, CPR corrupted, and filtered signals with the use of
PSR. The sensitivity and specificity were 99.0% and 98.2%
for artifact-free signal. However, the specificity decreased to
46.8% and the sensitivity increased to 99.3% when the ECG
signals were corrupted by CPR. After filtering by enhanced
adaptive filter and high-pass filter, a sensitivity of 93.3% and
93.0% and a specificity of 96.0% and 80.4% were achieved.
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Figure 4: Linear regression results between SNRo and CD for the full database and different types of underlying rhythms (ventricular
fibrillation, VF; pulseless electric activity, PEA; asystole, ASY).

Table 2: Sensitivity and specificity for the artifact-free ECG and CC corrupted signals before and after filtering.

Rhythm Number Artifact-free Unfiltered Adaptive High-pass
Shockable (sensitivity) VF 283 99.0% 99.3% 93.3%∗∗ 93.0%∗∗

Nonshockable (specificity)
All 280 98.2%∗∗ 46.8% 96.0%∗∗## 80.4%∗∗

PEA 208 98.6%∗∗ 53.9% 97.6%∗∗## 86.3%∗∗

ASY 72 97.2%∗∗ 26.4% 91.7%∗∗## 63.9%∗∗
∗∗Compared with unfiltered signals, 𝑃 < 0.001 and ##compared with high-pass filter, 𝑃 < 0.001. VF: ventricular fibrillation, PEA: pulseless electrical activity,
and ASY: asystole.

4. Discussion

Thepresent study confirmed that the SNRo of CPR corrupted
ECGwas negatively correlated with CD in a porcinemodel of
prolonged cardiac arrest and CPR. Based on this observation,
we developed an enhanced adaptive filtering method to
suppress the CC-artifact by estimating the proportion of
artifact within the corrupted ECG signal. The experimental
results demonstrated that the enhanced adaptive filtering
method could effectively reduce the residual component of
artifact and improve the SNR of the ECG signal as well as the
outcome of specificity.

4.1. Relationship between CC and SNR. The CC-artifact was
predominant from the electrode-skin interface and generated
by the contraction of thoracic muscles with direct impact

of the compressions on chest wall [31]. Therefore, it was
anticipated that deeper compression would cause more chest
movements and introduced severe artifact to the ECG. In
this animal study, we demonstrated that the SNRo of CPR
corrupted ECG signals was negatively related to CD. How-
ever, when each of the rhythm was investigated, the SNRo
was significantly lower for ASY compared to PEA and VF
and the negative correlation between CD and SNRo was only
observed in VF. For VF, the signal energy homogeneously
distributed among all VF segments, and the value of SNRo
was therefore correlated with the value of CD. For PEA,
the energy of underlying signal depended on the number
of QRS complexes appearing within a segment and might
impact the correlation between SNRo and CD. For ASY, the
energy of underlying signal is theoretically nearly 0 so that
the SNRo should be –∞. However, randomized noisy signal
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and power supply artifact, together with artifacts produced
by the amplifier and A/D converter, were introduced during
measurement. Even though a band-pass filter was applied
before analysis, the irregular residual signals within underly-
ing ASY might still affect the value of signal energy and lead
to insignificant correlation between SNRo and CD.

Compared with the result that was reported by de Gauna
et al. [27], a relatively lower SNRo was observed in our
study. The inconsistence may relate to the increased CD
recommendation of the latest guidelines, which require a
minimum of 50mm in CD to ensure high quality CPR [10,
32]. At the same time, signal characteristics of porcine ECG
such as amplitude and frequency might be different from
that of human. The resulted SNRo thus would be affected
by the spectral energy calculated from signal amplitude and
frequency.

4.2. Improved Performance for the EnhancedAdaptive Filtering
Method. Based on the findings that SNRo was negatively
correlated with CD, we developed an enhanced adaptive
filtering method to suppress the CPR artifact by estimating
the proportion of artifact with the use of TTI as refer-
ence. Compared with the corrupted signal, both traditional
fixed coefficient high-pass filter and proposed method could
greatly improve the SNR and specificity. But compared with
a specificity of 80.4% for high-pass filter, a remarkable
improvement was achieved for the proposed method with a
value of 96.0%.

The following modification in removing the CPR related
artifact might contribute to the improved performance of
the proposed method. Firstly, a parameter was introduced
to estimate the proportion of artifact from PSD of ECG
signal with the use of compression frequency as reference.
The proportion of artifact was correlated with the power of
artifact and therefore the SNR level. Secondly, the step size of
commonly used LMS adaptive filterwas dynamically adjusted
by referenced TTI signal and the estimated proportion of
artifact. This modification provided greater stability and
convergence speed compared with traditional LMS based
adaptive method which was used by Irusta et al. [17] and
Aramendi et al. [18].Therefore, the specificity of the proposed
method was greatly improved compared with their results
even though similar reference signals were used in both
studies.Thirdly, the proportion of artifact was also used as an
indicator to assess the artifact level in the filtered signal and
to control the filtering iteration. This process was terminated
only if the artifact level decreased to a predefined threshold.
Compared with the MC-RAMP method which took use of
several kinds of reference signals proposed by Husøy et al.
[33] and Eilevstjønn et al. [20], the residual component of
artifact could be further suppressed and the reliability for
detecting a nonshockable rhythm was markedly improved.

Besides the enhanced adaptive filter, the algorithm used
for rhythm classification also contributed to the improved
specificity.The parameters were optimized according to clean
ECG signals recorded from the animals when SPR was used
[29]. Firstly, the ratio 𝑟 was adjusted by the maximum
number of data points visited in the box. This adjustment
enlarged the difference between VF and PEA. Secondly,

both window size and delay time were optimized when the
phase space diagram was reconstructed. Consequently, the
threshold of 𝑟 increased from 0.15 to 0.24 for the detection
of VF.

Although the SNR and specificity were greatly improved
after filtering, the sensitivity decreased from 99.3% to 93.3%.
It is because the enhanced filtering method also suppressed
the component of underlying ECG signals while removing
the CPR related artifact. As a result, amplitude of fine
VF might be reduced to a level that is below the criteria
for classification. When the nonshockable rhythms were
investigated separately, the specificity for detecting ASY was
relatively lower comparedwith that of PEA and still below the
95% limit recommended by AHA task force on AEDs [22].
This was consistent with the observation that CPR artifact
suppression was particularly difficult in ASY [34, 35]. Yet,
the 91.7% specificity for detecting ASY was still superior to
reported results and the adverse effects of interruption of CC
are likely to override the decrease in correctly detecting ASY.

4.3. Limitations. There are limitations that need to be
acknowledged and addressed regarding the present study.
Firstly, although the SNRo of CPR corrupted ECG was
demonstrated to be negatively correlated with CD for the
full database, this correlation was only observed in VF
when different ECG rhythms were investigated individually.
Additionally, the anatomy structure of human chest was
different with that of the animals. Therefore the relationship
between artifact level and CD in human beings at different
underlying rhythms is still needed to be investigated. Sec-
ondly, only TTI signal was used as reference in this study;
the effects of different reference signals on the performance
of the proposed method have not been investigated. Thirdly,
although a great improvement in specificity was achieved
in this experimental trial, characteristics of ECG waveform,
together with the CPR related artifact, may differ from
the data that are recorded from patients who experienced
out-of-hospital cardiac arrest and CPR. Performance of the
proposed method therefore needs further clinical validating
studies. Finally, even though the specificity for detecting a
nonshockable rhythm was greatly improved and above the
95% limit recommended by theAHA task force onAEDs [22],
the accuracy for detecting ASY was still low. Further studies
that focused on the suppressing artifact of ASY, as well as the
classification betweenASY andVF, still need to be conducted.

5. Conclusion

This experimental animal trial demonstrated that the SNRo
of ECG signal corrupted by CPR artifact was negatively cor-
related with CD and the enhanced adaptive filtering method
could significantly improve the detection of nonshockable
rhythms without compromising the ability to detect a shock-
able rhythm during uninterrupted CPR.
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