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ABSTRACT
Background: Keratins are intermediate filament (IF)
proteins, which form part of the epithelial cytoskeleton
and which have been implicated pathology of
inflammatory bowel diseases (IBD).
Methods: In this study biopsies were obtained from
IBD patients grouped by disease duration and subtype
into eight categories based on cancer risk and
inflammatory status: quiescent recent onset (<5 years)
UC (ROUC); UC with primary sclerosing cholangitis;
quiescent long-standing pancolitis (20–40 years)
(LSPC); active colitis and non-inflamed proximal
colonic mucosa; pancolitis with dysplasia-both
dysplastic lesions (DT) and distal rectal mucosa (DR);
control group without pathology. Alterations in IF
protein composition across the groups were
determined by quantitative proteomics. Key protein
changes were validated by western immunoblotting
and immunohistochemical analysis.
Result: Acute inflammation resulted in reduced K8,
K18, K19 and VIM (all p<0.05) compared to controls
and non inflamed mucosa; reduced levels of
IF–associated proteins were also seen in DT and DR.
Increased levels of keratins in LSPC was noted relative
to controls or ROUC (K8, K18, K19 and VIM, p<0.05).
Multiple K8 forms were noted on immunoblotting, with
K8 phosphorylation reduced in progressive disease
along with an increase in VIM:K8 ratio. K8 levels and
phosphorylation are reduced in acute inflammation but
appear restored or elevated in subjects with clinical and
endoscopic remission (LSPC) but not apparent in
subjects with elevated risk of cancer.
Conclusions: These data suggest that keratin
regulation in remission may influence subsequent
cancer risk.

INTRODUCTION
Intermediate filaments (IF) are an important
component of the cellular cytoskeleton, with
keratins constituting the major IF proteins in
epithelial cells and accounting for approxi-
mately 5% of total cellular protein.1 2 In the

intestinal epithelium, principally expressed
keratins are keratins 8, 18 and 19 (K8, K18,
K19).2 Vimentin (VIM), a type III IF protein
is primarily found in cells of mesenchymal
origin3 and replaces keratins early in

Summary box

What is already known about this subject?
▸ Ulcerative colitis (UC) is associated with an

increased risk of colitis-associated cancers;
factors such as severity of colonic inflammation
(endoscopic and histological), duration of
disease and concomitant primary sclerosing
cholangitis are associated with increased risk.

▸ Keratins are a type of intermediate filament (IF)
proteins, which, as part of cellular cytoskeleton
have important regulatory functions on the
colonic mucosa. Keratin 8 (K8) null mice develop
colitis and K8 is shown to modulate tumour
necrosis factor action. Missense mutations in the
keratin 8 gene have been noted in a subset of
patients with inflammatory bowel diseases.

▸ Vimentin, a type III IF protein is often consid-
ered as a canonical marker of epithelial, mesen-
chymal transformation. Increased levels have
been noted in aggressive colorectal cancers.

What are the new findings?
▸ Proteomics demonstrate that acute inflammation

results in reduction in keratins 8, 18, 19 (K8,
K18, K19) and vimentin (VIM) levels.

▸ Phosphorylated K8 (K8pS23) levels relative to
total K8, is increased in controls and long-
standing pancolitis, while a reduced ratio is seen
in dysplasia.

▸ There is also a presence of low molecular
weight K8 forms and reduced K8 phosphoryl-
ation in inflamed mucosa compared to proximal
uninflamed colon. Further proteomic analysis
has shown potential differences between these
proteoforms, suggesting potential value as
biomarkers.
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epithelial–mesenchymal transition. IF proteins share a
similar structure.2 The structure, solubility and functions
of IFs are regulated, in part, by a range of post-
translational modifications (PTMs), including phosphor-
ylation, glycosylation, acetylation and cleavage.2 4

Specific sites of phosphorylation, predominantly in the
head and tail domains, have been noted in serine (S)
residues of K8 at S23, S73 and S431. Phosphorylation of
these sites is under control of protein kinases including
p38,5 mitogen-activated protein kinases (MAPK)6 and
c-jun kinase.7 The curated PTM deposition database,
phosphosite (http://www.phosphosite.org), indicates
additional PTM types including acetylation and glycosy-
lation. Sumoylation, which exhibits reciprocity with
acetylation at some sites, has also been demonstrated to
modify K8 function in liver.8 IFs are dynamic and
undergo reorganisation in response to a variety of
stimuli including, mitosis, apoptosis and other cellular
stresses often with redistribution between an insoluble
(filamentous) and a soluble pool.9

Keratins are associated with the pathogenesis of various
colorectal diseases, including cancer and inflammatory
bowel diseases (IBD). They have been shown to be crit-
ical in maintaining the epithelial integrity and to protect
against mechanical and non-mechanical stresses,10 and
regulate effects of signalling pathways. Keratins also func-
tion in cell-death signalling pathways, in particular apop-
tosis mediated by Fas and tumour necrosis factor (TNF)
α.11 12 Stromal VIM expression in colorectal cancers cor-
relates with malignant potential of the tumours.13

The pathogenesis of ulcerative colitis (UC) is still not
fully understood, and factors such as altered immune
response to luminal microbiota14 and alterations in
mucosal barrier function15 may be contributory.
A potential role of impaired epithelial barrier function
due to alterations in keratin levels has been hypothe-
sised.16 Notably, the keratin gene superfamily is located
within the IBD2 locus on chromosome 12.16

Heterozygous missense mutations in the K8 gene have
been reported in patients with IBD with in vitro experi-
ments demonstrating inefficient filament assembly by
the mutant K8 in comparison with wild type.17

K8-deficient mice (mK8−/−FVB/N) develop colonic

inflammation and mucosal hyperplasia;18 a mucosal
chronic T-helper type 2 inflammatory response has been
noted in K8−/− mice that develop colitis.19 The latter
change reverses with antibiotic therapy suggesting a con-
tributory role of luminal bacterial microbiota.20

UC elevates risk of developing colitis-associated
cancer (CAC). Duration of colitis is an important factor
in increasing colon cancer risk, with cumulative colorec-
tal cancer (CRC) incidence noted at 2%, 8% and 18%,
at 10, 20 and 30 years, respectively.21 Extent of colonic
involvement,22 concomitant primary sclerosing cholan-
gitis (PSC)23 as well as early age of onset of UC are
also risk factors for CAC.22 Severity of inflammation
increases the risk of dysplasia and CRC,24 and both
microscopic as well as inflammation evident endoscop-
ically are considered important.25 26

Quantitative proteomic techniques enable not only
identification of proteins in biological samples, but also
their alteration in level between samples.27 This permits
determination of changes in response to disease-related
factors. Few studies have investigated mucosal proteomic
changes in IBD, and only one has shown changes in
cytoskeletal proteins, showing elevated levels of actin
cytoskeletal and associated proteins in patients with a
higher risk of UC progression.28 Given associations
between K8 and colorectal cancer progression and its
interactions with inflammatory pathways, we investigated
the mucosal changes in IFs in patients with UC with dif-
fering cancer risk and inflammatory status.

MATERIALS AND METHODS
Patients
Patients (18–75 years old) with histologically proven UC
and healthy controls (CON) were recruited prospectively
from outpatient clinics and inpatient wards at the Royal
Hallamshire Hospital, Sheffield, UK. The study was
approved by South Yorkshire Research Ethics Committee
(10/H1310/21). Written informed consent was obtained
from all patients. Clinical activity in patients with UC was
defined by the Baron UC disease activity index score.29

Patients were categorised into groups of differing CRC
risk and inflammatory status.
1. Recent onset (<5 years duration) UC (ROUC).
2. Long-standing pancolitis (LSPC)—with disease dur-

ation between 20 and 40 years.
Patients in the LSPC and ROUC groups were in estab-

lished deep remission with no evidence of endoscopic
activity (Baron endoscopic scores 0 and 1, respectively)
and no microscopic activity (histological activity scores 0
in both groups).
1. UC with concomitant primary sclerosing cholangitis

(PSC);
2. Dysplasia in patients with pancolitis (dysplastic tissue,

DT);
3. Rectal mucosa distant to areas of dysplasia (DR).
Biopsies were obtained in patients with active distal
colitis from

Summary box

How might it impact on clinical practice in the foresee-
able future?
▸ Keratin (K) levels and phosphorylation are reduced in acute

inflammation, but restore or increase following clinical and
endoscopic remission. This process may be impaired in
patients who have an elevated risk of cancer suggesting that
keratin regulation in remission may be a pivotal factor influen-
cing subsequent risk of development of colitis-associated
cancer. Monitoring of relative ratio of vimentin to K8, phos-
phorylated K8, or appearance of novel proteoforms might be
useful as markers of aggressive disease phenotype in ulcera-
tive colitis.
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1. The inflamed rectal mucosa (ACTively inflamed
mucosa; ACT);

2. The proximal, endoscopically uninflamed mucosa
from the same patients as 6 (INACT);

3. CONs were patients undergoing lower gastrointestinal
(GI) endoscopic examination which was endoscopic-
ally and histologically normal, with no prior history of
IBD, nor from hospital records did they develop IBD
in the 2 years after biopsies were obtained.

Biopsies were obtained at the rectum from all the
patients with UC in remission as well as normal controls.

Lower GI endoscopy and colonic biopsy
All patients underwent flexible sigmoidoscopy or colon-
oscopy following bowel preparation using either
Kleanprep (Norgine Limited, UK) or Picolax (Ferring
Pharmaceuticals, UK). Endoscopic biopsies were col-
lected from the colon using Radial Jaw 4, biopsy forceps
(Boston Scientific Corporation, Massachusetts, USA).
Biopsies were snap-frozen in liquid nitrogen and

stored at −80°C (for proteomic analyses) or formalin
fixed for histological assessment. Exclusion criteria and
patient data are in the online supplementary data.

Preparation of IF-enriched fraction
We followed our technique for isolation and solubilisa-
tion of IFs for mass spectrometry (MS).30 The IF fraction
from cultured MCF-7 cells used as controls in the
western immunoblot and as internal standards for densi-
tometry.30 Experimental details are provided in full (see
online supplementary data, sections 3 and 5).

Proteomic methods
iTRAQ (isobaric tags for relative and absolute quantitation)
protein profiling: Briefly, pooled samples were tryptically
digested, labelled with 8-plex iTRAQ reagents, separated
by strong cation exchange offline before tandem MS.
Peptides were identified with Phenyx and Uniprot,
before relative quantification and statistical analysis.31

Details are in the online supplementary data, section 4A.
Label-free MS: Gel bands were excised and digested

in-gel prior to LC/MS-MS analysis coupled with ion
mobility (HDMSE). Data processing used UniProt and
Progenesis QI software.32 Details are in the online sup-
plementary data, section 4B.

Sodium dodecyl sulfate polyacrylamide gel
electrophoresis and western immunoblotting
Buffer exchange, western transfer and immunoblotting
were as previously described.4 Primary antibodies were
mouse monoclonal: anti-K8 (ab9023); K18 (ab668), K19
(ab7754); K8 phospho-specific rabbit antiphospho S73
antibody (ab32579) and phospho S431 (ab59434)
(supplied by Abcam, Cambridge, UK). In-house anti-
bodies raised against acetylated lysine10 residue of K8
(rabbit).33 Densitometric analysis is detailed in online
supplementary data, section 7. Immunoblotting was per-
formed for (n=56) patients.

Histological assessments of inflammation and keratin
expression
Biopsies were formalin fixed, and tissue sections (4 µm
thick) were cut. Sections were H&E stained, and reviewed
by a single histopathologist (SSC) blinded to the diagno-
sis. Dysplasia and histological severity of inflammation
were defined according to standard criteria.26 34

Immununohistochemistry of K8, K18 and K19 was essen-
tially as described using antibodies to K8, K19 ab9023,
ab7754, respectively (Abcam, Cambridge, UK) and K18
(in-house monoclonal antibody). Scoring of keratin for
crypt intensity, crypt depth and surface intensity were as
previously described.35 Immunohistochemistry (n=48,
was performed where formalin-fixed paraffin embedded
(FFPE) tissue was adequately well oriented for scoring).

Statistical analysis
Data have been described as median and range/inter-
quartile range, as indicated. Differences between groups
were evaluated with the non-parametric Mann-Whitney
U test. Analysis of iTRAQ data and relative quantifica-
tion of fold changes in protein levels was performed as
described previously31 where the criteria for alterations
on protein level were p value <0.05, with Bonnferroni
multiple test correction applied to reduce false positives.

RESULTS
Patients and workflow
Patients: 62 adult patients with histologically proven UC
healthy CONs were recruited prospectively from out-
patient clinics or inpatient wards at Royal Hallamshire
Hospital, Sheffield, UK. CONs were patients undergoing
lower GI endoscopic examination who had normal
endoscopic and histological appearance of the colonic
mucosa. Patients were stratified into groups based on
cancer risk. Inflammatory status measured by the Baron
endoscopic appearance and the Histological Activity
Score is detailed in the Methods section and in the
online supplementary table S1.

Acute inflammation results in reduced
levels of keratins and VIM
The insoluble proteome was extracted from flash-frozen
biopsies and analysed using an iTRAQ workflow (figure 1
and online supplementary data, section 2). The demo-
graphic summary of samples used in the pooling is in
online supplementary data, section 6. The list of proteins
identified and relatively quantified in the analysis is
detailed in the online supplementary data, section 6. In
total, 53 proteins were identified and relatively quantified,
of which 31 had information from two or more peptide
sequences. A qualitative analysis of the whole dataset was
undertaken using STRINGS, a database of known and pre-
dicted protein interactions to determine protein interact-
ing networks (PINs; figure 2A) represented by the data
set. Two principle PINs emerged in this analysis, with clus-
ters around fibronectin (FN1) and the major keratin
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components K8, K18, K19 indicating linkage to extracellu-
lar matrix, consistent with IF function. The proteomic data
for ACTively inflamed mucosa (ACT) and unINvolved
mucosa in subjects with ACTive inflammation (INACT)
were compared to identify alterations in protein levels
between groups. Keratins were significantly decreased,
with fold change in levels of K8 (0.4-fold), K18 (0.7-fold),
K19 (0.4-fold) and VIM (0.6-fold) (all p<0.05) in inflamed
mucosa in comparison with CONs as well as to the unin-
volved proximal colon (figure 2B). The uninflamed
mucosa did not show any significant difference in protein
levels by MS from the mucosa of controls.
Immunoblotting was undertaken to validate the proteomic
data and, using a bank of antibodies to K8 and key post-
translational modifications (figure 2Ci), to explore further
the nature of changes in K8 associated with inflammation.
The positions of the pSer23, pSer73 and pSer431 are shown
relative to AcLys10 (subject to western blot, shown in the
context of previously identified4 lysine acetylation sites;

figure 2Ci). The western blot data is shown in figure 1Cii.
Total K8 levels were reduced in ACT, both in comparison
with CON and INACT; in ACT, K8 was predominantly con-
centrated in the lower molecular weight forms (37 kDa). A
reduced ratio of Vim:K8 was also noted in ACT and not
paralleled in changed ratios between K8 and K18 (figure
2D). Phosphorylation of K8 is reduced in tumour progres-
sion.36 The relative phosphorylation at sites pSer431, pSer23

and pSer73 in INACT, ACT and control tissues was there-
fore evaluated by western immunoblot and relative densi-
tometry to an internal standard of MCF-7 IF extract
(figure 2Cii, E). The data suggest that there is much less
relative phosphorylation at all three sites (ie, when differ-
ential levels of K8 are controlled for) in the samples from
inflamed colon, and that this is more pronounced in the
inflamed versus the non-inflamed region, suggesting that
a progressive dephosphorylation of K8 is associated with
inflammatory status.
As the pooled samples used in iTRAQ and immuno-

blot may mask heterogeneity. We undertook two tiers of
orthogonal validation of unpooled samples (see online
supplementary data, section 8). Antibody-based methods
of dot blotting and immunohistochemistry (IHC) were
employed.
Figure 3A summarises by-patient changes in keratins

assessed by dot-blotting for all three major keratins.
Medians and distribution patterns are shown and agree
with the pooled data (for raw data, see online supple-
mentary data, section 8). Immunohistochemistry of
keratin levels in crypts adds spatial information on the
distribution within tissue, with the caveat that it is less
sensitive, and the need to select scorable crypts poten-
tially biases results. Analysis of distribution of keratins
expression (figure 3B and see online supplementary
figures S8.1, S8.2) showed significant changes in the
intensity of staining in the crypt, as opposed to total
intensity or depth of staining, agreed with the proteomic
and immunoblot data.

Long-standing quiescent disease associates with a distinct
keratin expression and phosphorylation profile compared
with either recent onset or higher cancer risk groups
The expression levels of key IF proteins (K8, K18, K19
and VIM) in the iTRAQ data set were compared across
the patient groups in this study (figure 4A). Pooled
samples entered into the proteomic analysis were subject
to orthogonal validation by western immunoblot (figure 4B).
When the control group was the normalising reference
point (figure 4Ai), the analysis revealed partitioning of
profiles: LSPC exhibited generally higher levels of IF pro-
teins relative to control, whereas ROUC, PSC, DR and DT
samples all showed reduced levels of most IF proteins
relative to control, a marked opposition of direction of
change. The increases noted in LSPC were significant: K8
and K19 (1.7-fold each, p<0.05) and VIM levels (2.2-fold)
(figure 4Ai, B). By contrast, in ROUC, despite having
macroscopically and microscopically quiescent disease,
exhibited significantly reduced keratin levels relative to

Figure 1 Graphical summary of the workflow. Protein

profiles of samples from the eight-patient group were

compared using iTRAQ (isobaric tags for relative and

absolute quantitation)-based quantitative proteomics.

Downstream validation was undertaken using both

immunoblotting (n=56) and immunohistochemistry (n=48, as

not all formalin-fixed paraffin embedded (FFPE) tissue was

adequately well oriented for scoring).
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controls (K8, K18, K19 and VIM 0.3, 0.5, 0.4 and 0.5-fold
respectively, all p<0.05). Coexisting PSC results in a four-
fold increase in the colon cancer risk in colitis patients;23

likewise, we assessed tissue from patients with dysplasia
both at the DT and uninvolved rectal mucosa (DR). In
PSC, there was a significant reduction in keratin and VIM
levels (0.8, 0.7, 0.8 and 0.9-fold for K8, K18 and K19 and
VIM, respectively; p<0.05, figure 4Ai) in comparison with
CON (figure 4Ai, B). Analysis of DT and rectal mucosa
(DR) also showed a similar pattern of changes in DR and
DT relative to controls (figure 4Ai, B). These changes
suggest a possible pan-colonic field change in IF prote-
ome alterations in patients with dysplasia.
In order to investigate effects of disease duration on

IF proteins, LSPC data were compared with ROUC data

(ROUC as reference set, figure 4Aii). In comparison
with ROUC, a significant increase in levels of IF proteins
(4.3, 1.2, 4 and 3.5-fold for K8, K18, K19 and VIM,
respectively; p<0.05), and IF-associated proteins Xin and
Spectrin was noted in LSPC (figure 4Aii), suggesting an
effect of duration of disease on levels of principal
keratins. The LSPC group exhibited oppositionality of
changes for most keratins by comparison with the
control group through a re-plot of the data comparing
ROUC, PSC, DR and DT with LSPC as reference
group (figure 4Aiii, B). In PSC, there was a significant
reduction in keratin and VIM levels (0.8, 0.7, 0.8 and
0.9-fold for K8, K18 and K19 and VIM, respectively;
p<0.05, figure 4Ai; online supplementary table S2) in
comparison with the CON group (figure 4Ai, 2B).

Figure 2 Effect on active

inflammation on intermediate

filament (IF) proteome. IF extracts

were subject to proteomic

analysis (see online

supplementary data, sections 4

and 6). (A) Strings analysis of the

global proteome showing key

protein interacting networks

(PINs). (B) Proteins identified

included K8, K18, K19 and VIM

(vimentin), as well as

IF-associated proteins spectrin β
chain brain 4, Xin actin-binding

protein 1 and KRT1B as well as

histone proteins and collagen.

White bars show change in ACT

relative to INACT, and grey bars

showing ACT relative to control

(CON). (Ci) Position of key

antibodies used in this study and

(Cii) immunoblots of ACT and

INACT pooled samples entered

into the proteomic analysis.

Densitometry was undertaken

and (D) ratios of Krt8 and either

Krt18 or VIM; (E) alteration in

relative phosphorylation at each

site.
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Analysis of DT relative to LSPC revealed a significant
reduction in levels of IFs (0.3, 0.2 and 0.7-fold for K8,
K19 and VIM, p<0.05) (figure 4Aiii), as well as
KRT1B, Xin and Spectrin (figure 4Aiii;), 0.6-fold for
both, p<0.05). Rectal mucosa (DR) also showed
reduced levels (figure 3Aiv) relative to LSPC. Finally,
in order to establish whether there were changes
associated with dysplasia which may discriminate DR and
DT tissue, a direct comparison was undertaken
(figure 4Aiv) which revealed reduction of K8, K19, Xin
and Spectrin in dysplastic tissue relative to matched
controls.
As keratin phosphorylation in inflamed tissue was sig-

nificantly reduced (vide supra), we sought to establish
whether any such changes associate with particular sub-
groups of UC. Pooled samples, as entered into the prote-
omic analysis, were immunoprobed for K8, for
phosphorylation at pSer23, pSer73, pSer431 and lysine
acetylation at AcLys10 (figure 4B). Multiple

immunoreactive bands of K8 corresponding to as many
as six discrete bands between 37 and 50 kDa on western
blot were noted in control patients, LSPC, PSC and DR
(figure 3B). By contrast with controls, the isoforms in
LSPC were evident at higher molecular weights, whereas
in PSC and DR they tended to predominate at lower
molecular weights. Similar pattern of K8 alteration is
noted in quiescent ROUC mucosa as well as in DT. In
order to assess whether these K8 forms arose through
differential reversible post-translational modifications, we
undertook western blot to identify common PTMs in K8
in the form of phosphorylation at pSer23, pSer73, pSer431

and lysine acetylation at AcLys10. In healthy controls,
intense phosphorylation at Ser73 and Ser 431 was noted
predominantly at a single band around 37 kDa, while
phosphoSer23 antibody cross-reacted with a more
diverse set of molecular weights. The pattern (if not the
intensity) of cross-reaction was broadly conserved in
LSPC and DR. DT and ROUC samples exhibited lower

Figure 3 Analysis of individual

variation in unpooled samples in

response to inflammation.

(A) Relative signal intensity

differences for keratins 8, 18

and19 in colonic biopsies from

patients with active colitis (ACT),

and reciprocal proximal inactive

colonic mucosa (INACT) from the

same individuals in comparison

with MCF-7 as an external

control. Relative signal intensity

differences for keratins 8, 18 and

19 from rectal colonic biopsy for

five normal controls (CON)

relative to MCF-7 are also shown.

Solid horizontal lines represent

the median with vertical bars as

IQR in each group. Differences

are tested using a Mann-Whitney

U test. Raw data are shown in the

supplementary online information.

(B) Corresponding formalin-fixed

paraffin embedded (FFPE)

sections are stained and scored

for keratins identified in this study.

Colonic epithelial average crypt

intensity for K8, K18 and K19

using immunohistochemical

staining comparing patients with

active colitis (ACT) with reciprocal

proximal inactive colonic mucosa

(INACT) from the same

individuals; FFPE rectal tissues

from normal individuals are IHC

stained for K18 as CON; solid

horizontal lines represent the

median with vertical bars as IQR.
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Figure 4 Proteomic analysis revealling intermediate filament (IF) proteins are differentially altered in ulcerative colitis (UC)

subgroups. (A) iTRAQ (isobaric tags for relative and absolute quantitation) data of the changes in IF in patients with

long-standing pancolitis (LSPC), recent onset UC (ROUC) and primary sclerosing cholangitis (PSC), and those with dysplasia

(DR and DR, respectively). By comparison with controls (Ai), LSPC showing a significant increase in levels of K8, K19 and VIM

(vimentin); in ROUC, PSC, DR and DT the levels of K8, K18 and K19 are significantly decreased. The oppositional direction of

change between LSPC and other groups when set against controls reinforces evidence that this is a biological not a technical

event. A comparison of major proteins in quiescent and LSPC disease was undertaken (Aii): LSPC samples exhibited a marked

increase in all IF proteins and IF-associated proteins (Spectrin, Xin) compared with ROUC. Comparison of samples from higher

risk subjects (PSC, DR, DT) against LSPC revealed marked changes in K8, K19 and VIM, with the VIM directionality

distinguishing PSC from DT/DT. Finally in (Aiv) DT samples showed reduced levels of K8, K18, Xin and Spectrin relative to DR.

(B) Results of orthogonal validation undertaken by western immunoblot using specific antibodies to K8, K18, K19 and VIM.

Multiple isoforms of K8 are noted in all the patient groups including healthy controls with lower levels and low molecular weight

forms predominating in ROUC and DT. Immunoblotting using specific antibodies to three major phosphorylation sites of K8

(pS23, pS73 and pS431) and one acetylation site of K8 (AcLys10) was undertaken, along with immunoblotting for K8 in the

same samples. A control MCF-7 sample was included in all immunoblots to allow normalisation between experiments. Bands

were quantified by densitometry, normalised within-blot to the MCF-7 control, and then across-blot to the K8 sample. Relative

phosphorylation levels and VIM:K8 thereby determined are shown in (C and D).
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Figure 5 Analysis of individual

variation in unpooled samples in

response to inflammation.

Corresponding formalin-fixed

paraffin embedded (FFPE)

sections were stained and scored

for keratins identified in this study.

Colonic epithelial average surface

and crypt intensity for K8 (top

panel), K18 (centre panel) and

K19 (bottom panel) were scored

comparing patients with: active

colitis (ACT), reciprocal proximal

inactive colonic mucosa (INACT)

from the same individuals,

long-standing pancolitis (LSPC),

recent-onset ulcerative colitis

(UC) (ROUC), UC with

concomitant primary sclerosing

cholangitis (PSC), UC with

dysplasia, and rectal sample from

UC with dysplasia (DR); FFPE

rectal tissues from normal

individuals were

immunohistochemical staining for

each keratin as control (CON).

Each group was compared with

the CON and the statistically

significant difference marked with

a (*) sign at the top. *p<0.05,

Mann-Whitney U test.
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levels of K8 cross-reaction, a less diverse array of molecu-
lar weights, and so had correspondingly fewer cross-
reactions with anti-PTM antibodies. LSPC, by contrast,
exhibited cross-reactions for PTMs across a wider range
of molecular weights and was the only in vivo sample to
exhibit cross-reaction for lysine10. Densitometry allowed
the quantitative assessment of changes in relatively phos-
phorylation, corrected for K8 level (see figure 3C and
online supplementary data, section 3). The analysis

reveals that relative phosphorylation in all sites is consist-
ent between LSPC and CON, but lower in other condi-
tions, markedly so at pSer23. As VIM levels were reduced
in acute inflammation and in ROUC, and were
increased in LSPC, PSC, DR and DT, a densitometry
analysis (see online supplementary data, section 7 for
regions quantified) of VIM and K8 immunoblots was
undertaken (figure 4D). We undertook a novel analysis
of the ratio of VIM to K8 which showed reduced levels

Figure 6 Analysis of keratin proteoforms using a label-free proteomic approach. (A) Proteins from intermediate filament (IF)

fractions derived from biopsy materials from two patients with active ulcerative colitis (UC) and paired inactive biopsy material

were resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; 10%). Bands in the region

corresponding to K8 were excised from active (R1) and inactive (S1–S5) gel lanes. (B) The amount of K8 protein in each band

was calculated. All samples were run in duplicate and the results are the mean values. (C) All peptides corresponding to K8, are

shown in yellow for each sample with modified residues shown in green (5Bi), and (ii) phosphorylated and (iii) acetylated residues

were identified and indicated in green. (D) The sequence coverage is shown for K8 in the gel bands analysed, peptides shown in

yellow with modified residues oxidised methione, acetylated lysine or phosphoserine highlighted in green.
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in ROUC, in comparison with CONs. There was a pro-
gressive increase in VIM/K8 ratios from LSPC to PSC,
with markedly increased levels noted in DT and DR
(other comparisons were undertaken; see online supple-
mentary data).
Orthogonal validation of changes in levels of the

major keratins in individual patients was undertaken as
for ACT/INACT samples by IHC. This complementary
methodology is considerably less sensitive than iTRAQ
or western blot, but provides an assessment of total
keratin as well as information changes in keratin level
across the tissue architecture. Fold-changes observed
relative to control samples were modest at the iTRAQ
level (<2-fold for keratins in LSPC; <0.5-fold for keratins
in other groups) and were not found to be significant
(figure 5A), however, the general trends observed
matched those identified by protein chemistry. It is likely
that this also reflects that relatively fewer samples were
scorable by IHC, and numbers in some pools were low.

Mass spectrometric analysis of proteoforms of keratins
identifies candidate biomarkers
Immunoblot analysis using K8-specific antibodies revealed
a series of immunoreactive bands: potentially representing
different proteoforms (representing different splice var-
iants and/or PTM status) of K8 (figure 2Cii, 4B). In order
to investigate this further, paired IF fractions from distal,
active, inflamed rectal mucosa, and from proximal, unin-
flamed mucosa in the same patient were studied. Patient
samples were first resolved by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE; figure 5A).
Individual bands (R1, S1-S5) were excised from the gel,
proteolytically digested with trypsin, and analysed using
label-free MS37 (see online supplementary data, section
4B). While all bands excised contained K8, this was not
the predominant species for all, and relative recovery of
K8 is shown in figure 6B. PTMs were identified: lysine acet-
ylations at sites were detected at AcLys107, AcLys122,
AcLys158, AcLys325 and phoshorylation of pSer23, pSer34

and pSer431 which represent the major phosphorylations
sites of K8. The deconvoluted peptide maps of each
species are shown in figure 6C and sequence coverage
mapped in figure 6D. The data indicate a substantially
reduced complexity of K8 proteoforms in active colitis.

DISCUSSION
Development of colon cancer in UC is multifactorial,
and inflammation is now considered to play a significant
role in its pathogenesis.25 The natural history of UC is
variable: the frequency of disease flares is unpredictable
and cancer develops in a small proportion of such
patients. Ongoing active histological inflammation has
been shown to predispose to development of CAC.26 In
view of the evidence implicating inflammation in cancer
and colitis, and the potential association of keratins in
the colonic inflammation and the pathogenesis of
IBD,17 18 we investigated proteomic changes in IFs in

well-characterised groups of patients with UC at varying
levels of cancer risk. We have shown that acute inflam-
mation is associated with a reduction in levels of keratins
in the inflamed colonic mucosa, whereas the levels in
the uninflamed proximal mucosa parallel those of
healthy colonic mucosa in control patients. Keratins are
dynamic and are involved in a range of inflammatory
pathways, in particular protection from apoptosis
mediated by TNF-α and Fas, with epithelial cells lacking
K8/K18 being prone to apoptosis, and K8−/− mice exhi-
biting hyperplasia, fragile mucosa and impaired ion
transport.11 12 38 Our data show that keratin levels are at,
or slightly higher than, normal level in patients with per-
sistent quiescent disease, but that in active inflammation
and in quiescent subjects with recent disease, there is a
reduced level of keratin. Taken together, these data
suggest a delay in the restoration of keratins in the
mucosa following acute inflammation despite macro-
scopic and microscopic mucosal healing. Previous
studies have also shown persistent cellular and molecular
damage with activated kinase and transcription factor
signalling pathways in the colon despite apparent micro-
scopic healing.39

Phosphorylation of K8 affects its solubility and func-
tion.2 Reduced phosphorylation of K8 due to increased
phosphatase of regenerating liver-3 expression is

Figure 7 Proposed model of involvement of intermediate

filament (IF) proteins in pathogenesis of dysplastic changes in

ulcerative colitis (UC). A small number of patients despite an

initial acute episode have long-standing quiescent disease

process; these patients are at a lower risk of colorectal cancer

(CRC) in spite of having a long-standing disease process. On

the contrary, recurrent bouts of acute inflammation and

inadequate recovery/restoration of keratins following the acute

inflammation may contribute to pathogenesis of CRC. Some

patients may exhibit inflammation even after restoration of

keratin, and so re-enter the disease path (red dashed line).
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associated with colorectal cancer progression.36 Our
data show reduced or a loss of phosphorylation in acute
inflammation, with similar changes persisting in ROUC
as well as DT. This suggests a protective effect of physio-
logical phosphorylation of K8 at pSer23 would be lost in
ROUC and DR/DT. Increased levels and phosphoryla-
tions of keratins in LSPC may be significant: LSPC is
believed to be an important factor contributing to the
pathogenesis of CAC, but levels of keratins in quiescent
LSPC points towards a protective mechanism in this situ-
ation. The environmental and regulatory factors govern-
ing K8/K18 are not well characterised and merit analysis
in future studies. There are limited data on the role of
acetylation in regulation of keratin function, but we have
previously shown association between Lys483 acetylation
and depolymerisation. We noted that the K8 recovered
from inflamed tissue appeared more extensively acety-
lated (by number of sites, not necessarily stoichiometry)
which may suggest progression to entropy of IF and con-
sequent plasticity of cells.
Taken together with the results of acute inflammation

on keratins, we can suggest that inadequate restoration
of keratin expression following acute inflammation may
contribute to the pathogenesis of CAC by affecting
the repair process in the mucosa. This is supported by
the changes seen in patients with PSC and dysplasia, but
the number of patients in these groups is small. The
findings, therefore, need confirmation in prospective
studies in these subgroups. This study remains cross-
sectional, and future prospective analyses will reveal
whether repeated inflammation or impaired keratin
expression is the more causal factor in CAC risk pheno-
types. In this study, we show an acute reduction in VIM
levels in the acutely inflamed mucosa as well as in
ROUC. Increased expression of VIM, generally
expressed in cells with a mesenchymal phenotype in
LSPC may reflect morphological colonic tissue remodel-
ling and architectural alterations, reflecting the chronic
relapsing/remitting course of the disease as a conse-
quence of accumulated damage during each active
phase.40 41 The VIM:K8 ratio progressively increases with
development of a more aggressive phenotype, poten-
tially due to epithelial denudation and crypt shortening
associated with disease. These results suggest that relative
overexpression of VIM in the colonic mucosa may
herald the development of CAC. The data are integrated
into a qualitative model for CAC progression in figure 7.
This is the first study investigating changes in insoluble

IF levels in the mucosa in patients with UC with differ-
ing disease phenotype. Unlike previous studies which
have focused on the soluble fraction of proteins, we have
undertaken subcellular fractionation to investigate
changes in the relatively insoluble fraction which, under
physiological states, constitutes the bulk of the keratin
pool. Our data suggest a model for the pathogenesis of
CAC whereby acute inflammation reduces keratin levels
and affects mucosal IF protein integrity which lags
behind apparent clinical, microscopic and endoscopic

recovery. Persistent failure of such recovery may be the
cornerstone of pathogenesis of CAC. Additionally, the
role of altered VIM:K8 ratio is significant and it might
have a potential role as a mucosal marker of progressive
disease. Nevertheless, prospective studies are needed, as
are development of targeted strategies to modulate IF
expression in the colonic mucosa.
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