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ABSTRACT
Background. Advances in 3D shape capture technology have made powerful shape
analyses, such as geometric morphometrics, more feasible. While the highly accurate
micro-computed tomography (µCT) scanners have been the ‘‘gold standard,’’ recent
improvements in 3D surface scanners may make this technology a faster, portable, and
cost-effective alternative. Several studies have already compared the two devices but all
use relatively large specimens such as human crania. Here we perform shape analyses
on Australia’s smallest rodent to test whether a 3D scanner produces similar results to
a µCT scanner.
Methods. We captured 19 delicate mouse (Pseudomys delicatulus) crania with a µCT
scanner and a 3D scanner for geometric morphometrics. We ran multiple Procrustes
ANOVAs to test how variation due to scan device compared to other sources such
as biologically relevant variation and operator error. We quantified operator error as
levels of variation and repeatability. Further, we tested if the two devices performed
differently at classifying individuals based on sexual dimorphism. Finally, we inspected
scatterplots of principal component analysis (PCA) scores for non-random patterns.
Results. In all Procrustes ANOVAs, regardless of factors included, differences between
individuals contributed themost to total variation. The PCA plots reflect this in how the
individuals are dispersed. Including only the symmetric component of shape increased
the biological signal relative to variation due to device and due to error. 3D scans showed
a higher level of operator error as evidenced by a greater spread of their replicates on the
PCA, a higher level of multivariate variation, and a lower repeatability score. However,
the 3D scan andµCT scan datasets performed identically in classifying individuals based
on intra-specific patterns of sexual dimorphism.
Discussion. Compared to µCT scans, we find that even low resolution 3D scans of very
small specimens are sufficiently accurate to classify intra-specific differences. We also
make three recommendations for best use of low resolution data. First, we recommend
that extreme caution should be taken when analyzing the asymmetric component of
shape variation. Second, using 3D scans generates more random error due to increased
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landmarking difficulty, therefore users should be conservative in landmark choice and
avoid multiple operators. Third, using 3D scans introduces a source of systematic error
relative to µCT scans, therefore we recommend not combining them when possible,
especially in studies expecting little biological variation. Our findings support increased
use of low resolution 3D scans for most morphological studies; they are likely also
applicable to low resolution scans of large specimens made in a medical CT scanner.
As most vertebrates are relatively small, we anticipate our results will bolster more
researchers in designing affordable large scale studies on small specimens with 3D
surface scanners.

Subjects Biodiversity, Evolutionary Studies, Zoology
Keywords Geometric morphometrics, Shape variation, Photogrammetry, Pseudomys delicatulus,
Geomorph, Systematic error, Random error, Generalized procrustes analysis

INTRODUCTION
An organism’s shape reveals many facets of its biology, including its evolution, ecology,
and functional morphology. In the past three decades, geometric morphometrics has
revolutionized the field of shape research with better analysis and visualization of
shape complexity (Rohlf & Marcus, 1993; Zelditch, Swiderski & Sheets, 2012). As imaging
technology continues to advance, three-dimensional (3D) data have become extremely
common in geometric morphometric studies, especially in the cases in which 2D data
poorly represent the actual 3D object (Buser, Sidlauskas & Summers, 2017; Cardini, 2014;
Fruciano, 2016; Reig, 1996). 3D capture methods include very high resolution yet high
cost micro-computed tomography (µCT) scanners, which usually require time-intensive
sectioningwith specialized software. In contrast, 3D surface scanners offer lower acquisition
costs as well as faster scanning and processing, but has the disadvantage of generally lower
resolution, which limits its use on very small specimens (Fig. 1). For confident use of
surface scans in small specimens, it is therefore important to assess the measurement error
introduced by choosing a 3D surface scanner for geometric morphometrics.

Most vertebrates would be considered small, for example about two thirds of mammals
are below 10 kg (Weisbecker & Goswami, 2010), which would translate to small skeletal
specimens. Therefore, morphometric studies proposing large sample sizes must be very
well funded to use a µCT scanner or have a low-cost option, such as a 3D surface scanner.
Previous studies have compared µCT scans to 3D surface scans, however, these were all
done in large animals, primarily primates (Badawi-Fayad & Cabanis, 2007; Fourie et al.,
2011; Katz & Friess, 2014; Robinson & Terhune, 2017; Sholts et al., 2010; Slizewski, Friess &
Semal, 2010). While these studies found low error and high repeatability in 3D surface
scans similar to µCT scans, there was a suggestion that higher error occurred in the
sample’s smaller specimens (Badawi-Fayad & Cabanis, 2007; Fourie et al., 2011). Other
recent studies have conducted 3D geometric morphometric studies on small vertebrate
skulls but nearly all have relied exclusively on µCT scanning (Cornette et al., 2013; Evin,
Horacek & Hulva, 2011). The only exception we are aware of is Muñoz Muñoz, Quinto-
Sánchez & González-José (2016), which successfully used photogrammetry—a technique
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Figure 1 Low resolution 3D surface scans compared toµCT scans of the same delicate mouse crania.
3D scans of (A) dorsal view (B) lateral view and (C) ventral view compared to µCT scans of (D) dorsal
view (E) lateral view and (F) ventral view. All crania are rendered in Viewbox v. 4.0.

Full-size DOI: 10.7717/peerj.5032/fig-1

combining 2D photographs into a 3D model—to analyze domestic mouse skulls, Mus
musculus domesticus (Linnaeus, 1758). Photogrammetry, like 3D surface scanning, is a
low-cost alternative to µCT and comes with its own trade-offs in time and scan resolution
(Katz & Friess, 2014). Compared to the new generation of blue light surface scanners,
photogrammetry requires more time for image acquisition and for file processing (Katz
& Friess, 2014). A previous study on a single macaque specimen reported inconsistent
levels of error across operators and scanners, which contributed to the lack of general
pattern for differences across scanners/resolutions (Shearer et al., 2017). However, using
an interspecific dataset, (Fruciano et al., 2017) reported higher repeatability for the higher
resolution scans and 2.07–11.26% of total variance due to scan type (depending on
device, operator and landmark set combination). We expect that small specimens would
exacerbate any variation due to device and the interaction of device with other factors, such
as landmark choice and operator. More work comparing these different methods—µCT
scanning, 3D surface scanning, and photogrammetry—will allow researchers to make an
informed decision. For example, for those with time constraints in museum collections, a
fast 3D surface scanner may be the best option if the resolution is suitable for specimen size.
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The lower resolution of 3D surface scanners may increase both random and systematic
measurement error, which is exacerbated by small specimens because operators may have
more difficulty identifying landmark locations (Arnqvist & Martensson, 1998; Fruciano,
2016). Random error increases variance without changing the mean; this ‘‘noise’’ dilutes
biologically informative patterns and, in principle, decreases statistical power (Arnqvist
& Martensson, 1998; Fruciano, 2016). By contrast, systematic error is non-randomly
distributed, thus changing the mean and introducing bias to the data (Arnqvist &
Martensson, 1998; Fruciano, 2016). Error assessment can be done with repeatedmeasures of
the same individuals (e.g., Fruciano et al., 2017;Muñoz Muñoz & Perpiñán, 2010; Robinson
& Terhune, 2017) or by comparison to a ‘‘gold standard’’ or ideal representation of the
specimens (Fruciano, 2016; Slizewski, Friess & Semal, 2010; Williams & Richtsmeier, 2003).
Repeated measure designs can uncover this systematic error, for example, if one 3D capture
method differs from another in a specific, non-random, pattern (Fruciano, 2016; Fruciano
et al., 2017). Furthermore, designs including repeated measures of the same individuals
allow partitioning of variance into components, quantifying error due to scan device as
compared to biologically-relevant sources of variation such as asymmetry (Fruciano, 2016;
Klingenberg, Barluenga & Meyer, 2002; Klingenberg & McIntyre, 1998).

In this study, we quantify the error introduced by studying specimens of a size at the very
lower limits of commonly used portable surface scanners’ resolution. This situation could
also arise when using relatively large specimens, which are nonetheless at the lower limit of
a medical CT scanner’s resolution for example. We test whether the complex shape of very
small specimens can be adequately captured using an HDI109 3D surface scanner (LMI
Technologies Inc., Vancouver, Canada) with a stated resolution of 80 µm as compared to
a µCT scanner with a resolution of 28 µm. To do so, we use the delicate mouse, Pseudomys
delicatulus (Gould, 1842), one of the smallest rodents in the world with a 55–75 mm
head-and-body length (Breed & Ford, 2007). The miniscule P. delicatulus crania (∼20 mm)
are at the edge of the HDI109 3D surface scanner’s range thus providing an extreme test
of this scanning device (Figs. 1 and 2). First, we tested whether variation due to scanning
device compared to other sources of variation (Fig. 2B). We also asked whether removing
asymmetric variation, a common practice in morphological studies when asymmetry is not
of interest, changed the results. Second, we tested whether the scanning devices differed
in shape variance and in operator error (as measured by repeatability) (Fig. 2C). We also
explored how including different types of landmarks impacted repeatability. Finally, we
tested whether the shape variation due to scanning device was large enough to impact a
small study of intra-specific shape variation using the biologically relevant signal of sexual
dimorphism (Fig. 2D).

METHODS
Data collection
We selected 19 adult individuals, male and female, of Pseudomys delicatulus from the
Queensland Museum in Brisbane, Australia (specimen numbers and sexes in Table S1).
The cranium from each individual was scanned at the Centre for Advanced Imaging at the
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Data Collection (n = 19)

μCT scan and 3D scan

Replicate each scan x3

A

Landmark (n = 114)

Table S1

Add’l
File 2

58 LMs, 145 semi-LMs, 86 patch pts

B Analyses of shape variation

Fig. 1

How does variation due to scan 
device compare to other sources?

Table 1 

. . . and when variation due to 
bilateral asymmetry is removed?

Table 2 

How does variation for the sym-
metric shape component look?

Figs. 4 & 5

C Analyses of variance and error
Does variation among replicates
di�er by scan device?

Fig. 6

Does repeatability (i.e. operator 
error) di�er by scan device?

Table 3

Does repeatability di�er if 
fewer landmark types are used?

Table 3

D Analyses of intra-speci�c variation
How much sexual dimorphism
appears to exist in our sample?

Table 4
Fig. 7

Does one scan device provide a 
better basis of sex identi�cation?

Table 5 

Fig. 3
Table S2

Figure 2 Methods flow diagram highlighting the relationship between our questions and our analy-
ses. (A) All delicate mouse (Pseudomys delicatulus) crania were sourced from the Queensland Museum in
Brisbane, Australia. Landmarks (LMs) capture homologous points, semi-landmarks (semi-LMs) capture
curves between landmarks, and patch points capture surfaces between landmarks and semi-landmarks.
(B–D) These sections of questions and associated figure and table numbers summarize how we organize
the paper, particularly the Results, into three sets of related analyses.

Full-size DOI: 10.7717/peerj.5032/fig-2
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University of Queensland in a µCT scanner (Siemens Inveon PET/CT scanner, Munich,
Germany). The scanner was operated at 80 kV energy, 250µA intensity with 540 projections
per 360◦, a medium-high magnification with bin 2 was applied, and 2,000 ms exposure
time. The samples were scanned at a nominal isotropic resolution of 28 µm. The data
were reconstructed using a Feldkamp conebeam back-projection algorithm provided by
an Inveon Acquisition workstation from Siemens (IAW version 2.1, Munich, Germany).
Surface models were obtained using Mimics Research version 20.0.

Each cranium was also scanned by a HDI109 blue light surface scanner (LMI
Technologies Inc., Vancouver, Canada) with a resolution of 80 µm. For brevity, we
will refer to this method as 3D scanning. For this method, the cranium was placed on a
rotary table providing the scanner with 360◦ views. To capture the entire shape, the cranium
was scanned in three different orientations: one ventral view with the cranium resting on
the frontals and two dorsal views with the cranium tipped to each side, resting on an
incisor, auditory bulla, and zygomatic arch. To assist others in replicating our HDI109 3D
surface scanning on small specimens, we have included a Standard Operating Procedure
with our settings (Supplemental Information 1).

After scanning every individual with both scan methods, we then replicated each 3D
model three times so that each individual was represented by six replicates, giving a total
sample of 114 3D models (Fig. 2A). Each 3D model was landmarked in Viewbox version
4.0 (dHAL software, Kifissia, Greece; http://www.dhal.com; Polychronis et al., 2013). To
capture shape, we placed 58 fixed landmarks, 145 semi-landmarks on curves, and 86 patch
points (points that during sliding are allowed to slide across a 3D surface defined by the
3D model and semi-landmark borders) for a total of 289 points (Fig. 3, Table S2). We used
the template feature in Viewbox to semi-automate the placement of semi-landmarks on
curves and to fully automate the placement of patch points. Our landmark design covered
most important biological structures except for the zygomatic arch (Fig. 3); we avoided this
fine structure because dehydration and loss of support from surrounding muscles during
skeletonization almost certainly causes specimen preparation error (Schmidt et al., 2010;
Yezerinac, Lougheed & Handford, 1992).

Data analysis
The landmark coordinates for all 114 3Dmodels were aligned using a generalized Procrustes
analysis followed by projection to the tangent space, as implemented in the R package
geomorph (v. 3.0.5) (Adams, Collyer & Sherratt, 2016; Adams & Otarola-Castillo, 2013).
Generalized Procrustes analysis of each set of landmark coordinates removes differences
in size, position, and orientation, leaving only shape variation (Rohlf & Slice, 1990).
Semi-landmarks and patches were permitted to slide along their tangent directions to
minimize Procrustes distance between 3D models (Gunz, Mitteroecker & Bookstein, 2005).
The resulting Procrustes tangent coordinates were used as shape variables in all subsequent
shape analyses. All our statistical analyses were performed either in R (v. 3.3.3) using the R
packages geomorph (v. 3.0.5) (Adams 2016; (Adams & Otarola-Castillo, 2013) and Morpho
(v. 2.5.1) (Schlager, 2017) or in MorphoJ (v. 1.06d) (Klingenberg, 2011).
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Figure 3 Positions of landmarks for geometric morphometric analyses. Locations of fixed landmarks
(black points), sliding semi-landmarks (red points) and sliding surface patches (purple points) on a µCT
scanned individual. (A) Dorsal view of the cranium. (B) Lateral view. (C) Ventral view. Definitions are
given in Table S2.

Full-size DOI: 10.7717/peerj.5032/fig-3
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First, asymmetry is a known source of variation within a sample (Klingenberg, Barluenga
& Meyer, 2002), so we tested for it with MorphoJ’s Procrustes ANOVA function and
subsequently removed it (Fig. 2B). Isolating the symmetric component of shape has been
undertaken in other 3D surface scanner studies where operator and device error have
been of the same magnitude as asymmetric error (Fruciano et al., 2017). Variation due to
asymmetry is more impacted by operator error because of its smaller effect sizes compared
to variation among individuals (Fruciano, 2016; Fruciano et al., 2017; Klingenberg et al.,
2010; Leamy & Klingenberg, 2005). This suggests that low resolution studies on asymmetry
would be negatively impacted. For this reason, we performed most subsequent analyses
on the symmetric shape component, with a few exceptions performed for comparison.
We then performed a PCA on the symmetric shape variables to visualize the variation
between individuals, within scan method replicates, and between scan method replicates.
As an exploratory analysis, PCA can help intuitively visualize both random error (greater
spread of one scan method replicate compared to the other) and systematic error (repeated
pattern of one scan method shifting relative to another). However, further analyses are
necessary to quantify these sources of error.

Second, our replicate design allowed us to assess whether an operator digitizing scans
from one device was more variable in landmark placement than when digitizing scans
from the other device (Fig. 2C). We did so by computing the Procrustes variance for
each individual/device combination. In geomorph, Procrustes variances are calculated
for each set of observations (i.e., replicates) as the sum of the diagonal elements of the
set’s covariance matrix divided by the number of observations (Adams, Collyer & Sherratt,
2016; Zelditch, Swiderski & Sheets, 2012). We computed Procrustes variance for each
combination of individual and device so that Procrustes variance reflected only variation
due to digitization. We then compared Procrustes variance between devices using a box
plot and the permutational procedure implemented in geomorph. Next we quantified
digitization consistency by computing repeatability for each device using the analogue of
the intraclass correlation coefficient computed with the Procrustes ANOVA mean squares,
as suggested by Fruciano (2016). This value is normally between 0 and 1, with values close
to 1 indicating much larger variation due to the factor used in computing the Procrustes
ANOVA (in our case, variation among individuals) compared to residual variation (in
our case, variation among digitizations). In other words, comparing repeatability between
devices gives similar information to that obtained by the box plots of Procrustes variance
but on a more easily interpretable scale from 0 to 1. We repeated our computations of
repeatability for subsets of the data to test whether introducing semi-landmarks on curves
and surfaces (patch points) changed the repeatability relative to a fixed landmark-only
dataset.We did so for both 3D andµCTdatasets to see if these trends differed by scan device.

Finally, we investigated whether there is a difference between devices in a common task:
the correct classification of sexual dimorphism (Fig. 2D). We began with a Procrustes
ANOVA in R on the symmetric component for the subset of individuals with sex
information (n= 11 distinct individuals; n= 66 3D models). This allowed us to gauge
the magnitude of the effect of sexual dimorphism compared to other sources of variation,
including variation due to scan device. Then with Morpho, we averaged the shape of each
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Table 1 General Procrustes ANOVA on sources of shape variation including asymmetry. The %Var
column of this Procrustes ANOVA demonstrates the relative contribution of each factor to overall varia-
tion. It is calculated from the sum of squares for each factor divided by the total sum of squares for all fac-
tors.

(A) All specimens

Df SS MS %Var F Pr(>F)

Individual 8,010 6.21E−02 7.76E−06 48.3 11.2 <.0001
Side 415 2.37E−02 5.70E−05 18.4 82.4 <.0001
Ind * Side 7,470 5.17E−03 6.93E−07 4.02 0.54 1
Device 16,340 2.08E−02 1.27E−06 16.1 4.90 <.0001
Res / Rep 65,360 1.70E−02 2.59E−07 13.2

(B) Only 3D specimens

Df SS MS %Var F Pr(>F)

Individual 8,010 3.52E−02 4.40E−06 51.6 4.24 <.0001
Side 415 1.31E−02 3.15E−05 19.2 30.4 <.0001
Ind * Side 7,470 7.75E−03 1.04E−06 11.4 2.79 <.0001
Res / Rep 32,680 1.22E−02 3.72E−07 17.8

(C) Only CT specimens

Df SS MS %Var F Pr(>F)

Individual 8,010 3.45E−02 4.31E−06 61.7 6.41 <.0001
Side 415 1.17E−02 2.81E−05 20.8 41.8 <.0001
Ind * Side 7,470 5.02E−03 6.72E−07 8.97 4.61 <.0001
Res / Rep 32,680 4.76E−03 1.46E−07 8.52

replicate triad for each device, and performed a between-group PCA using sex as group
(Boulesteix, 2005). Between-group principal component analysis is an ordination technique
which is gaining popularity in geometric morphometrics (eg. Firmat et al., 2012; Franchini
et al., 2016; Franchini et al., 2014; Fruciano et al., 2016; Fruciano et al., 2014; Mitteroecker
& Bookstein, 2011; Raffini, Fruciano & Meyer, 2018; Schmieder et al., 2015; Seetah, Cardini
& Miracle, 2012) However, it can be also thought of as a classification tool, as in the
Morpho implementation which allows performing leave-one-out cross-validation. We,
then used cross-validated classification accuracy as a measure of performance in classifying
individuals based on their sex.

RESULTS
Analyses of shape variation
Our Procrustes ANOVA results indicate that variation among individuals (%Var = 48.3)
contributes the most to total variance, with asymmetry (directional and fluctuating),
device, and operator error contributing the remainder (Table 1A). The %Var values
indicate that directional asymmetry contributes a similar amount of variation as other
sources of non-biological variation and that fluctuating asymmetry accounts for much less
than digitization error and variation between devices (Table 1A). This means that using
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Table 2 Procrustes ANOVA on the sources of shape variation using the symmetric component of
shape. The R-squared column of this Procrustes ANOVA demonstrates the relative contribution of each
factor to overall variation. The shape variation of this dataset is visualized in Figs. 4 and 5.

Df SS MS Rsq F Z Pr(>F)

ind 18 6.23E−02 3.46E−03 0.734 25.8 21.4 0.001
ind:Dev 19 1.24E−02 6.52E−04 0.146 4.86 23.7 0.001
Residuals 76 1.02E−02 1.34E−04 0.120
Total 113 8.49E−02

analyses of asymmetry with a combination of µCT and 3D surface scans would likely be
unreliable in specimens the size of delicate mice or for specimens scanned at a similarly low
resolution. The Procrustes ANOVA results for just the 3D data, confirms this observation
in which digitization error is large compared to the components of asymmetric variation
(Table 1B). For the 3D dataset, the error term (Res/Rep) contributes 17.8% of variation
while asymmetry (Side) contributes 19.2%. In other words, for our 3D scan dataset, error
contributes almost as much variation as asymmetry (Table 1B). The Procrustes ANOVA
for just the µCT dataset, however, did not have this problem to the same degree. Here,
the error term (Res/Rep) contributes only 8.52% of variation while asymmetry (Side)
contributes 20.8% (Table 1C). In other words, error contributes less than one half of the
contribution of asymmetry in the µCT dataset.

The Procrustes ANOVAon just the symmetric component of shape reports the individual
shape variation, representing biological variation, is 73.4% (Table 2). Differences between
scan devices represent 14.6% and the residuals encompassing differences among replicates
or operator error represent 12.0% of total variance (Table 2). Thus, our Procrustes ANOVA
on the symmetric component shows that most of the variation is due to biological sources
but the significance of the variation due to device may indicate systematic error.

The PCAon the symmetric component revealed that the first three principal components
(PCs) account for 47.0% of total variation (PC1 = 26.4%, PC2 = 12.0%, PC3 = 8.81%,
n= 114) (Fig. 4). Each of the remaining PCs accounted for 6% or less of total variation
therefore we only considered the first three for the exploration of patterns of variation.
Positive values along PC1 correspond to a larger braincase relative to the rostrum (Fig. 5A).
Positive values along PC2 correspond to a wider frontal bone (Fig. 5B). Finally, positive
values along PC3 correspond to a more convex, dorsally-curved ventral surface (Fig. 5C).

The plot of the scores on PC1 and PC2 supports the results from the Procrustes ANOVA
on the symmetric component of shape in that most of the visible variation is between
individuals, i.e., clusters of each individual’s replicates (Fig. 4A). Indeed, regardless of
scanning device, replicates from the same individual cluster together (Fig. 4A). For most
individuals, replicates occupy non-overlapping regions of the plot except for those around
the crowded mean shape near the origin (Fig. 4A). Within each individual’s variation on
PCA scores, µCT replicates usually form a tighter cluster than the 3D replicates (Fig. 4A).
This pattern suggests that using µCT scans introduces less random error than using 3D
scans. Furthermore, within an individual, 3D scan replicates tend to cluster closer to other
3D replicates while µCT scan replicates tend to cluster closer to other µCT replicates
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Figure 4 Exploratory PCA plots of shape variation showing differences among individuals, scan de-
vices, and replicates of the same scan device. (A) PC1 versus PC2 and (B) PC1 versus PC3. Each individ-
ual has a unique color shared by all of its six replicates. Each individual has three triangles to represent the
3D scanned replicates and 3 circles to represent the µCT scanned replicates. Each axis reports the total
variance explained by that principal component.

Full-size DOI: 10.7717/peerj.5032/fig-4

(Fig. 4A). Indeed, for most individuals, 3D scan replicates score lower than the µCT
scan replicates from the same individual on both PC1 and PC2. These results suggest the
systematic error may be driven by µCT scans overestimating both braincase volume and
frontal bone width relative to 3D scans (Figs. 4A, 5A, 5B).

Overall, the scores along the first two PCs complement and provide an intuitive
visualization for the patterns of higher error in 3D scans and of systematic error between
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Figure 5 3D warp-grids for the three most important principal components, showing minimum and
maximum shapes for each PC. The craniums in (A, C, and E) show the shape of the minimum negative
value for each principle component (PC) and the craniums in (B, D, and F) show the shape of the max-
imum positive value for each PC. Compared to the minimum negative shape (A), more positive values
along PC1 (26.4% variance) correspond to a larger braincase relative to the rostrum (B). Compared to the
minimum negative shape (C), more positive values along PC2 (11.9% variance) correspond to a wider
frontal bone (D). Compared to the minimum negative shape (E), more positive values along PC3 (8.9%
variance) correspond to a more dorsally-curved ventral surface (F).

Full-size DOI: 10.7717/peerj.5032/fig-5

the scan devices as observed in the Procrustes ANOVAs (Tables 1 and 2). The scores along
PC1 and PC3 highlight another possible systematic difference between 3D and µCT scans
(Fig. 4B). The PC3 axis displaces µCT replicates from 3D replicates such that variation
in PC3 scores within individuals is often larger than variation in PC3 scores among
individuals (Fig. 4B). On the PC3 axis, almost all 3D scan replicates had higher scores,
which correspond to a more dorsally curved ventral surface relative to their corresponding
µCT scan replicates (Figs. 4B, 5C).
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Figure 6 Morphological disparity—as measured by shape variation among replicate scan triads—
by scanning device reflects operator error. This box plot summarizes the morphological disparity (also
known as the Procrustes variance) among the three replicates of an individual for each scan type. The
mean Procrustes variance for 3D scans was 1.34×10−4 and 4.81×10−5 for µCT scans. This is a significant
difference (p< 0.001).

Full-size DOI: 10.7717/peerj.5032/fig-6

Procrustes variance and repeatability
To compare the digitization error in each scanning device dataset, we calculated the
Procrustes variance among the replicate triads of each individual. We found that Procrustes
variance is significantly (p< 0.001) higher in 3D scans (mean = 1.31 ×10−4) than in µCT
scans (mean = 4.76 ×10−5) (Fig. 6). This means that digitizations are more variable in
3D scans than in µCT which is consistent with decreased clustering in 3D scans relative to
µCT scans in the PCAs (Fig. 4).

The repeatability for each scan dataset mirrored the Procrustes variance results. We
found that the µCT scan dataset had a repeatability of 0.896 and the 3D scan data had
a repeatability of 0.750 (Table 3A, Table 3D). This means operators are more successful
at repeating their digitizations (i.e., landmark placements) with µCT scans than with 3D
scans.

To test how different types of landmarks impacted repeatability, we calculated
repeatability for combinations of landmark types for 3D and µCT datasets consisting
of only the symmetric component of shape (Table 3). Because sliding landmarks depend
on the placement of fixed landmarks (and patch points depend on both fixed and semi-
landlandmark curves), we could not isolate each type of landmark’s repeatability. The
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Table 3 Comparison of operator error in 3D scan andµCT scan datasets using Procrustes ANOVAs
and repeatability scores. The repeatability score (R) is a value that reflects the ease of digitizing in a re-
peated measure study design. It is calculated from the Procrustes ANOVA using formulas for the intra-
class correlation coefficient. The Procrustes ANOVAs were found by subsetting the dataset by scan device
and by landmark types and then performing separate generalized Procrustes and bilateral symmetry align-
ments. (A–C) Results from the 3D-only dataset. (D–F) Results from the µCT-only dataset. (A) and (D)
show the repeatabilites from the entire landmark datasets of each scan device. (B) and (E) remove patch
points. (C) and (F) contain only fixed landmarks.

(A) 3D scan all landmarks including patches (n= 289)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 3.53E−02 1.96E−03 0.826 10.0 16.0 0.001 0.750
Residuals 38 7.46E−03 1.96E−04 0.174
Total 56 4.28E−02

(B) 3D scan fixed landmarks and semilandmarks (n= 203)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 4.37E−02 2.43E−03 0.807 8.826 16.7 0.001 0.723
Residuals 38 1.04E−02 2.75E−04 0.193
Total 56 5.41E−02

(C) 3D scan fixed landmarks only (n= 58)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 6.90E−02 3.83E−03 0.749 6.30 16.6 0.001 0.639
Residuals 38 2.31E−02 6.09E−04 0.251
Total 56 9.21E−02

(D) CT scan all landmarks including patches (n= 289)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 3.46E−02 1.92E−03 0.927 26.9 18.4 0.001 0.896
Residuals 38 2.72E−03 7.15E−05 0.073
Total 56 3.73E−02

(E) CT scan fixed landmarks and semilandmarks (n= 203)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 4.33E−02 2.41E−03 0.921 24.7 19.0 0.001 0.888
Residuals 38 3.71E−03 9.76E−05 0.079
Total 56 4.70E−02

(F) CT scan fixed landmarks only (n= 58)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 6.28E−02 3.49E−03 0.893 17.6 20.2 0.001 0.847
Residuals 38 7.54E−03 1.98E−04 0.107
Total 56 7.03E−02
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Table 4 Symmetric Procrustes ANOVAwith device and sex as factors to assess relative contribution of
intra-specific variation to overall shape variation. This Procrustes ANOVA allows comparison of the rel-
ative contribution to total variation from scan device and sex (R-squared column).

Df SS MS Rsq F Z Pr(>F)

Device 1 2.99E−03 2.99E−03 0.0646 4.84 4.06 0.001
Sex 1 4.40E−03 4.40E−03 0.0952 7.14 4.96 0.001
Residuals 63 3.88E−02 6.16E−04
Total 65 4.62E−02

analyses restricted to completely manually placed fixed landmarks always had the lowest
repeatability of the three types of landmarks (Table 3C, Table 3F). Repeatability was always
highest for the datasets including all three types of landmarks including the semi-automated
semi-landmarks and the completely automated patch points (Table 3A, Table 3D). Higher
repeatability in datasets with the sliding landmarks may result because the sliding smooths
out user placement error across replicates.

Analyses with a biological example: sexual dimorphism
A small subset of our dataset had sex information (n= 11; f = 7, m= 4), allowing us to
perform a test of whether using different scan devices classify males and females according
to shape with the same level of accuracy. Our Procrustes ANOVA on the symmetric
component of shape variation using sex and device as factors found that shape differences
due to device (Rsq= 0.0646) and sex (Rsq= 0.0952) are both significant (p< 0.001). Both
factors have relatively small effect sizes, however, sex captures slightly more shape variation
than device (Table 4). However, the between-group PCAs do not suggest marked sexual
dimorphism to begin with (Fig. 7). Therefore, the subtlety of this biological signal could be
the main reason for the small contribution of sex to total variation. Finally, we performed
a cross-validation test on the between-group PCAs to assess which scan dataset can more
reliably classify sexes based on shape (Table 5). The results show that in this case, 3D scans
and µCT scans perform identically (overall classification accuracy = 63.6%).

DISCUSSION
In this study, we contrasted very high resolution µCT scans with their extreme opposite: 3D
surface scans of very small specimens. Our low versus high resolution datasets allowed us
to assess whether the low resolution scans still allow defensible investigations of biological
shape variation. We found that despite the low quality of the 3D scans, sufficient amounts
of biological variation are present to perform, at the very least, typical interspecific
comparisons. In datasets with only very slight intra-specific differences, more difficulties in
distinguishing biological signal from the noise introduced by error during data collection.
For example, the subtle sexual dimorphism in our small sample was only just distinguished.
However, we present three considerations to make before using low resolution datasets.
First, we found that variation due to scan device and digitizations is substantial relative
to asymmetric variation. This makes low resolution datasets a poor choice for studies
on asymmetry. Second, using 3D scans creates more random error due to increased
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Figure 7 ntra-specific variation as shown by PCAs of 3D (A) and µCT (B) scan datasets colored by sex.
Each PCA provides an exploratory visualization of shape variation between males and females in our sub-
sample with sex information (n= 11). Males (n= 4) are plotted in light blue and females (n= 7) are plot-
ted in dark red. Results from the cross-validation test can be found in Table 5.

Full-size DOI: 10.7717/peerj.5032/fig-7
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Table 5 Between group PCA classification test to assess whether one scan device dataset performs
better at identifying sexes based on shape. This analysis averages shape among replicates, computes a
between-group PCA separately for 3D and µCT datasets, and runs a cross-validation classification test.
The results indicate whether one type of scan dataset is more successful at classifying males versus females
based on the shape variation present in the dataset. It also returns a kappa statistic; a kappa value over 0.20
indicates ‘‘fair’’ agreement between the two datasets. Shape variation visualized by sex can be seen in Fig.
7.

Cross-validated classification results in frequencies
3D f m
f (n= 7) 5 2
m (n= 4) 2 2
CT f m
f (n= 7) 5 2
m (n= 4) 2 2

Cross-validated classification results in %
3D f m
f 71.4 28.6
m 50.0 50.0
CT f m
f 71.4 28.6
m 50.0 50.0

Overall classification accuracy (%)
3D 63.6
CT 63.6

Kappa statistic
3D 0.214
CT 0.214

landmarking difficulty, therefore care should be taken in landmark choice, and possibly
landmarking software and operator choice. Digitization error may also be reduced by
taking averages of repeated measurements (Arnqvist & Martensson, 1998; Fruciano, 2016).
Third, using 3D scans also introduces a source of systematic error relative to µCT scans,
therefore we recommend not combining them whenever possible (see also Fruciano et al.,
2017), and especially in studies on small intra-specific variation. In summary, with a few
precautions listed above, we expect that for studies with similarly sized skulls or similarly
low resolution scans, the variation due to error will be sufficiently low for successful
detection of interspecific shape differences.

Measurement error and 3D scan reliability
Systematic error between the two scan devices is shown by consistent displacement patterns
in the PCA. Indeed, across all three PC axes, the scans differ in how they measure concavity
around the braincase, frontal, and ventral surface. This systematic pattern could suggest
that the 3D scanner technology errs by adding volume to the digital specimen relative
to the µCT scan but it could also be the other way around with the µCT scan distorting
the images to reduce volume. Furthermore, even when using the symmetric component
of shape, the percent of variation contributed by scan device is quite substantial at about
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14.5%. Because scan device contributes this much to variation and because systematic error
between scan device exists, researchers expecting very small variation due to biological
sources would be advised not to combine 3D scan and µCT scan datasets.

While the two scan devices are usually comparable, using the low resolution 3D scans
introduces more digitization error than the higher resolution µCT scans, which likely
reflects increased user error due to lower resolution in 3D scans. This increased random
error is reflected in both the larger point clouds of 3D replicates relative to µCT replicates
in the PCAs, the higher Procrustes variance, and the lower repeatability score of 3D scans,
particularly of manually-placed fixed landmarks. As expected, we found that the low
resolution 3D scans were more difficult to landmark because key cranial features such as
sutures and smaller processes were less distinct (Fig. 1). Nevertheless, our overall 3D scan
repeatability score of 0.75 with symmetric data appears consistent with the literature: it is
much lower than 3D scanned human-sized skulls—above 0.95 (Badawi-Fayad & Cabanis,
2007; Fourie et al., 2011) but it is approaching the range of 3D scanned macropodoids (e.g.,
kangaroos)—0.78–0.98, depending on device and landmark choice (Fruciano et al., 2017).
This trend of decreasing repeatability with decreasing body size may reflect measurement
error becoming a larger percentage of overall size (Robinson & Terhune, 2017). Relatedly,
recent work has shown that excluding a few unreliable landmarks, or those with greater
variability in placement, can significantly increase repeatability (Fruciano et al., 2017). This
may be especially true for small specimens, for which small variations from the landmark
location represent a larger percentage of their overall size.

Our repeatability tests on different combinations of landmark types suggest that fixed
landmarks suffer the most from decreased resolution and the associated increased user
error while patch points suffer the least. We interpret these results to mean that the
(semi-) automatic placement of semi-landmark curves and patches is more consistent
in placing points compared to a human operator placing fixed landmarks, regardless of
whether the automatic placement is ‘‘correct’’ or not. It is important to note that while
semi-landmarks were ‘‘semi-automated’’, the user still manually defined the curve they
slid along for each specimen. Furthermore, this curve is bounded by user-placed fixed
landmarks. Therefore, the increased repeatability with increasing automation could also be
due to the increased degrees of freedom afforded to landmarks during sliding: fixed with
zero degrees, semi-landmarks with one degree, and patch points with two. The sliding, by
removing variation tangential to a certain direction, will reduce the variance in those points
which will appear to vary less so it would be expected that these points will contribute less
overall variation when combined with the fixed landmarks.

This study did not look atmultiple operator error which can be considerable, particularly
if difficult landmarks are included (Fruciano et al., 2017). If inter-operator error were
combined with the resolution-driven measurement error found here, it is possible that
biological signal would diminish to a degree that could not support even interspecific
comparisons.
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Measurement error introduced by scanning device compared to
biological variation
The challenge of any quantitative measurement study is to minimize measurement error
introduced from various sources (in our case, device, resolution, and observer) relative to
the ‘‘true’’ signal of biological variation. For subtle sources of biological variation, such as
asymmetry, our results show that the error associated with collecting data from 3D scans
contributes the same amount of variation as asymmetry. Therefore, a low resolution study
of asymmetry with 3D scans would likely be unreliable unless appropriate arrangements
were made to reduce error (Fruciano, 2016), whereas µCT scans may be more suitable for
these types of studies. In the case of inter-observer error, which is another common source
of measurement error, several studies suggest that interspecific variation can overwhelm
inter-observer error such that this does not pose an issue with the correct interpretation of
results (Robinson & Terhune, 2017).

In our test on the ability of different scan devices to classify according to sexual
dimorphism, we showed that while variation contributed by each source was similar
(and that from scan device slightly lower), both scan datasets presented a small sexually
dimorphic pattern and supported the same classification performance. This suggests that
3D scans may even be acceptable for detecting some intra-specific patterns. However,
this was a small sample (n= 11) and further studies with larger datasets would improve
confidence for using 3D scans for intra-specific studies. Studies based on larger datasets
might also be able to better highlight differences in classification performance between
devices, if any. Nevertheless, it is promising that 3D scans andµCT scans performed equally
even at such a small sample size for such a subtle intra-specific signal.

Choosing a digitization device: 3D surface scanning versus µCT
versus photogrammetry
Withmany options for digitizing 3D specimens available, decisions on the acquisitionmode
must consider price, scanning time, processing time, portability, and scan resolution. The
one-off investment of a relatively high resolution 3D surface scanner such as the HDI109
provided a model portable enough to take on airplanes and with fast scanning and
processing times. Our model took 10 min from starting the scan to the finished surface
file, but note that larger specimens requiring multiple sub-scans will take longer. These fast
acquisition times are an asset in collection efforts that rely on expensive and time-limited
museum travel. For example, one of us (AEM) digitized over 100 individuals in one week
using the same scanning protocol. However, the quality and speed of scanning varies by
model; for example, other 3D surface scanners could take over 45 min to capture one
specimen and may also require more effort to process scans (Katz & Friess, 2014).

Compared to 3D surface scanners, µCT scanners provide much higher resolution, which
in this study translated into less measurement error. However, uCT facilities are not widely
accessible, not mobile, and tend to be more expensive. Depending on the facility, µCT
scanning involves transport to the facility, scanning either by the operator, processing
scans into image stacks, and finally loading scans into specialized (and frequently high-
cost) software to do the 3D reconstruction. These reconstructions can be time consuming
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especially if the cranium needs to be separated from the mandibles. Finally, specimens need
to be loaned from their collections for µCT acquisition, which requires specimen transport
and curator permission and is particularly difficult when large numbers of specimens from
distant locations need to be scanned.

This study did not investigate photogrammetry, which is another and increasingly
popularmethod for digitizing 3D shape. Thismethod uses software to align 2Dphotographs
taken frommany different views into a 3D file. Photogrammetry is much cheaper andmore
portable than 3D surface scanning since it only requires a camera of suitable resolution
and very affordable photo-alignment software like Agisoft PhotoScan (Agisoft LLC, St.
Petersburg, Russia; http://www.agisoft.com). The trade-offs are that in our experience,
photogrammetry takes at least three times longer to acquire the photos, it involves higher
risk of human error or inconsistency during photography, and it requires an order of
magnitude more time to align the photos into a 3D digital file. While photo-alignment
can be done at convenience after photography, the greater time required to capture
enough photos may be a deciding factor for researchers with time limitations in museum
collections. As for scan resolution, photogrammetry may perform better than 3D surface
scanners in some cases (Fourie et al., 2011) or at least provide an acceptable alternative
(Katz & Friess, 2014;Muñoz Muñoz, Quinto-Sánchez & González-José, 2016).

Scan resolution is not the only consideration when choosing a scan device as its unique
requirements for 3Dmodel processingmay increase image noise and therefore landmarking
difficulty. Compared to µCT scanning, 3D scans tend to be both noisier and require more
model processing before 3Dmodel export. Specifically, artificial smoothing and hole-filling
may change the topography of the 3D mesh. Therefore, the comparison we have presented
here is not just a comparison of resolutions but also a comparison of 3D model generation.
The methods we provide in Supplemental Information 1 represent the settings we found to
decrease noise, however, the software also required somemodel smoothing and hole-filling
before export. We recommend that researchers take these additional sources of image
modification into account during their landmark choice and study design.

CONCLUSIONS
Here, we have shown that a 3D surface scanner can provide an acceptable alternative to a
µCT scanner for assessing biological signal of 3D shape even in small specimens that are
at the limits of 3D scanner resolution. Our analyses specifically showed that first, error
contributes to a higher percentage of variation in 3D scan datasets than in µCT scan
datasets of the same small specimens. As a result, we conclude that 3D scans are usually
not appropriate for studies on very small sources of variation like fluctuating asymmetry.
Second, we show that 3D scan datasets have a lower repeatability of landmark placement,
especially for fixed landmarks, as compared to µCT scans. Relatedly, our comparisons of
repeatability on data with asymmetry to the same data without asymmetry—i.e., having
bilateral symmetry—support analyzing the bilaterally symmetrical data of landmarks from
low resolution scans. Finally, we use a preliminary study of sexual dimorphism to suggest
that despite elevated error and shape variance, bilaterally symmetrical datasets from 3D
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scans can support male versus female classification based on small biological differences
as well as µCT datasets can. In summary, while 3D scans are a promising alternative,
exploratory pilot studies of measurement error like this one are advisable when practically
possible (see also Fruciano, 2016).

Furthermore, the best 3D capture method will vary based on the study’s design, expected
effect size for the biological variation of interest, and the researcher’s limitations on time,
money, and travel. In addition to image resolution requirements, it is wise to assess
the time it will take to capture and process each specimen as well as portability needs.
We recommend a preliminary test on multiple devices–including surface scanners–to
determine how levels of error compare to biological signal and whether there is substantial
systematic error. Doing so may provide a defensible alternative to an expensive and
time consuming large-scale acquisition of µCT scans including for studies on very small
specimens.

Abbreviations

LM Landmark
µCT Micro-computed tomography
PCA Principal component analysis
PC Principal component
3D Three-dimensional
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