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Abstract

Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development.
This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-
standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis
and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct
modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model.
Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet–Biedl/Meckel–Gruber ciliopathy syndromes, including
cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the
transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp
is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in
the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments,
but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2
recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in
Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of
directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by
direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits
PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for
ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration.
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Introduction

The cilium is a microtubule-based organelle projecting from the

cell surface with a variety of signaling functions. It plays an

important role in development as indicated by the wide spectrum

of birth defects associated with ciliopathy syndromes such as

Bardet–Biedl (BBS) and Meckel–Gruber (MKS) syndromes [1].

Studies in mice showed some of the developmental anomalies

associated with BBS and MKS, such as limb polydactyly, arise

from the disruption of Sonic hedgehog (Shh) signaling, a process

well described to be cilia transduced [2–4]. This entails the

regulated trafficking of Shh receptors Patched-1 (Ptch1) [5] and

Smoothened (Smo) [6] into the cilia, and the cilium sequestration

and processing of Gli transcription factors [7,8].

Ciliopathy syndromes also exhibit developmental anomalies

arising from disruption of Wnt signaling. Noncanonical or b-

catenin–independent Wnt signaling specifies planar cell polarity

(PCP), a process whereby cells organize and align in a polarized

manner relative to the plane of the epithelium. PCP regulated

convergent extension cell movement is required for neural tube

closure [9–11], and patterning of stereocilia polarity in the cochlea

requires asymmetric localization of PCP core components [12–

14]. While the mechanistic link between the cilia and PCP

signaling [15–17] is not known [18,19], it is worth noting some

PCP components are cilia localized and are required for

ciliogenesis [20–22]. As cilia disruption can elevate canonical

Wnt signaling, the cilium is also proposed to play a role in

canonical or b-catenin–dependent Wnt signaling [23,24]. This

may entail maintaining the balance between canonical versus

noncanonical Wnt signaling, since cilia disruption can cause

opposing effects on canonical versus noncanonical Wnt signaling

[24].

In this study, we investigated the role of Wdpcp and the cilia in

regulating planar cell polarity using a Wdpcp mutant mouse model.

Wdpcp is the homolog of Drosophila Fritz, a PCP effector required

for patterning hair cell orientation in the Drosophila pupal wing

[25]. Studies in Xenopus embryos [26] showed Fritz regulates

ciliogenesis and PCP-dependent collective cell movement during

gastrulation. However, the role of the cilia and Wdpcp (Fritz) in the

regulation of cell polarity and polarized cell migration was

unknown. In this study, we show mice deficient for Wdpcp have

phenotypes consistent with MKS/BBS ciliopathy syndromes. This

included disruption of ciliogenesis together with developmental

anomalies consistent with PCP perturbations. We show Wdpcp is

localized in the ciliary transition zone, and also in the actin

cytoskeleton and focal adhesions. This involves Wdpcp interac-

tions with Sept2 (septin 2), both in the cilia transition zone and in

the actin cytoskeleton. Significantly, the Wdpcp-deficient cells not

only exhibited ciliogenesis defect, but also global disruption in the

actin cytoskeleton required for maintaining cell polarity and

polarized cell migration. To our knowledge, these studies provide

the first evidence that a PCP component required for ciliogenesis

can regulate planar cell polarity by directly modulating the actin

cytoskeleton.

Results

A mutant, named WdpcpCys40, was recovered from an ethylni-

trosourea mouse mutagenesis screen exhibiting a wide spectrum of

developmental anomalies consistent with MKS/BBS. Particularly

notable is their phenotypic similarity to Mks1 mutant mice that are

models of MKS [27,28]. This included anophthalmia (Figure 1A),

central polydactyly (Figure 1B,C), and cysts in the kidney and a

variety of other organs (Figure 1D,E). WdpcpCys40 mutants also

exhibited complex congenital heart defects, usually consisting of

persistent truncus arteriosus or pulmonary atresia (Figure 1F,G,J,K),

and atrioventricular septal defects (AVSDs; Figure 1L,M). Some

mutants had duplex kidney (Figure 1E) and facial clefts and/or cleft

palate (Figure 1A). Tracheoesophageal fistula (TEF) due to defects

in septation of the oropharynx (unpublished data) and cloacal

septation defects were also observed (Figure 1H,I).

We mapped the mutation to a 6.36 Mb interval delimited by

SNP rs26841005 and rs26856862 on mouse chromosome 11. RT-

PCR analysis was carried out using RNA extracted from E12.5

hearts of WdpcpCys40 mutant embryos to interrogate transcript

expression from the 36 genes in the mapped interval. This analysis

revealed an anomalous transcript from Wdpcp (NM_145425.3 and

NP_663400.2). Further sequencing analysis suggested this was

derived from a splicing defect mutation, which was confirmed with

genomic DNA sequencing. An A to G substitution was observed at

nucleotide 224 of the mRNA (Figure 2A), corresponding to the 8th

base before the splice donor site of exon 5 (Figure 2B). As a result,

a premature stop codon (S54X) is generated, causing protein

truncation after amino acid 54 (Figure 2C). Quantitative PCR

analysis with primers covering exons 5–6 showed only low trace

amount (0.6%) of normal transcripts, suggesting WdpcpCys40 is

essentially a null or strong hypomorphic Wdpcp mutant allele.

Wdpcp Required for Recruitment of Proteins for
Ciliogenesis

Analysis of WdpcpCys40 mutant embryos revealed ciliogenesis

defects. This was observed in the kidney-collecting duct

(Figure 2N,O,R) and in the neuroepithelium (Figure 2P,Q).

Analysis of mouse embryonic fibroblasts (MEFs) derived from

WdpcpCys40 mutant embryos, referred to as WdpcpCys40 mutant

MEFs, confirmed a defect in ciliogenesis (Figure 2R; Figure

S1A,B). Using an antibody raised to Wdpcp, we showed Wdpcp is

localized to the ciliary axoneme and in a ring-like structure at the

base of the cilia in IMCD3 cells (Figure 2D). A similar distribution

was observed in NIH-3T3 cells transfected with Wdpcp–FLAG, a

FLAG-tagged expression vector (Figure 2E–H). The Wdpcp ring-

like structure in the cilium showed colocalization with Sept2,

Author Summary

Cilia are microscopic cell surface hair-like protrusions that
can act as antennae to mediate cell signaling. Mutations
disrupting ciliogenesis can cause many developmental
anomalies associated with syndromes known as ‘‘ciliopa-
thies.’’ Some developmental defects, such as limb poly-
dactyly, arise from disruption of cilia-transduced sonic
hedgehog signaling, while other defects, such as aberrant
patterning of hair cells in the inner ear, arise from
disrupted Wnt signaling resulting in modulation of planar
cell polarity (PCP)—a process whereby cells are polarized
and aligned. While ciliopathy phenotypes would suggest
that cilia are involved in modulating PCP, the mechanistic
link between cilia and PCP has been elusive. Our study
using a mouse model carrying a mutation in Wdpcp, a
gene required for both ciliogenesis and PCP, suggest that
Wdpcp modulation of PCP involves interactions with the
actin cytoskeleton separate from its function in ciliogen-
esis. We observe Wdpcp localization in cilia, where it is
required for recruitment of proteins essential for ciliogen-
esis. Wdpcp interacts with Sept2, and is also found in actin
filaments, where it regulates actin dynamics essential for
PCP. Together, these findings show that PCP regulation by
Wdpcp is distinct from its function in ciliogenesis and
involves direct modulation of the actin cytoskeleton.

Wdpcp Regulates PCP via Cytoskeleton Modulation
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which is known to be present as a ring in the ciliary transition zone

(Figure 2I–M; see Movie S2) [26]. In WdpcpCys40 mutant MEFs, no

specific Wdpcp immunostaining was observed, consistent with

WdpcpCys40 being a loss-of-function allele (see below). Even in rare

WdpcpCys40 mutant MEFs that are ciliated, Sept2 was usually not

detected in the cilia (Figure 3I–L; 11 of 12 with no Sept2 staining;

one with very low Sept2 staining). In contrast, wild-type MEFs

typically showed strong Sept2 localization in the cilia (24 of 30 cilia).

To further interrogate the role of Wdpcp in ciliogenesis, we

examined WdpcpCys40 mutant MEFs for the distribution of Nphp1,

a protein also found in the ciliary transition zone [29], and Mks1, a

transition zone protein expressed only in the mother centriole and

required for basal body docking to the membrane [27]. Both

proteins are known to be required for ciliogenesis. Analysis of the

rare ciliated WdpcpCys40 mutant MEFs revealed Nphp1 was

mislocalized to adjacent regions, such as in the basal body

(Figure 3E–H; five of eight cilia), while Mks1 was absent

(Figure 3M–P; 9 of 12 cilia). In comparison, Nphp1 (25 out of

27) and Mks1 (17 out of 21) were found in the cilia transition zone

and basal body, respectively, of wild-type MEFs (p,0.01). These

results show Wdpcp is required for recruitment of Mks1 and

Nphp1 to the ciliary transition zone. However, Mks1 is not

required for Wdpcp recruitment to the cilia, as Mks1 mutant

MEFs showed normal distribution of Wdpcp in the ciliary

transition zone (Figure 3Q–T). In comparison, Ift88 distribution

in the ciliary axoneme and basal body was unchanged in

WdpcpCys40 mutant MEFs, indicating IFT transport is not disrupted

by Wdpcp deficiency (Figure 3A–D). Together, these observations

suggest the ciliogenesis defect in WdpcpCys40 mutant MEFs arises

from the combined loss of Sept2, Nphp1, and Mks1 from the

ciliary transition zone.

Wdpcp Required for Motile Cilia Function in Zebrafish
But Not Mouse Embryos

To examine whether Wdpcp also may play a role in motile cilia

function, we examined cilia in the mouse embryonic node and in

the trachea airway epithelium. The mouse embryonic node

(Figure S1C,D) exhibited a normal pattern of ciliation with motile

Figure 1. Developmental defects of neonatal WdpcpCys40 mutants. (A–I) Necropsy showed WdpcpCys40 neonatal mutants have a wide
spectrum of defects including facial cleft and anophthalmia (arrowhead in A), polydactyly (B, C), intestinal cysts (D), duplex kidney (black arrowheads
in E) with glomerular cysts (white arrows in E), outflow tract defect consisting of a single common trunk (asterisk in G), and cloaca septation defect
with abnormal connection between the intestine and bladder (box region in I). (J, K, L, M) Episcopic fluorescence image capture (EFIC) histopathology
showed a WdpcpCys40 mutant with an incomplete septum unevenly dividing the outflow tract into one large and one small chamber, indicating
pulmonary atresia (PAtr; black arrow in K). Also observed was an atrioventricular septal defect (AVSD; asterisk in M). Shown in (J, L) are comparable
views of a control heart. Abbreviations: P, pancreas; K, kidney in (D); P, pulmonary trunk in (F) and (J); LV, left ventricle; PAtr, Pulmonary atresia; AVSD,
Atrioventricular septal defect. Scale bars, 1 mm in (B, C, D, E, F, H). Magnifications are the same in (F, G, J–M; H, I).
doi:10.1371/journal.pbio.1001720.g001

Wdpcp Regulates PCP via Cytoskeleton Modulation
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cilia (Movie S1) that generated effective flow (unpublished data).

This is consistent with the absence of laterality defects in the

WdpcpCys40 mutants. Similarly, the trachea airway epithelia from

E17.5 WdpcpCys40 mutant embryos were ciliated, and the cilia were

motile and exhibited normal cilia motility (Movie S3).

In zebrafish, wdpcp is expressed starting from 10 somite stage

(Figure S2A–O), and surprisingly, wdpcp morpholino (MO)

knockdown resulted in a constellation of defects indicative of

motile cilia defects. This included curved body axis (Figure 4B),

pericardial effusion and kidney cysts (Figure 4B), hydrocephalus

(Figure 4D), and increased number of otoliths (Figure 4D).

Consistent with motile cilia defects, wdpcp morphants exhibited a

20% incidence of heterotaxy (Figure S3). Wdpcp morphants also

exhibited kidney cysts (20%) and cilia disarray in the pronephric

tubule, which were more pronounced proximally (Figure 4G–L).

Videomicroscopy showed abnormal cilia motility throughout the

pronephric tubule (Movie S4). As observed in the Wdpcp mouse

mutants, some wdpcp zebrafish morphants (37%; N = 208) exhibited

Figure 2. Wdpcp mutation, Wdpcp cilia localization, and ciliary phenotypes in WdpcpCys40 mutants. (A) Wdpcp genomic and protein
structure. (B) An A.G mutation in WdpcpCys40 mutant (red arrow) resulted in two abnormally spliced transcripts—one with exon 5 deleted and one
with exons 5 and 8 deleted. (C) Exon 5 deletion generates premature stop, causing protein truncation. (D) IMCD3 cells immunostained with Wdpcp
(green) and acetylated a-tubulin (red) antibodies showed Wdpcp localization in the axoneme and ring-like structure (arrowhead) at the cilia base. (E–
H) Immunostaining of NIH-3T3 cells transfected with Wdpcp–FLAG showed colocalization of Wdpcp (red) and FLAG (green) in the cilia, with strong
staining at the base of the cilium (acetylated a-tubulin, blue). (I–M) Immunostaining of MEFs showed Wdpcp (red, I: Wdpcp) localized in ring-like
structure at the base of the cilia (green, I: anti-cetylated a-tubulin). Sept2 (green) showed colocalization with Wdpcp (red, panels L and M). The
arrowheads (J–L) point to Wdpcp (J, L) and Sept2 staining (K, L). Note ring-like structure, better seen in 3D isosurface reconstruction (M) of same
confocal images as in (J–L). (N, O) Acetylated a-tubulin antibody staining (red) of E15.5 wild-type kidney shows cilia (arrowheads in N), but few cilia
were seen in the WdpcpCys40 mutant collecting duct (stained green with Dolichos Biflorus Agglutinin; arrowheads in O) and they were much shorter.
(P, Q) Scanning EM of E10.5 embryo floor plate showed WdpcpCys40 mutant neural epithelium (Q) are less ciliated (see arrow) and lack microvilli as
compared to control (P). (R) Percentage of ciliated cells is reduced in WdpcpCys40 mutant kidney epithelia and MEFs. Scale bars, 1 mm in (D), 2 mm in
(E–L), 5 mm in (N, O), 2 mm in (P, Q).
doi:10.1371/journal.pbio.1001720.g002
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obstructed cloaca (Figure S3K–P). This was not correlated with the

pronephric cilia disarray, as cilia disarray was observed in 38% of

morphants with cloaca obstruction (n = 63) and 50% without cloaca

obstruction (n = 82). Wdpcp antibody staining showed punctate

Wdpcp localization in the ciliary axoneme in the pronephric tubule

(Figure 4F), which was lost with wdpcp MO knockdown (Figure 4E).

Western blotting confirmed Wdpcp protein expression is reduced

with wdpcp MO knockdown (Figure S2P,Q). Specificity of the MO

knockdown effects was confirmed with injection of wdpcp mRNA,

which showed complete rescue of the defect phentoypes seen with

wdpcp MO knockdown (Figure S4E,F).

These findings suggest that unlike mouse embryos, Wdpcp is

required for motile cilia function in zebrafish embryos. This raises

the question of whether the WdpcpCys40 allele is a null mutation or if

it might have residual function that could account for the

differences between the mouse and fish phenotypes. To examine

this question, we generated a Wdpcp knockout mouse model by

gene targeting (Figure S5A). Breeding of mice carrying the

knockout allele showed homozygous Wdpcp knockout mice died at

birth with the same spectrum of developmental anomalies seen in

WdpcpCys40 mutants, including anopthalmia, cleft palate, heart

outflow tract (OFT) septation defects, duplex kidney, limb

polydactyly (Figure S5B–E), and multiple organ cysts. As in

WdpcpCys40 mutants, no laterality defects were noted. These

findings demonstrate that the phenotypes observed in WdpcpCys40

mutants reflect the loss of Wdpcp function.

Disruption of Shh Signaling in WdpcpCys40 Mutants
Many of the WdpcpCys40 mutant phenotypes, such as the limb

polydactyly, TEF, and cleft palate, are consistent with the

Figure 3. Wdpcp is required for cilia recruitment of Sept2, Mks1, and Nphp1. (A–D) Ift88 is localized correctly to the basal body and ciliary
tip in the rare cilium formed in WdpcpCys40 mutant MEFs. (E–H) Nphp1 is normally found at the transition zone (E, and arrowhead in F), but in
WdpcpCys40 mutant MEFs, Nphp1 is mislocalized in the basal body (G, H). (I–L) Sept2 is normally found in the transition zone and sometimes in the
ciliary axoneme in control MEFs (I, and arrowhead in J), but is absent from the cilium of WdpcpCys40 mutant MEF (K, L). (M–P) Mks1 is normally found in
the transition zone of the cilium (M, N), but it is absent from the cilium of WdpcpCys40 mutant MEF (O, P). (Q–T) Wdpcp is localized to the transition
zone in both control (Q, R) and Mks1 mutant MEFs (S, T). All panels are at the same scales, and the scale bar in (A) is 2 mm.
doi:10.1371/journal.pbio.1001720.g003

Wdpcp Regulates PCP via Cytoskeleton Modulation
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disruption of Shh signaling, which is known to be cilia transduced.

Consistent with this, analysis of WdpcpCys40 mutant MEFs showed

little response to stimulation with SAG, a Shh agonist (Figure

S6B). In situ hybridization analysis of the developing limb buds in

WdpcpCys40 mutants showed expansion of Fgf4 and Gremlin

expression in the apical ectodermal ridge and digit forming

mesenchyme, respectively, while Ptch1 expression was diminished

(Figure 5A–F). These results confirmed the disruption of Shh

signaling in the limb bud, consistent with the polydactyly

phenotype. We also observed disruption of Shh signaling in the

neural tube, which was indicated by dorsalization of the neural

tube (Figure S6A). Further examination of WdpcpCys40/Cys40;

Smo2/2 (n = 3) and WdpcpCys40/Cys40;Ptch12/2 (n = 4) double

mutant embryos showed rescue of the severe Smo and Ptch1

Figure 4. Ciliary defects in wdpcp morpholino knockdown embryos. (A–D) wdpcp morpholino knockdown causes pericardial edema (black
arrow in B), pronephric tubule cyst (red arrows in B), severe hydrocephaly (arrow in D), and increased number of otoliths (red asterisks in D) as
compared to control MO injected embryo (A). (E–L) Wdpcp antibody staining of the zebrafish embryo pronephric tubule showed punctate
localization (red; arrows in F) along the ciliary axoneme (stained green with acetylated a-tubulin). Such staining is absent in wdpcp morphants,
showing efficacy of the wdpcp MO knockdown (E). Cilia in proximal straight/distal early tubule (PST/DL) of wdpcp morphants are disorganized (K), as
compared to that of control morphants (I) and uninjected embryos (G), while the distal late pronephric duct (DL/PD) showed little or no change
compared to uninjected (H) or control MO (J) injected embryos. Scale bars, 2 mm in (E) and 10 mm (G). (E,F) and (G–L) are at the same scale.
doi:10.1371/journal.pbio.1001720.g004
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knockout phenotypes (Figure 5G–J). This indicated Wdpcp

functions downstream of Smo and Ptch1. Abnormal Gli transcrip-

tion factor processing was revealed with Western blotting analysis

of isolated limb bud and whole embryo extracts. This is indicated

by alterations in the ratio of full-length activator versus shorter

cleaved inhibitor Gli3 protein (Figure 5K; Figure S6C). We also

observed more full-length Gli2 in the WdpcpCys40 mutant embryos

(Figure S6D).

PCP Defects in WdpcpCys40 Mutants
We investigated WdpcpCys40 mutants for PCP defects, given

Wdpcp plays an important role in PCP regulated convergent

extension cell movement in the Xenopus embryo [26]. We

examined patterning of hair cells in the cochlea, as it is well

described to be PCP dependent. The hair cells are normally

arrayed in repeating rows, all exhibiting the same polarized

orientation as defined by the actin-based stereocilia bundles. These

are organized in a stereotypical ‘‘chevron’’ configuration, each

with a single microtubule-based kinocilium protruding at the tip of

the chevron (for review see [30]) (Figure 6A,C,E). Examination of

the cochlea of WdpcpCys40 mutants showed the hair cells were

disarrayed, with some of the chevron misaligned (Figure 6B,F).

Although the kinocilia were present, they were mislocalized

(Figure 6D). We also observed expression of Vangl2, a membrane-

localized PCP core component normally asymmetric expressed in

the hair cells, was nearly extinguished in the WdpcpCys40 mutant

cochlea (Figure 6G,H).

WdpcpCys40 mutants also exhibit outflow tract septation defects,

another PCP-dependent developmental process. PCP is thought to

regulate outflow tract septation via its role in modulating

myocardialization of the outflow tract—a process in which

cardiomyocytes invade and migrate into the conotruncal region

of the heart to form the muscular outlet septum [31,32]. In E13.5

control hearts, cardiomyocytes can be seen invading into the

outflow tract at the base of the aorta and pulmonary trunk

(Figure 6I), with the invading cells exhibiting an elongate

morphology with long cell processes projecting into the outflow

cushion aligned with the direction of cell migration (Figure 6K).

However, in the WdpcpCys40 mutant heart, cardiomyocytes failed to

invade the OFT cushion (Figure 6J), and they did not exhibit the

polarized cell projections seen in the wild-type heart (Figure 6L).

These observations suggest polarized cell migration required for

formation of the outflow septum in the embryonic heart is

compromised in the WdpcpCys40 mutant.

Figure 5. Sonic hedgehog signaling defect in WdpcpCys40 mutant. (A–F) In-situ hybridization of E10.5 forelimbs shows WdpcpCys40 mutants
with expanded expression of Fgf4 in the AER (apical ectodermal ridge) (A, B) and Gremlin in the limb mesenchyme (C, D), but reduced expression of
Ptch1 (E, F and asterisk in F). In (A) and (B), black arrowheads indicate the span of the AER, and white arrowheads are the anterior and posterior bases
of the limb bud. (G–J) Wdpcp deficiency rescued the severe defect phenotypes of Smo2/2 (G) and Ptch12/2 (I) mutant embryos at E10.5 dpc. The
WdpcpCys40/Cys40;Smo2/2 (H) and WdpcpCys40/Cys40;Ptch12/2 (J) double homozygous mutant embryos collected at E10.5 dpc show more robust growth
with better axial development and also more normal head and heart development. (K) Western blotting of Gli3 in tissue extracts obtained from the
limb and neural tube shows a decrease of Gli3-R/Gli3-FL ratio in WdpcpCys40 mutant embryos. Scale bars, 200 mm in (A), 1 mm in (G). Scales are the
same in (A–F) and (G–J).
doi:10.1371/journal.pbio.1001720.g005
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Canonical Versus Noncanonical Wnt Signaling in
WdpcpCys40 Mutants

Using real-time PCR analysis, we further examined the

expression of transcripts for components of the noncanonical

Wnt signaling pathway known to regulate PCP using RNA

obtained from the base of the OFT where the outlet septum forms

(Table S1). This analysis showed a reduction in the expression of

Wnt5a, a noncanonical Wnt ligand (Figure 6O). We also examined

expression of the canonical Wnt signaling components, as

opposing changes in noncanonical versus canonical Wnt signaling

have been observed in ciliopathy mutants [24]. Indeed, real-time

PCR analysis showed an increase in Axin2 and Dishevelled (Dvl1/2/

Figure 6. WdpcpCys40 mutants show PCP defects and disrupted canonical Wnt signaling. (A–D) Scanning EM of cochlear hair cells showed
chevron-shaped stereocilia pointing laterally in control (A, C), but in WdpcpCys40 mutants, the stereocilia point in varying directions (B, D), with
misshappened stereocilia bundles. The kinocilia, normally positioned at the chevron tip, were mislocalized in WdpcpCys40 mutant. (E–H) Staining with
phalloidin (Phal; E, F) and Vangl2 antibody (G, H) showed diminished Vangl2 expression in hair cells of WdpcpCys40 mutant cochlea, while Vangl2 in
control exhibited the characteristic asymmetric expression pattern. (I, J) Transverse sections of E13.5 embryos showed base of the heart
counterstained with nuclear fast red and immunostained with anti a-SMA antibody (blue) to visualize migrating cardiomyocytes. In wild-type heart (I),
cardiomyocytes were observed in the outflow tract cushion (arrow), but in WdpcpCys40 mutants, cardiomyocytes were mostly absent in the cushion
tissue (asterisk in J). (K, L) Cardiomyocytes in outflow cushion of wild-type embryos (K) visualized with MF20 immunostaining showed polarized cell
morphology with distinct elongated finger-like projections (asterisks) aligned with direction of cell migration and projecting into forming outflow
septum (arrow in K). In contrast, in WdpcpCys40 mutant embryos (L), the cardiomyocytes exhibited rounded morphology without obvious cell polarity,
nor the elongated cell projections seen in wild-type embryos. (M, N) The heart of control embryo at E13.5 showed very weak BAT–lacZ expression at
the base of the pulmonary trunk (M), while markedly elevated BAT–lacZ expression was observed in the same region in a WdpcpCys40 mutant embryo
(N). (O) Quantitative real-time PCR analysis showed changes in expression level for noncanonical and canonical Wnt signaling pathway genes at the
base of the outflow tract of WdpcpCys40 mutant embryos. Blue bars indicate elevated versus orange bars, indicating reduced expression levels.
Standard errors and p values are shown. Scale bars, 5 mm in (A, B), 2 mm in (C, D), 50 mm in (E–H), 100 mm in (I–L), 1 mm in (M, N).
doi:10.1371/journal.pbio.1001720.g006
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3) transcripts, while transcripts for the canonical Wnt inhibitors

Dkk1/2/3 were reduced (Figure 6O). Consistent with these real-

time PCR results, analysis of WdpcpCys40 mutants carrying the

BAT–lacZ canonical Wnt reporter [33] also showed marked

increase in lacZ expression at the base of the outflow tract

(Figure 6M,N). Together, these observations suggest that while

noncanonical Wnt signaling is reduced, canonical Wnt signaling is

upregulated in the WdpcpCys40 mutants.

Wdpcp Modulation of Actin Stress Fibers
To investigate the mechanism by which Wdpcp may regulate

PCP, we further examined Wdpcp distribution in the cytoplasm,

in particular its interaction with Sept2, which is known to associate

with the actin cytoskeleton [34,35]. Interestingly, in wild-type

MEFs, Wdpcp showed extensive colocalization with actin filament

bundles or stress fibers delineated by phalloidin staining

(Figure 7A–H). Given the known role of Sept2 in associating with

and stabilizing actin filaments, we investigated whether Wdpcp

and Sept2 may be colocalized in actin filaments. Phalloidin

staining to visualize actin filaments together with double immu-

nostaining with Sept2 and Wdpcp antibodies indeed showed

regions of Wdpcp and Sept2 colocalization in actin stress fibers in

wild-type MEFs (Figure 7A–H). Similar analysis of the WdpcpCys40

mutant MEFs revealed the loss of Wdpcp immunostaining, and

interestingly, the actin cytoskeleton was markedly changed. None

of the aligned stress fibers comprising of thick actin filament

bundles were observed, but instead only thin actin filaments were

seen (Figure 7J,N). Sept2 exhibited a beaded arrangement that

were loosely aligned with but not colocalized with the actin

filaments (Figure 7M,N,P). A magnified view showed these beaded

structures were comprised of ‘‘o’’ and ‘‘c’’ shaped rings and circles

similar to those previously reported in cells treated with latrunculin

to disrupt the actin cytoskeleton [36]. Quantitation showed

phalloidin staining was reduced by 28% in the mutant (n = 144)

versus control (n = 111) MEFs (p = 0.011), consistent with the

observed reduction in actin stress fibers. These observations

suggest Wdpcp, through interactions with Sept2, may play an

essential role in modulating actin filaments and the formation of

stress fibers.

Wdpcp and Sept2 Interaction
To interrogate Wdpcp interaction with Sept2, we carried out

coimmunoprecipitation experiments to determine if Wdpcp and

Sept2 may be found in the same protein complex. For these

Figure 7. Wdpcp colocalizes with Sept2 and actin filaments. (A–D) Confocal imaging of control MEFs stained with phalloidin, and antibodies
to Wdpcp and Sept2 showed Sept2 (red) and Wdpcp (green) are colocalized in actin stress fiber (phalloidin stained, blue) (examples denoted by
arrow). This is better visualized in the magnified image shown in (E–H). (E–H) Magnified view of the region indicated by the asterisk-denoted arrow
from (A–D) show colocalization of Wdpcp (green) and Sept2 (red) with actin filaments (blue). (I–L) Confocal imaging of WdpcpCys40 mutant MEFs
showed only background fluorescence (green, panel J) with the Wdpcp antibody. However, Sept2 immunostaining remained robust (red, panel I), but
there was no colocalizaiton with actin filament visualized with phalloidin staining (blue, panel K). The region indicated by the asterisk-denoted arrow
is magnified in (M–P). Inset shown is magnified view of a region from (M), showing ‘c’ and ‘o’ shaped Sept2 immunostained structures. (M–P)
Magnified view of the region marked by the asterisk-denoted arrow in (I–L). While actin (blue, panel O) and Sept2 filaments (red, panel M) can be
observed, Sept2 is not colocalized with actin (P). Sept2 immunostaining delineated ‘c’ and ‘o’ shaped structures (M), which are better visualized in the
further magnified view shown in the inset in (I). Scale bars, 20 mm in (A), 10 mm in (E), and 5 mm in inset image in (I). Scales are the same in (A–D), (I–L);
(E–H), (M–P).
doi:10.1371/journal.pbio.1001720.g007
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experiments, HEK-293 cells that were either transiently or stably

expressing FLAG-tagged Wdpcp (FLAG–Wdpcp) were transfected

with Sept2–GFP. Western blotting of total cell lysates using an

anti-FLAG antibody gave the expected 90 kDa (722 AA for

Wdpcp plus 36 FLAG tag) in the stably transfected cells (lane 2,

Figure 8A), but not in nontransfected cells (lane 1, Figure 8A). In

the transiently transfected cells, a very weak band was detected

only with long exposure, indicating very low protein abundance

(lane 3 in Figure 8A; also unpublished data). This was confirmed

with FLAG immunoprecipitation, which showed FLAG–Wdpcp

was present in much lower abundance in the transiently

transfected versus stably transfected cells (lane 7 versus 8 in

Figure 8A).

When the same cell lysates were immunoblotted with anti-GFP

antibodies, a 66 kDa Sept2–GFP fusion protein band (361 AA for

Sept2 and 238 AA for GFP) was observed (lanes 2 and 3 in

Figure 8B). Significantly, this band was also detected in the anti-

FLAG immunoprecipitates (lanes 7 and 8, Figure 8B), indicating

that Sept2–GFP and FLAG–Wdpcp are in the same protein

complex. When the same cell lysates were immunoblotted with

anti-Sept2 antibodies, the endogenous Sept2 band (,40 kDa) was

observed in all whole cell lysates (Sept2 band in lanes 1, 2, and 3 in

Figure 8C), and in the anti-FLAG immunoprecipitates from cells

stably transfected with FLAG–Wdpcp (Sept2 band in lane 7 in

Figure 8C). These results indicate Sept2–GFP and endogenous

Sept2 are both incorporated into a FLAG–Wdpcp-containing

protein complex. The specificity of the FLAG immunoprecipita-

tions were confirmed with positive control using FLAG-tagged

bacterial alkaline phosphatase (FLAG–BAP band in lane 6 of

Figure 8A), and negative control with nontransfected cells (lane 5

in Figure 8) or blank immunoprecipitation elution control (lane 4

in Figure 8). Together these results confirm that Wdpcp and Sept2

are recruited in the same protein complex.

Wdpcp Modulation of Cell Motility and Focal Adhesion
Contacts

To examine the role of Wdpcp in actin dynamics and motile cell

behavior, we carried out time-lapse videomicroscopy to assess cell

motility in the WdpcpCys40 mutant and wild-type MEFs. Time-lapse

imaging showed dynamic membrane ruffling with lamellipodial

and/or filopodial cytoplasmic extensions in wild-type MEFs

(Figure 9A–D). In contrast, WdpcpCys40 mutant MEFs exhibited

minimal membrane ruffling activity (Figure 9E–H, arrowheads)

and often with unusually long and thin filopodial extensions that

appeared unable to disengage from the substratum (Movie S5) (see

arrows in Figure 9E–H). This was confirmed with quantitative

analysis of the time-lapse videos, which showed the mutant MEFs

were more likely to have filopodia (46.03% versus 19.99% in wild-

type MEFs; p,0.0001), and the filopodia persisted longer (3.0 h

versus 1.12 h in wild-type MEFs; p,0.0001). To assess membrane

ruffling, we examined the frequency of brightness change at the

cells’ leading edge and calculated the fluctuation period as a

measure of membrane dynamics (see Materials and Methods).

This analysis showed significantly less membrane ruffling in the

mutant MEF, which had a fluctuation period of 272 s versus 167 s

for wild-type MEFs (p,0.0002).

As cell motility requires actin remodeling coordinated with the

assembly/disassembly of focal contact, we further examined the

role of Wdpcp in the modulation of focal adhesion contacts.

Phalloidin, anti-Wdpcp, and anti-vinculin triple staining showed

Wdpcp is enriched in the cell cortex, where it is extensively

colocalized with vinculin at points of actin filament insertion into

focal adhesions (Figure 9I–L). While wild-type MEFs exhibited

elongated focal contacts, focal contacts in mutant MEFs appeared

to be smaller and more round in shape (Figure 9M,N). Quanti-

tative analysis showed the average size of focal adhesion contacts

was decreased in the mutant MEFs (0.37 mm2 versus 0.32 mm2,

p,0.001; Figure 9M,N). However, the mean intensity of vinculin

immunostaining was significantly increased (157.8 in the

WdpcpCys40 mutant versus 100.2 in wild-type MEFs; p,0.01;

grayscale intensity range, 0–255). The focal adhesion contacts

exhibited a reduction in length (0.76 mm in WdpcpCys40 mutant

versus 1.18 mm in wild-type MEFs; p,0.0001; Figure 9O), but

Figure 8. Analysis of Wdpcp and Sept2 interaction with
immunoprecipitation and Western blotting. HEK-293 cells ex-
pressing FLAG-tagged Wdpcp and Sept2–GFP were lysed and
immunoprecipitated with a FLAG antibody, and the immunoprecipi-
tates were then analyzed by gel electrophoresis and Western blotted in
triplicates for immunodetection with a FLAG (A), GFP (B), and Sept2 (C)
antibody. FLAG-tagged Wdpcp was observed to coimmunoprecipitate
with Sept2–GFP and Sept2 (lanes 7 and 8). The eight lanes included:
untransfected whole cell lysate (lane 1), whole cell lysate of cells stably
transfected with FLAG–Wdpcp and transiently transfected with Sept2–
GFP (lane 2), whole cell lysate of cells transiently transfected with Flag–
Wdpcp and Sept2–GFP (lane 3), blank immunoprecipitation elution
control (lane 4), immunoprecipitation negative control of untransfected
cell lysate (lane 5), FLAG immunoprecipitation of FLAG-bacterial alkaline
phosphatase (lane 6), FLAG immunoprecipitation of cells stably
transfected with FLAG–Wdpcp and cotransfected with Sept2–GFP (lane
7), and FLAG immunoprecipitation of cells transiently transfected with
Sept2–GFP and FLAG–Wdpcp (lane 8).
doi:10.1371/journal.pbio.1001720.g008
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increase in roundness (58.9 in WdpcpCys40 mutant versus 37.7 in the

wild-type MEFs, p,0.0001; Figure 9P). These marked changes in

the organization of the focal adhesion contacts may contribute to

the defects in cell motility and directional cell migration observed

in WdpcpCys40 mutant MEFs.

Wdpcp Modulates Polarized Cell Migration
To investigate the role of Wdpcp in polarized cell migration, we

carried out a wound-scratch assay to examine the ability of the

WdpcpCys40 mutant MEFs to engage in directional cell migration to

fill the wound gap. For this analysis, wild-type and WdpcpCys40

mutant MEFs were grown to confluence, and then a wound gap

was created to assess directional cell migration required for wound

closure. Wild-type MEFs migrated into the wound gap in a highly

organized manner with cells aligned with the direction of wound

closure (Figure 10A). In contrast, mutant MEFs migrated in a

haphazard manner with no consistent cell alignment (Figure 10B).

Immunostaining with a Golgi marker showed the Golgi apparatus

in wild-type MEFs were localized at the cells’ leading edge and

were forward facing relative to the direction of wound closure (0–

60u in Figure 10C,E), consistent with polarized cell alignment and

directional cell migration. In contrast, in the mutant MEFs, the

Figure 9. Perturbation of membrane ruffling and focal adhesion contacts in Wdpcp-deficient cells. (A–H) Time-lapse imaging of wild-
type (A–D) and WdpcpCys40 mutant (E–H) MEFs shown in 40 s intervals revealed the mutant MEFs have less membrane ruffling (arrowheads) and little
or no membrane protrusive activity. In (E–H), the bottom-left arrow points to a long filopodial extension from a cell out of the field of view and top-
left arrow points to the filopodial extension of the cell in the field of view that were immobile for the entire duration of the 320 s time-lapse
sequence. (I–L) Immunostaining showed Wdpcp (green, J) is enriched at the cell cortex where actin filaments (phalloidin, K) insert into vinculin- (red, I)
containing focal adhesions (arrow and arrowheads in L). (M, N) In WdpcpCys40 mutant MEFs (N), the vinculin-containing focal adhesions were smaller
and more rounded as compared to wild-type MEFs (M). This was demonstrated by quantitative measurements of the major axis and roundness of
vinculin-containing focal adhesions (O, P). (O, P) In wild-type MEFs (n = 279), the vinculin-containing focal contacts were more elongated (O) and less
round (P), than WdpcpCys40 mutant MEFs (n = 206). The p values were calculated with student’s t test. Scale bars, 10 mm in (A), 2 mm in (L), and 10 mm
in (N). Scales are the same in (A–H); (I–L); and (M, N).
doi:10.1371/journal.pbio.1001720.g009
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direction of Golgi orientation was randomized (Figure 10D,E).

These observations show Wdpcp is required for establishing the

planar cell polarity needed to engage in directional cell migration.

Discussion

We showed WdpcpCys40, a mouse mutant with a wide spectrum

of developmental defects consistent with MKS/BBS ciliopathy

syndromes, harbors a Wdpcp loss of function mutation. We

generated a Wdpcp knockout mouse model, which exhibited

identical phenotypes to those seen in the WdpcpCys40 mutants. A

role for Wdpcp in human disease is suggested by a previous finding

of a homozygous WDPCP mutation in a screen of MKS/BBS

patients [26]. We observed Wdpcp deficiency disrupted ciliogen-

esis and this was associated with the disruption of Shh signaling,

accounting for many of the defect phenotypes observed in the

WdpcpCys40 and Wdpcp knockout mice.

The WdpcpCys40 mutant mice exhibited phenotypes that are

remarkably similar to those observed in a MKS mutant mouse

model, Mks1del64-323 [27]. While heterotaxy was observed in the

Mks1 mutant, no laterality defects were found in the WdpcpCys40

mutants. Consistent with this, nodal cilia motility and nodal flow

were unaffected in WdpcpCys40 mutant embryos. Surprisingly, wdpcp

MO knockdown in zebrafish embryos did not disrupt ciliogenesis,

but perturbed motile cilia function. This was associated with a low

incidence of heterotaxy. It is interesting to note that wdpcp MO

knockdown in Xenopus embryos also perturbed motile cilia function

[26]. These species differences may reflect evolutionary divergence

in the function of Wdpcp and other cilia-related proteins.

Wdpcp Regulates Ciliogenesis via Recruitment of Ciliary
Proteins

Our findings indicate the ciliogenesis defect in WdpcpCys40

mutants arises from the failure of Wdpcp-deficient cells to recruit

proteins required for ciliogenesis to the ciliary transition zone,

including Nphp1, Sept2, and Mks1. Wdpcp is observed to form a

ring structure in the ciliary transition zone overlapping with Sept2.

Septins are well described to form ring structures both in vitro and

in vivo [37]. In the ciliary transition zone, the septin ring forms a

diffusion barrier regulating protein trafficking into the ciliary

compartment [38]. Thus, failure to recruit Sept2 to the transition

zone in Wdpcp-deficient cells is expected to disrupt ciliogenesis.

Wdpcp-deficient cells also failed to recruit Mks1, a Meckel

syndrome–associated protein localized to the mother centriole and

required for basal body docking to the membrane [27,28].

Figure 10. Wdpcp deficiency disrupts polarized cell migration. (A–D) In a wound healing assay, control MEFs (A) were well aligned with the
direction of wound closure (indicated by white arrow). In contrast, WdpcpCys40 mutant MEFs (B) showed a disorganized distribution and with many
long thin filopodial extensions. These differences in cell polarity were also reflected in their Golgi orientation—Golgi orientation is indicated by a
white line drawn from the cell nucleus through the center of the Golgi (C, D). In wild-type MEFs, the Golgi was mostly situated at the cell’s leading
edge (C), aligned with the direction of wound closure (white arrow). However, in WdpcpCys40 mutant MEFs, Golgi orientation was randomized (D). (E)
Quantitative analysis of Golgi orientation showed wild-type MEFs (n = 117) with highly polarized arrangement of the Golgi well aligned with the
direction of cell migration (94 of 117 cells with Golgi apparatus in 0–60u sector), while WdpcpCys40 mutant MEFs (n = 161) showed random orientation
of the Golgi apparatus (64 of 161 cells with Golgi in 0–60u sector) (see Materials and Methods). Scale bar, 20 mm in (B) and (D). Scales are the same in
(A, B) and (C, D).
doi:10.1371/journal.pbio.1001720.g010
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Analysis of Mks1-deficient cells showed Wdpcp acts upstream of

Mks1. We also observed Wdpcp-deficient cells with mislocaliza-

tion of Nphp1, a cilia transition zone protein required for

ciliogenesis and associated with cystic kidney defects in Joubert

syndrome and other ciliopathies [39]. Together these findings

indicate Wdpcp may play an important role in recruiting proteins

essential for ciliogenesis. Consistent with this is the presence of two

WD repeats in the Wdpcp protein. The WD40 domain has been

identified in many protein interaction pairs [40], and many WD40

repeat-containing proteins have been shown to serve as scaffolds

for assembly of multiprotein complexes. Together these findings

suggest Wdpcp may serve as a scaffold in the cilia transition zone

to facilitate the assembly of multiprotein complexes required for

ciliogenesis.

Wdpcp Constrains Hedgehog and Canonical Wnt
Signaling

While our studies with WdpcpCys40 mutant MEFs showed Wdpcp

deficiency disrupted Shh signaling, surprisingly the loss of Wdpcp

function partially rescued the severe defect phenotypes of the Ptch1

or Smo knockout embryos. This suggests Wdpcp may constrain Shh

signaling downstream of Smo/Ptch1. As ciliogenesis is disrupted

with Wdpcp deficiency, how Gli processing required for Shh

activation is regulated in the WdpcpCys40/Ptch1 or WdpcpCys40/Smo

knockout embryos is unknown. However, it is worth noting

Drosophila hedgehog signaling occurs in the absence of the cilium

[41].

Our studies also suggested Wdpcp may have a role in

constraining canonical Wnt signaling, as BAT–lacZ and the

expression of canonical Wnt transducers (Dvl1/2/3) are upregu-

lated, while canonical Wnt inhibitors were down-regulated (Dkk1/

2/3) in the WdpcpCys40 mutant OFT. While a role for the cilium in

constraining canonical Wnt signaling is well described, the

mechanism remains unclear [18]. We note Chibby, a basal body

protein that negatively regulates canonical Wnt signaling, can bind

b-catenin and prevent its entry into the nucleus [42]. One

possibility to consider is whether Wdpcp may function in the same

multiprotein complex with Chibby to regulate b-catenin traffick-

ing.

Wdpcp Modulates PCP and the Actin Cytoskeleton
We showed WdpcpCys40 mutants exhibited PCP defects, such as

malpatterning of stereocilia in the cochlea and abnormal

myocardialization of the outflow tract in the heart. The

myocardialization defect was characterized by failure of the

invading cardiomyocytes to elongate and align their actin

cytoskeleton with the direction of cell migration. We note the

Loop-tail (Lp) mouse mutant harboring a mutation in the PCP

component, Vangl2, also exhibits outflow tract defects [31]. Similar

to our findings, in the Lp mutant cell protrusions into the outflow

cushion were absent, and the organization of the actin cytoskel-

eton was disrupted. Perturbation of the actin cytoskeleton also may

contribute to defects in the cochlea, as the stereocilia are actin-

based structures and in WdpcpCys40 mutants, formation of the

kinocilia was not affected. While cochlea expression of Vangl2 was

reduced in WdpcpCys40 mutants, we did not observe mislocalization

of PCP core components that would suggest a disruption in PCP

signaling.

Using Wdpcp-deficient MEFs, we investigated the role of

Wdpcp in establishing planar cell polarity. Our studies indicate

Wdpcp plays an essential role in PCP via regulation of the actin

cytoskeleton. We showed Wdpcp modulates the actin cytoskeleton

by mediating Sept2 interaction with actin. In wild-type cells,

Wdpcp is colocalized with Sept2 in actin filaments, but in Wdpcp-

deficient cells, Sept2 is no longer actin localized and actin stress

fibers are largely absent. Instead, Sept2 is observed in ‘‘o’’ and ‘‘c’’

configurations, structures also observed with inhibition of actin

polymerization [36]. These results suggest formation of a Wdpcp–

Sept2 complex may be required for Sept2 binding to actin

filaments and the stabilization of actin filaments. Coimmunopre-

cipitation and Western immunoblotting confirmed Wdpcp and

Sept2 localization in the same protein complex, but further

experiments are needed to examine Wdpcp and Sept2 interaction

with actin filaments.

A further indication of a role for Wdpcp in the modulation of

actin dynamics was the reduction in membrane ruffling in Wdpcp

mutant MEFs. We noted Wdpcp is enriched in the cell cortex

where actin filaments insert into vinculin-containing focal

adhesions. As focal contacts are also sites of actin polymerization,

the abundance of Wdpcp in the vicinity of focal contacts may

facilitate recruitment of Sept2 to enhance actin filament

stabilization and stress fiber formation. We observed Wdpcp-

deficient cells had smaller focal contacts, but with significantly

higher concentration of vinculin. This could account for the

failure of cell processes to disengage from the substratum in

Wdpcp-deficient cells.

Most significantly, Wdpcp-deficient cells showed defects in

motile cell behavior that was associated with defects in planar cell

polarization. Thus, Wdpcp-deficient cells were unable to establish

cell polarity in a wound scratch assay. This is indicated by failure

of the Golgi to reorient to the cell’s leading edge and align with the

direction of cell migration. As a result, migrating cells were unable

to engage in directional cell motility. It is significant to note that

Golgi orientation is specified by the microtubule-organizing center

or centrosome, which also templates formation of the cilium. This

defect in establishing cell polarity together with perturbation in

membrane and actin dynamics and the modulation of focal

adhesion contacts may underlie the PCP defects associated with

Wdpcp deficiency. Together, these findings suggest Wdpcp may

regulate planar cell polarity by modulating both the microfilament

and microtubule cytoskeleton.

Dual Functionality of Wdpcp in Ciliogenesis and PCP
We showed the PCP effector Wdpcp plays an essential role in

both ciliogenesis and PCP. This appears to involve separable

functions of Wdpcp in recruitment of proteins to the ciliary

transition zone required for ciliogenesis, and in the modulation of

actin dynamics in the cytoplasm. Our findings provide the first

evidence, to our knowledge, that a PCP component required for

ciliogenesis can directly modulate the actin cytoskeleton to

regulate planar cell polarity and directional cell migration. These

observations suggest Wdpcp regulation of PCP is independent of

its role in ciliogenesis. It is interesting to consider whether such

dual functionality may have evolved as a means to functionally

integrate pathways regulating ciliogenesis with those regulating

PCP and the cytoskeleton. Whether such dual functionality may

account for other PCP proteins known to be required for

ciliogenesis is an important question that needs to be addressed

in future studies.

Materials and Methods

Institutional Approval for Animal Studies
All mouse experiments were carried out using protocols

approved by the Institutional Animal Care and Use Committee

at the National Heart Lung Blood Institute and at the University

of Pittsburgh. The zebrafish experiments were carried out with

approved protocols at the University of Pittsburgh.
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Mapping and Recovery of the Wdpcp Mutation and
Mouse Breeding

C57BL/6J(B6)/C3H hybrid mutant offspring were used to map

the mutation using 48 microsatellite markers polymorphic between

B6/C3H [43]. Once the chromosome interval was identified,

additional polymorphic DNA markers were used to narrow the

interval to a 5–10 Mb region. Then cDNA sequencing was carried

out for each gene in the interval.

Smotm1Amc (strain 004288), Ptch1tm1Mps (strain 003081), and BAT–

lacZ (strain 005317) mouse lines were obtained from the Jackson

Laboratory and intercrossed with the WdpcpCys40 mouse line to

generate double heterozygous mice, which were further inter-

crossed to generate embryos double homozygous for the

WdpcpCys40 and Smotm1Amc, WdpcpCys40 and Ptch1tm1Mps, or homozy-

gous WdpcpCys40 carrying BAT–lacZ allele.

Construction of FLAG-Tagged Wdpcp Construct
To make the mouse FLAG–Wdpcp construct, we isolated RNA

from mutant heart and amplified the full-length cDNA using one

step RT-PCR using Superscript III/HF Platinum Taq DNA

polymerase and cloned cDNA into pCR2.1 TOPO vector. We

then confirmed the clones by Sanger sequencing. We amplified

TOPO vector containing Wdpcp (NM_145425.3) cDNA using

primers (Table S1) with restriction site at the 59 end, cut with

appropriate restriction endonuclease, and cloned into expression

vectors containing FLAG at either the 59 end or 39 end (Sigma-

Aldrich). The subsequent experiments were performed by using

the FLAG at the 59 end of Wdpcp.

Zebrafish wdpcp Morpholino Knockdown and Rescue
Zebrafish embryos were obtained from incrossing wild-type

adults and following manipulation, maintained at 28.5uC, and

staged according to [44]. A complementary MO (59-

AGCTCCGCCAGGCAGAACGACATCT-39) targeting the ini-

tiation codon of zebrafish wdpcp and standard control (59-

CCTCTTACCTCAGTTACAATTTATA-39) morpholino (MO)

were designed and obtained from GeneTools LLC. Embryos at

the one-cell stage were injected with 5 nl of morpholino at 2.0 ng/

nl in phenol red. Control embryos were either injected with the

standard control (2.0 ng/nl) MO or uninjected. Capped mRNAs

for rescue experiments were synthesized in vitro from linearized

pCS2+ mouse Wdpcp construct (NM_145425.3) using SP6

mMessage mMachine kit (Ambion). We microinjected 200 pg of

Wdpcp mRNA at 200 pg/1 nl into the blastomere at the one-cell

stage. After injections, the embryos were incubated in16E3

medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM

MgSO4, 0.01% methylene blue) at 28uC until the desired stage

and imaged using Leica MZ16 microscope fitted with Retiga 1300

camera. Statistical distribution of morphants and morphologically

normal embryos from three separate rescue experiments were

analyzed using Graphpad prism version 6.

Zebrafish in Situ Hybridization and
Immunocytochemistry

For in-situ hybridization, zebrafish embryos were fixed in 4%

paraformaldehyde and processed as described [45]. Partial

zebrafish wdpcp cDNA clone obtained from OpenBiosystems

(#EDR1052-97951134, clone ID 7911360) was used to generate

sense and antisense in-situ probes for wdpcp. Plasmids for cmlc2 and

fabp10a in-situ probes were obtained from members of the

zebrafish community and were described previously [46,47]. For

immunocytochemistry, zebrafish embryos were fixed in Dent’s

fixative (80% Methanol and 20% DMSO) for 4 h at room

temperature, washed with methanol, and stored at 220uC.

Antibody staining for acetylated a-tubulin was performed as

described [48]. For Wdpcp and acetylated a-tubulin double

immunostaining, embryos were rehydrated in a series of metha-

nol/PBT washes and permeabilized with 0.02% trypsin for 5 min.

Following blocking with 10% normal goat serum (NGS, Sigma),

embryos were incubated overnight at 4uC in PBT/10% NGS with

Wdpcp (1:100; Aves, Inc) and acetylated a-tubulin (1:1,000;

Sigma) antibodies. Goat anti-mouse Alexa Fluor 488 and goat

anti-chicken Alexa Fluor 555 (both 1:1,000; Invitrogen) secondary

antibodies were used. Embryos were de-yolked, mounted in Aqua

Poly/Mount (Polysciences, Inc.), and visualized with a Zeiss LSM

510 Meta inverted laser scanning confocal microscope.

Production of Wdpcp KO Mice
The Wdpcp target or null allele was generated by gene targeting

in 129 ES cells, as shown in Figure S3A. Exon 5 was flanked by

two loxP/Flox sites and an FRT-flanked PGKneo cassette

(neomycin-resistant gene driven by the PGK promoter) was

inserted in intron 5 of Wdpcp by homologous recombination. ES

cell clones with correct homologous recombination were screened

by long-range PCR. Two independent ES cell clones were injected

into C57BL/6J blastocysts, and germ line transmission was

achieved with both clones. The PGKNeo cassette was removed

by FLP-FRT recombination to generate Wdpcp flox allele. The

Wdpcp global knockout allele was generated by CMV-Cre/Lox

recombination.

Immunocytochemistry and Immunohistology
MEFs derived from E11.5–E12.5 embryos were serum starved

for 24 to 48 h to grow out the cilia, with staining of ciliary proteins

carried out using various antibodies including acetylated a-tubulin

antibody (Sigma T7451, 1:1,000), c-tubulin antibody (Sigma

T6557, 1:1,000), Wdpcp chicken polyclonal antibody (Aves, Inc.)

made against synthetic peptide (DTTILEYREPVSKYARR)

corresponding to Wdpcp amino residues 529–545, Wdpcp goat

antibody (Santa Cruz), Sept2 antibody (Millipore, 1:1,000), Mks1

antibody (1:2,000) [27], and antibodies to Ift88 and Nphp1 as

previously described [49,50]. FLAG antibody (Sigma F7425,

1:1,000) was used for detection of Wdpcp–FLAG fusion protein.

Kidney paraffin sections were stained with DBA (Dolichos biflorus

agglutinin, Sigma, 1:20) to delineate kidney tubules. Dissected

cochleae were stained with Phalloidin and Vangl2 antibody as

described previously [12]. Heart cryo-sections were stained with

antibodies to MF20 (Hybridoma Bank, 1:40), smooth muscle actin

(Sigma, 1:40). Neural tube cryo-sectioning and immunostaining

with FoxA2 (Hybridoma Bank, 1:1,000), Pax6 (Hybridoma Bank,

1:1,000), and Olig2 (gift from Dr. Bennett Novitch at UCLA,

1:1,000) was previously described [27].

Analysis of Shh Signaling
DIG-labeled probes were made with DIG RNA reaction

mixture (Roche), and procedures for whole mount in-situ

hybridization were described previously [51] and gene expression

patterns were visualized with BM purple AP substrate (Roche).

RNA in-situ probe plasmids for Fgf4 (Lee Niswander lab), Gremlin

(Richard Harland lab), and Ptch1 were gifts from Dr. Susan

Mackem (NCI). A 600 bp nucleotide Gli3 in-situ probe was

generated by amplifying cDNA specific to Gli3 encompassing

exons 12–14.

For limb Gli3 Western blotting, left fore- and hindlimbs at

E10.5 (32–37 somite stages) were harvested and bisected into

anterior and posterior halves, whereas the right fore- and

hindlimbs were harvested intact. The remaining tissues were
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further removed until the neural tube was left, which was then

used for Gli2 and Gli3 Western blotting. In addition, whole

mutant and wild-type E10.5 embryos were lysed and processed for

Gli3 Western blotting. The Western blotting procedures for Gli2

and Gli3 were carried out as described previously in [27]. Gli2 and

Gli3 antibodies were gifts from Dr. Baolin Wang at Cornell

University and Dr. Susan Mackem at NCI, respectively.

Quantitative Analysis of Vinculin-Containing Focal
Adhesions

Focal adhesions were visualized using a vinculin antibody

(Sigma V9264, 1:1,000). The area of vinculin immunostaining was

traced using the image editor Gimp (www.gimp.org), and the area

and intensity of staining were measured in 8-bit images. To

quantify the length and roundness of vinculin-containing focal

adhesion sites, we measured the major axis (MA) and minor axes

(MI) of each focal adhesion. The mean MA length was determined

and was plotted as a histogram with bin size of 10 pixels

(equivalent to 0.57 mm). The roundness factor for each focal

adhesion contact was measured using MI/MA*100, with 100

being focal adhesions that were perfectly round with major and

minor axes of equal length.

Scanning EM and Videomicroscopy of Nodal Cilia and
Pronephric Duct

Scanning EM of the nodal cilia and neural tube epithelium was

carried out as described previously [27]. Analysis of nodal cilia

motility in E8.0 mouse embryos and pronephric duct of zebrafish

embryos were carried as described previously [52]. The videos

were converted into Quicktime movies.

Time-Lapse Videomicroscopy for Assessing Cell Motile
Behavior

Time-lapse videomicroscopy was carried out to quantify the

motile behavior of wild-type and Wdpcp mutant MEFs using an

inverted microscope (Leica, DMIRE2) and a Hamamatsu ORCA-

ER camera. Video sequences encompassing an 8 h recording

period with images captured every 10 min were used to measured

the number of cells having one or more filopodia/total number of

cells (percentage of cells with filopodia), and we also measured the

number of frames in which the same filopodia was observed

(persistence of filopodia). To quantify membrane ruffling activity,

we recorded cultured cells at a shorter time-lapse interval

comprising 10 s for a total of 30 min. These time-lapse images

were then used to measure the frequency of brightness change at

the cells’ leading edge to quantitate the membrane ruffling activity.

This entailed selecting boxed regions from the leading edge of a

migrating cell, summing the brightness for each frame, and

performing Fourier transform to obtain the frequency of

brightness changes. The inverse of this frequency provided an

index of the ‘‘period’’ of membrane fluctuation (MFP, in seconds),

which is a measure of membrane dynamics, with greater

membrane ruffling indicated by lower MFP.

Wound Scratch Assay for Assaying Polarized Cell
Migration

Confluent MEF cultures were scratched using a 10 ml micro-

pipette tip to generate a gap. Then time-lapse imaging was carried

out using a 406 objective on an inverted microscope (Leica,

DMIRE2) with images captured every 10 s over a 30 min interval

using a Hamamatsu ORCA-ER camera. To examine cell polarity,

cells were immunostained with a Golgi antibody (Sigma

HPA021799, 1:1,000) followed by DAPI staining. Cells that are

polarized and aligned with the direction of migration have Golgi

situated in front of the nucleus (forward facing) and aligned with

the migration direction. Polarity was scored by overlaying a clock

face on each cell, and polarized cells are defined as those with

Golgi situated within a 60u sector centered along the direction of

wound closure [53,54].

Supporting Information

Figure S1 Ciliogenesis defect in WdpcpCys40 mutant. (A,

B) Immunostaining of cilium with acetylated a-tubulin, a-tub (red),

and c-tubulin, (g-tub, green) antibodies showing a shorter cilium in

WdpcpCys40 mutant MEF (B). Scanning EM images of embryonic

nodes of control (C) and mutant (D) embryos at E8.0 showing the

node cells are ciliated normally and cilia in mutant embryonic

node are of normal shape and length. Scale bars, 2 mm in (A) and

(C). Scales are the same in (A, B) and (C, D).

(JPG)

Figure S2 Wdpcp zebrafish in situ hybridization and
morphant at 48 h, Western blotting with Wdpcp chicken
antibody. (A–O) Embryonic wdpcp mRNA localization (purple)

by whole mount in-situ hybridization with wdpcp antisense

riboprobe at the four-cell stage (A, B), eight-cell stage (C, D),

1,000-cell stage (E, F), and shield stage (G) showed absence of

maternal wdpcp transcripts. Embryonic wdpcp expression is

observed at the 10-somite stage (H, I) and at 24 hpf (J, K). At

48 hpf (L–O) wdpcp staining appears less specific, since faint

staining is observed with both the sense and antisense probes. (P)

Immunoblot using wdpcp antibody (green) with 24 hpf zebrafish

embryo lysate showed effective knockdown of wdpcp protein

expression. a-Tubulin (red) was used as a sample loading control.

Lane 1, protein molecular weight markers; lane 2, lysate from

embryos injected with 10 ng control morpholino (MO); and lane

3, lysate from embryos injected with 10 ng wdpcp morpholino. (Q)

The ratio of wdpcp (green) to a-tubulin (red) in the immunoblot

was quantified using Image studio version 2.0 from LI-COR

Biosciences (Lincoln, NE), which showed significant reduction in

the wdpcp protein with wdpcp MO knockdown. Scale bars,

200 mm in (A), (G), (I), (J), and (L) and 150 mm in (M). Scales are

the same in (A–F), (H, I), (J, K), (L, N), and (M, O).

(JPG)

Figure S3 Laterality defects in Wdpcp zebrafish mor-
phants. (A–D) Ventral view of RNA in-situ hybridization staining

with cmlc2 probe delineating the heart tube in 54 hpf embryos in

wdpcp morphants revealed normal right-sided looping (B), no

looping (C), or reversed heart looping (D) orientation. (E–H)

Dorsal view of gut orientation as observed with LFABP in-situ

hybridization analysis delineating liver position in 54 hpf embryo.

Three types of gut orientation were observed: normal left-sided (F),

duplicated (G), and right-sided (H). (I, J) Distribution of heart (I)

and gut (J) looping orientation in Wdpcp morphants, with asterisk

indicating statistically significant differences between control

versus wdpcp morphants. (K–P) In-situ hybridization with an evx1

probe on 24 hpf embryos (K–M) delineated the normal cloaca in

uninjected (K) and control MO (L) injected embryos, while in the

wdpcp morphant (M), the cloaca is abnormally formed. Compar-

ison of the corresponding brightfield images (N–P) suggests the

cloaca in the wdpcp morphant may be obstructed. The arrowhead

denotes the obstructed cloaca, which was seen in 37% of the wdpcp

morphants (n = 208).

(JPG)

Figure S4 Rescue of wdpcp morpholino (MO)-induced
phenotype. (A) Representative images of 48 hpf embryos
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injected at one-cell stage with 10 ng of scrambled control MO. (B)

Representative images of 48 hpf embryos injected with 10 ng of

wdpcp MO at one-cell stage showing pericardial edema (black

arrows) and a curved tail. (C) Representative images of 48 hpf

embryos injected at one-cell stage with 200 pg synthetic mouse

wdpcp mRNA. (D) Representative images of 48 hpf embryos co-

injected at one-cell stage with 10 ng of wdpcp MO and 200 pg

synthetic mouse wdpcp mRNA showing rescue of morphant

phenotype. (E, F) Morphant phenotypes (normal, mild, and

severe) obtained in the experiments examining wdpcp mRNA

rescue of wdpcp MO-injected embryos are summarized in the

graph shown in (F) and the table in (G).

(JPG)

Figure S5 Production and phenotype of Wdpcp knock-
out mice. (A) Schema of the Wdpcp targeted mouse allele

generated by homologous recombination containing an FRT-

flanked PGKneo cassette bracketed with two loxp sites that would

allow the deletion of exon 5 to generate a Wdpcp knockout allele.

(B–E) Newborn homozygous Wdpcp knockout mouse exhibited

craniofacial defects (B), congenital heart defects (pulmonary

atresia) (C), limb polydactyly (D), and duplex kidney (arrows in

E), phenotypes identical to those seen in the WdpcpCys40 mutants.

Scales bars, 200 mm in (C–E).

(JPG)

Figure S6 Shh signaling is compromised in WdpcpCys40

mutants. (A) In WdpcpCys40 mutant embryos (E10.5 dpc), caudal

neural tube (between the forelimb and hindlimb) showed dimin-

ished FoxA2 in the ventral floorplate, and expansion of Olig2 and

Pax6 to the ventral most position. (B) Smoothened agonist SAG

treatment upregulated Gli1 expression in wild-type MEFs by 20-

fold, while WdpcpCys40 mutant MEFs were not responsive to SAG

stimulation. (C) Western blot of E10.5 whole embryo extract

showed WdpcpCys40 homozygous mutants had higher Gli3-FL/Gli3-

R ratio compared to wild-type controls, indicating impaired Gli3

processing. (D) Western blot of E10.5 neural tube extract showed

elevated Gli2-FL level in WdpcpCys40 mutant. Scales are the same for

images in (A), and the scale bar is 50 mm.

(JPG)

Movie S1 Nodal cilia show normal motility in
WdpcpCys40 mutant embryos. DIC (Differential Interference

Contrast) imaging showed similar nodal cilia motility in wild-type

(left) and homozygous WdpcpCys40 mutant (right) E8.0 embryos.

Scale bar, 10 mm.

(MOV)

Movie S2 3D reconstruction showing Wdpcp and Sept2
in ring-like structure. The confocal image stack used to

generate the images shown in Figure 2I–L was reconstructed in

three dimension (3D) to show ring-like structure comprising

Wdpcp (red) with Sept2 (green).

(MOV)

Movie S3 Motile cilia in the WdpcpCys40 mutant tracheal
respiratory epithelium. The ciliated tracheal epithelia of a

near-term WdpcpCys40 mutant fetus showed normal coordinated

ciliary motion.

(MOV)

Movie S4 Motile cilia in the zebrafish pronephric duct
showed weak and uncoordinated beat after wdpcp
morpholino knockdown. The cilia in the pronephric duct

showed strong coordinated beat in zebrafish embryo injected with

control morpholino, but in wdpcp morpholino-injected embryos

(bottom five panels), cilia in the pronephric duct showed weak and

uncoordinated beat.

(MOV)

Movie S5 Time-lapse imaging shows decreased mem-
brane ruffling in WdpcpCys40 mutant MEF. Time-lapse

imaging shows dynamic membrane ruffling in wild-type MEF (top

panel). In contrast, WdpcpCys40 mutant MEF (bottom panel)

showed much less membrane ruffling activity, with unusually long

thin filopodial extensions that were immotile. Images were

captured every 5 s over a 320 s interval.

(MOV)

Table S1 Primer sequences for cloning and qPCR. Rows

1 and 2, primers used to clone Wdpcp for making FLAG–Cys40

construct. Rows 3–34, primers used for heart outflow tract qPCR.

(DOCX)
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