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Abstract

Detrended Fluctuation Analysis (DFA) is the most popular fractal
analytical technique used to evaluate the strength of long-range cor-
relations in empirical time series in terms of the Hurst exponent, H.
Specifically, DFA quantifies the linear regression slope in log-log coordi-
nates representing the relationship between the time series’ variability
and the number of timescales over which this variability is computed.
We compared the performance of two methods of fractal analysis—the
current gold standard, DFA, and a Bayesian method that is not cur-
rently well-known in behavioral sciences: the Hurst-Kolmogorov (HK)
method—in estimating the Hurst exponent of synthetic and empirical
time series. Simulations demonstrate that the HK method consistently
outperforms DFA in three important ways. The HK method: (i) accu-
rately assesses long-range correlations when the measurement time series
is short, (ii) shows minimal dispersion about the central tendency, and
(iii) yields a point estimate that does not depend on the length of the
measurement time series or its underlying Hurst exponent. Compar-
ing the two methods using empirical time series from multiple settings
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2 Better than DFA

further supports these findings. We conclude that applying DFA to
synthetic time series and empirical time series during brief trials is unre-
liable and encourage the systematic application of the HK method to
assess the Hurst exponent of empirical time series in behavioral sciences.

Keywords: detrended fluctuation analysis, fractal fluctuations, fractional,
human movement, long-range correlation, physiology, variability

1 Introduction

Behavior in humans is fluid. Repetitions of gross movements, such as walking,
and fine movements, such as tapping a finger, vary from one cycle to the next.
Even the most basic behavioral measurement—the reaction time—ebbs and
flows around a typical value, the arithmetic Mean. The standard deviation,
SD, measures the average distance of each point from that Mean and car-
ries the assumption that deviations from the Mean are errors surrounding an
intended stride or a tapping response. Decades of research refute this assump-
tion in the serial measurement of human behavior. The “variability is error”
assumption means that behavioral measurements should be independent of one
observation to the next. However, an inspection of temporal sequences of mea-
surements reveals that behaviors correlate with one another over time. Long
steps tend to follow long steps; fast responses tend to follow fast responses. The
closer in time, the closer the resemblance. Conversely, correlation decays with
greater separation in time. The quantification of these long-range relationships
is, therefore, of critical importance in behavioral sciences. However, long-range
correlations are not amenable to measurement by descriptive statistics such as
SD, coefficient of variation (CoV ), and root mean square (RMS).

A robust approach to assessing how long-range correlations between mea-
surements decline over longer time intervals is to use the Hurst exponent, H
[1]. The Hurst exponent, H , was named by Mandelbrot [2] in honor of pio-
neering work by Edwin Hurst in the field of hydrology, the “fractal” flood
characteristics of the Nile River delta [1]. According to Mandelbrot, H mea-
sures the presence of long-run statistical persistence in a time series, as well
as its intensity [2, 3]. H describes how the measurements’ SD-like varia-
tions grow across progressively longer timescales, indicating the rate at which
correlation among sequential measurements decay across subsequent separa-
tions in time (Fig. 1). More precisely, the Hurst exponent describes a single
fractal-scaling estimate of power-law decay in the autocorrelation ρ for lag k
as ρk = |k + 1|2H − 2|k|2H + |k − 1|2H , for which H reveals the presence and
degree of persistent correlations (0.5 < H < 1.0, wherein large values are typ-
ically followed by large values and vice versa) or anti-persistent correlations
(0 < H < 0.5), wherein small values typically follow large values and vice
versa. An empirical time series with H → 0.5 implies a random process where
subsequent observations are uncorrelated.
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Fig. 1 Schematic portrayal of the measure of fractality, H, yielded by the DFA.
H relates how the SD-like variation grows across many timescales, statistically encoding how
the correlation among sequential measurements might decay slowly across longer separations
in time. We use detrending of these variations over progressively longer timescales to remove
the mean drift across each of these timescales.

Detrended fluctuation analysis (DFA) is the most used technique to uncover
long-range correlations in diverse research fields, such as material science [4],
meteorology [5–7], economics [8–12], ethology [13, 14], bioinformatics [15–17],
and physiology [18–21]. The Hurst exponent estimated using DFA has also
proved to be extremely powerful in its capacity to uncover system dynam-
ics, such as feedforward and forward processes in postural control [22–24],
system-wide coordination in motor control [25, 26], cognition [27–31], and
perception-action [32–34]. The Hurst exponent estimated using DFA also helps
identify different states of the same system according to its different scaling
behaviors, for instance, the H values for heart interbeat intervals between
healthy individuals and those with disease [35–37]. Likewise, the H values for
stride intervals during walking are different for healthy adults and individuals
with movement deficits due to aging and pathology [38–43]. The Hurst expo-
nent, typically estimated using DFA, also serves as a critical benchmark for
developing interventions [44–46] and quantifying their effects [47–49]. In short,
DFA has become central to quantifying the Hurst exponent across diverse
research fields, including behavioral sciences.

The most significant advantage of DFA over other methods of assessing the
strength of long-range correlations in empirical time series is that it is suit-
able for nonstationary time series, thereby preventing erroneous detection of
long-range correlations that are a side effect of non-stationarity. However, the
Hurst exponent yielded by the DFA becomes unstable because of the nonlinear
filtering characteristics associated with detrending [50]. Therefore, DFA has
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been modified by introducing different detrending techniques, such as the cen-
tered moving average (CMA) method [51], detrended moving average (DMA)
method [52], the modified detrended fluctuation analysis (MDFA) [53], and
orthogonal detrended fluctuation analysis [54]. Different detrending methods
show various advantages and limitations, depending on the presence of long-
range trends [55, 56]. For instance, CMA is slightly superior to the original
DFA algorithm in terms of straighter fluctuation curves [57], and DFA based
on empirical mode decomposition (EMD) is superior to the traditional DFA
when the time series is strongly anticorrelated [58]. DMA method is superior
to the traditional DFA for time series with 0.2 < H < 0.8, while traditional
DFA performs better when H > 0.8 [59]. Numerical analysis shows the tra-
ditional DFA still confers several advantages, mainly when the data trend’s
functional form is not known a priori [60, 61].

Nonetheless, DFA has several shortcomings beyond the detrending proce-
dure. For instance, numerous authors have pointed out that DFA does not
accurately assess long-range correlations when the empirical time series is short
[62–64], producing a positive bias in its central tendency in addition to a large
dispersion [65–70]. Often an empirical time series with more than 500 samples
is required to use DFA with reasonable accuracy. This requirement is a signifi-
cant limitation, especially when it is impractical to collect a long measurement
time series due to time constraints and financial or clinical reasons [67]. In addi-
tion, many cognitive and psychological phenomena are fleeting and ephemeral
such as moments of insight [71, 72]. As it stands, the outcome yielded by many
other methods of assessing the strength of long-range correlations in measure-
ment time series is precariously sensitive to the length of the measurement
time series. However, DFA generally performs best [66, 73]. Therefore, there
is an urgent need in behavioral sciences for an analytical method that: (i)
accurately assesses long-range correlations when the measurement time series
is short, (ii) shows minimal dispersion about the central tendency, and (iii)
yields a point estimate that does not depend on the length of the measurement
time series or its underlying Hurst exponent. No such methods are currently
widely used, thus limiting our ability to make strong inferences in those many
limiting domains noted above.

In this paper, we present a simulation study comparing two methods of frac-
tal analysis, the current gold standard, DFA [74, 75], and a Bayesian method
that is not well-known in behavioral sciences—the Hurst-Kolmogorov (HK)
methodology [76]. We use these simulation results to inform four empirical
human behavioral time series analyses. Those studies capture a broad swath of
common behavioral measurements—gait, sensorimotor synchronization, and
reaction times—derived from tasks typically conceived as purely motor and
those considered more purely cognitive. Using synthetic and empirical time
series, we show that the HK method outperforms DFA in all three benchmarks
described above.
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2 Two methods of estimating the Hurst
exponent

2.1 Estimating the Hurst exponent using the HK method

Tyralis and Koutsoyiannis [76] developed a Bayesian method for estimating
H . As we will show, this method offers a viable solution to several issues with
DFA outlined above. As a preview, we show that the HK method outperforms
DFA across a broad range of H , especially when time series are short. In the
remainder of this section, we overview the HK method. Additional details,
including mathematical proofs, can be found in Tyralis and Koutsoyiannis [76].
In this description, we generally follow their notation.

Koutsoyiannis [77] report that the autocorrelation function for the so-called
Hurst-Kolmogorov (HK) process is given by:

ρk = |k + 1|2H/2− 2|k|2H/2 + |k − 1|2H , k = 0, 1, . . . , (1)

where H is the Hurst exponent, k is the time lag, and ρk is the autocorrelation
for a given k. When H = 0.5, ρk is zero for all k > 0 but 1 when k = 0. When
0 < H < 0.5, ρk is negative at lag 1 but damps towards zero for k > 1; when
0.5 < H < 1, ρk is positive at lag 1 but slowly decays to zero; and as H → 1,
ρk approaches 0 asymptotically.

Tyralis and Koutsoyiannis [76] employ a Bayesian technique for estimating
the Hurst exponent. In that work, they derive a method to sample from the
posterior distribution of H that takes the following form:

π(ϕ|xn) ∝ |Rn|
−1/2 [eTnR

−1
n enx

T
nR

−1
n xn − (eTnR

−1
n en)

2]−(n−1)/2

(eTnR
−1
n en)

n/2−1, (2)

and its natural logarithm is then:

lnπ(ϕ|xn) ∝
1

2
ln |Rn| −

(n− 1)

2
ln [eTnR

−1
n enx

T
nR

−1
n xn − (eTnR

−1
n en)

2]

+
n− 2

2
ln (eTnR

−1
n en), (3)

where Rn is the autocorrelation matrix with elements ri,j where i, j =
1, 2, 3, . . . , n, en = (1, 1, 1, . . . , 1)T is a vector of ones with n elements, | . . . |
indicates a determinant, the superscript in R−1

n indicates a matrix inverse, and
the superscript T indicates a matrix transpose. The matrix products on the
right-hand side of Eq. 3 are built from the quadratic forms for the inverse of
a symmetric, positive definite autocorrelation matrix which can be obtained
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using the Levinson algorithm (Algorithm 4.7.2, Golub & Van Loan [78], p.
235) for a given xtρk.

Accept-reject algorithms are standard, powerful tools for sampling from
complex distributions and follow a simple set of steps [79]. Suppose a proba-
bility density function (PDF) exists, f(x), from which it is difficult to sample.
We refer to f(x) as the target distribution. One can use the Monte Carlo
method to sample from f(x). The algorithm is as follows. First, one samples
from a simpler proposal distribution from which it is easy to sample, Mg(x),
where g(x) has the same domain as f(x) and M is a constant large enough
such that g(x) ≥ f(x). The proposal PDFs can take many forms, such as uni-
form or truncated Gaussian distributions. Computational efficiency is gained
if the overall shape of g(x) is similar to f(x). Second, one evaluates f(x) at
the value proposed by sampling from g(x). Third, one draws a sample from
the U(x) ∼ Uniform(0,Mg(x)). If U(x) ≤ f(x), then we accept the proposed
value from g(x) as a valid sample. Otherwise, we reject the proposal from g(x).
This process is repeated for n samples, where n is the number of samples we
wish to draw from the posterior distribution.

In the present case, we used the accept-reject algorithm to sample from
the posterior distribution of H (Algorithm A.5, Robert & Casella [79], p. 49).
The target distribution, f(x) is Eq. 3 and g(x) ∼ Uniform(0, 1). The choice
of g(x) makes sense in this case because g(x) shares the same domain of H and
hence Eq. 3, namely (0, 1) [76]. M is chosen using a numerical optimization
routine that finds the maximum of Eq. 3 as a function of H . Finally, from the
sampled posterior distribution of H , we take the median of the distribution as
a point estimate of H . Time series were submitted to the HK method using
R [80] using the function inferH() from the package “HKprocess” [81]. The
function inferH() has two inputs: the time series, xN , and the size of the
simulated sample from the posterior distribution of H , n. We set the n to 500.

2.2 Estimating the Hurst exponent using DFA

We used DFA—as described by Peng et al. [74, 75]—to access the strength
of long-range correlations in synthetic time series of different a priori known
values of H and empirical human behavioral time series. DFA computes the
Hurst exponent, H , using the first-order integration of time series xt of length
N , where t ∈ N:

Xt =

N
∑

i=1

(xi − 〈x〉), (4)

where 〈x〉 is the grand mean of the time series. It computes root mean square
(RMS; that is, averaging the residuals) for each linear trend Yt fit to non-
overlapping n-length bins to build fluctuation function:
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f(n) =

√

√

√

√

1

N

N
∑

t=1

(Xt − Yt), (5)

for n < N/4. f(n) is a power law:

f(n) ∼ nH , (6)

where H is the Hurst exponent estimable using logarithmic transformation:

H =
ln f(n)

lnn
. (7)

A bin size range of [4, N/2] was used for the DFA in the present study, which
is standard practice while using DFA [82–86]. Time series were submitted to the
DFA in R [80] using the function dfa() from the package “fractalRegression”
[87].

The computational details of the two methods are relatively distinct, with
the HK method having its foundations in the Bayes theorem, whereas DFA
computes the Hurst exponent directly from the time series data.

3 Simulations

3.1 Methods

We used the Davies-Harte algorithm [88] to generate synthetic time series
of varying lengths (N = 32, 64, 128, 256, 512, 1024) and varying values of the
Hurst exponent (H = 0.1, 0.2, . . . , 0.9). This algorithm generates fractional
Gaussian noise (fGn), which has been proposed as a model to understand
the long-range correlations postulated to occur in various behavioral systems
[25–29, 31, 89–91]. We generated 1, 000 synthetic time series for each combi-
nation of N and H in R [80] using the function fgn sim() from the package
“fractalRegression” [87] and submitted them to the HK method and DFA.

3.2 Results

Figs. 2 & 3 provide a summary visualization of the simulation results for
each combination of the time series lengths (N = 32, 64, . . . , 1024), and the
a priori known values of the Hurst exponent (H = 0.1, 0.2, . . . , 0.9). As a
general preview, in all one but the shortest time series, N = 32, where neither
method was useful, the HK method outperforms DFA in estimating Ĥ (Fig.
2). For the shortest time series, N = 32, both methods produce unreasonable
errors (Mean |∆Ĥ | > 0.05; Fig. 3, top left), although the HK method is still
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HK method
DFA

HK method
DFA

HK method
DFA

HK method
DFA

HK method
DFA

HK method
DFA

Fig. 2 The HK method estimates the Hurst exponent, Ĥ, with consistently
better accuracy than DFA, which overestimates Ĥ, specifically for short time
series and small values of H. Each panel plots the Mean estimated values of Ĥ for 1, 000
synthetic time series of length N = 32, 64, 128, 256, 512, 1024 with a priori known values of
H. The grey line indicates the ideal case where the estimated value is the same as the actual
value, i.e., Ĥ = H. Error bars indicate 95% CI across 1000 simulations.

somewhat unbiased in its central tendency, producing Mean Ĥ close to the a

priori known values of H (Fig. 2, top right).
When N = 64, a very short time series compared to the DFA standard of

> 500, the HK method and DFA show considerable differences in performance.
First, the Mean Ĥ estimated by the HK method closely approximates the a

priori known values of H , while DFA produces substantially and uniformly
positive bias in mean Ĥ across the entire range of H (Fig. 2, top right).
Second, the HK method produces substantially smaller Mean absolute errors,
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specifically |∆Ĥ | falling within a range that could be used, with caution, in
analyzing short time series (Fig. 3, top left). When N = 128, Mean Ĥ are
virtually indistinguishable from nominal values, while DFA remains positively
biased (Fig. 2, middle left). |∆Ĥ | for the HK method drop below 0.05 for
all H with the exception of extreme values (i.e., H = 0.1, 0.9; Fig. 2, middle

right, respectively). The same general trend is observed for longer time series
(N = 256, 512, 1024;Figs. 2 & 3, middle right, bottom left, and bottom

right). While |∆Ĥ | for DFA drops to reasonable levels for these time series
lengths, DFA still tends to be positively biased for H = 0.1, 0.2, . . . , 0.6. In
contrast, the HK method produces unbiased estimates across the entire range
of H . In brief, across all N and H , the HK method outperforms DFA in that
it (i) accurately assesses long-range correlations when the measurement time
series is short and (ii) shows minimal dispersion about the central tendency.

Although the DFA estimates Ĥ with reasonable accuracy for long time
series (Mean |∆Ĥ | ∼ 0.05 for N > 512; Fig. 3, bottom left and bottom

right), the HK method estimates Ĥ with consistently better accuracy than
DFA (Fig. 3). A noteworthy trend is that both methods have a curvilinear
error profile, albeit with different forms. The error profile for DFA is concave-
up, implying that DFA will be most error-prone when Ĥ is at both extreme
antipersistence and extreme persistence. In contrast, the error profile of the
HK method is concave-down, implying that peak error will be in the middle
when the time series resembles a wGn. A caveat for that last observation is
that as N → 512, the error in the estimation of Ĥ using the HK method is
smallest as H → 0.1 and tends to plateau as H → 0.9 (Fig. 3, bottom left

and bottom right). Thus, practitioners should keep these trends when the
estimated Ĥ values fall within these regions.

4 Empirical results

The above results demonstrate the superiority of DFA in estimating the Hurst
exponent on synthetic data when underlying dynamics are known. What
remains to be learned is the relative performance of the HK method and DFA
on human behavioral data. In the following subsections, we present four case
studies that demonstrate the superior performance of the HK method in a
diverse range of contexts.

4.1 Context 1: Stride interval time series in a locomotion
task

Healthy and highly adaptable systems—such as the human movement
system—display an optimal temporal structure of variability. This ideal struc-
ture is described by persistence in stride-to-stride variations indicated by the
Hurst exponent, H , close to 1. It implies a temporal structure in consecutive
strides that is ordered and stable but also variable and adaptable. DFA has
been used in multiple studies to estimate H in stride-to-stride variations in
walking [92–98] and running [84, 99–105] under various manipulations of task
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HK method
DFA

HK method
DFA

HK method
DFA

HK method
DFA

HK method
DFA

HK method
DFA

Fig. 3 Although DFA estimates the Hurst exponent, Ĥ, reasonably accurately
for long time series (|∆Ĥ| ∼ 0.05 for N > 512), the HK method esti-
mates H with consistently better accuracy than DFA. Each panel plots the Mean

absolute error in the estimation of Ĥ, |∆Ĥ|, for 1, 000 synthetic time series of length
N = 32, 64, 128, 256, 512, 1024 with a priori known values of H. Error bars indicate 95% CI
across 1000 simulations.

constraints both on treadmill [84, 92–100, 102–106] and overground [92, 101].
These studies have consistently reported H values close to 1, at least for young
and healthy adults. Furthermore, stride-to-stride variations show a reduction
in H in older adults and pathological populations [39, 40, 43, 107]. This reduc-
tion of persistence in stride-to-stride variations is linked with increased fall
risk [41, 108–111]. In short, the Hurst exponent of stride-to-stride variations
reflects both the constraints on the movement system due to the task and the
physiological health of the movement system. Hence, stride-to-stride variations
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(e.g., in the stride interval time series) offer an empirical test case to compare
downstream performance differences between the HK method and DFA.

4.1.1 Methods

Stride interval time series were reanalyzed from a published study on walk-
ing and running dynamics on the treadmill and an overground surface [112].
Eight adults (5 women and three men; Mean ± 1s.d. age: 30.5 ± 11.5 years)
participated in exchange for monetary compensation after providing informed
consent approved by the University of Nebraska Medical College’s Institutional
Review Board. All participants met the following criteria: (i) they could give
their informed consent; (ii) they could walk without the aid of a cane or other
device; and (iii) they had not been diagnosed with any neurological disease or
lower limb disability, injury, or illness.

Participants used a Bodyguard Commercial 312C Treadmill with a top
speed of 12.0 mph and increases/reduction in speed by 0.1 mph housed in the
Balance and Strength Lab at The University of Nebraska at Omaha to do
treadmill walking and treadmill running. In addition, participants engaged in
overground walking and overground running on the University of Nebraska at
Omaha’s indoor track, which extends 200 meters and has inner, middle, and
outer lanes. Participants donned a TrignoTM 4 Contact FSR (Force Sensitive
Resistor) sensor (Delsys Inc., Boston, MA) under each foot. The first and sec-
ond channels registered relative pressure at the heel and midfoot. A TrignoTM

Personal Monitor (TPM) datalogger attached to the participant’s body stored
the relative pressure data registered FSR sensors.

Participants performed four 20-min trials across two days. The first day
consisted of walking and running either on the treadmill or the indoor track.
The second day, separated by at least two but less than seven days, consisted
of locomoting on the second surface. On the treadmill locomotion day, two
familiarization trials were conducted to estimate the participant’s preferred
walking and running speeds based on a previously established protocol [113].
Then the participant walked at that speed for 20 mins. After 5–10 min rest, the
participant’s preferred running speed was estimated using the same protocol
[113], following which the participant ran at that speed for 20 mins.

Heel strikes were determined based on the timing associated with the peak
pressure of each foot strike from the FSRs. The peak of the ith heel strike of
the left foot was subtracted from the peak of the (i − 1)th heel strike of the
same foot to determine the stride intervals. The trials produced stride interval
time series of various lengths, with the minimum length ofN = 983. Therefore,
all stride interval time series were cropped at N = 983 for further analyses.
Segments of the original and shuffled stride interval time series of lengths N =
32, 64, 128, 256, 512, 983 were submitted to the HK method and DFA. Stride
interval time series of all six lengths were shuffled to preserve the probability
distribution but destroyed any temporal correlations and submitted to the HK
method and DFA. As opposed to the original time series expected to yield
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Ĥ > 0.5. these shuffled time series were expected to yield an Ĥ value of 0.5,
indicating an absence of long-range correlations.

We utilized linear mixed-effects (LME) models using Satterthwaite’s
approximation to examine the effects of locomotion Mode (Walking vs. Run-
ning) and Surface (Treadmill vs. Overground) on Ĥ estimated using the HK
method and DFA. Locomotion Mode (Walking vs. Running) and Surface
(Treadmill vs. Overground), along with their interactions, served as three fixed
effects, and Participant identity served as the random effect (i.e., we allowed
the intercept to vary across participants). All mixed-modeling was performed
in R [80] using the function lmer() from the package “nlme” [114] and the
function anova() from the package “lmertest” [115]. Statistical significance
was set at the Type I error rate of 5%.

4.1.2 Results

The central tendencies—Mean and Median—of Ĥ for stride interval time
series estimated using the HK method, as well as the distribution of Ĥ , do
not depend on the time series length N , except for N = 32 for which the HK
method yields marginally smaller Ĥ (Fig. 4, top). In contrast, while theMean
and Median Ĥ for stride interval time series estimated using DFA do not
appear to differ betweenN = 32 andN = 64, they show a consistent and linear
increase with N after that. Furthermore, while the Ĥ values estimated using
the HK method lie within the tight bounds of [0, 1], the Ĥ values estimated
using DFA often exceed the upper bound of 1 (Fig. 4, bottom). Another
notable distinction is a narrower range of Ĥ for the shuffled stride interval
time series estimated using the HK method compared to DFA. Overall, the HK
method estimates Ĥ that show smaller dispersion about the central tendency
and lesser dependence on the length of the stride interval time series.

To investigate the sensitivity of both methods to task constraints, we ana-
lyzed the influence of locomotion Mode and Surface on Ĥ values estimated
using both methods. We submitted the Ĥ values estimated using both meth-
ods to linear mixed-effects modeling with Satterthwaite’s approximation for
finite sample size [116]. We performed this modeling separately for each time
series length N = 32, 64, 128, 256, 512, 1024.Tables 1 & 2 describe the model
outcomes.
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Fig. 4 The Hurst exponent, Ĥ, for stride interval time series estimated using
the HK method do not depend on the time series length N, but Ĥ estimated
using DFA show a strong dependence on N, resulting in larger Ĥ for larger
N. The right and the left violin plots represent the distribution of Ĥ for the original and
shuffled stride interval time series, respectively, estimated using the HK method (top) and

DFA (bottom). Vertical lines represent the interquartile range of the original Ĥ values, white

circles represent the median value of Ĥ, and horizontal lines represent the Mean value of
Ĥ for the original stride interval time series. Horizontal dash-dotted green and red lines
indicate Ĥ = 0.5 and Ĥ = 1, respectively.

Table 1. Outcomes of linear mixed-effects modeling with Satterthwaite’s
approximation for small sample size, examining the influence of locomotion
Mode and Surface on the Hurst exponent, Ĥ , estimated using the HK method
for stride interval time series of length N = 32, 64, 128, 256, 512, 983.
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Mean SqSum Sq DF F P
∗

N = 32

Mode 0.199 0.199 1,32 8.277 0.007

Surface 0.346 0.346 1,32 14.397 < 0.001

Mode × Surface 0.105 0.105 1,32 4.388 0.044

N = 64

Mode 0.217 0.217 1,24 12.662 0.002

Surface 0.174 0.174 1,24 10.132 0.004

Mode × Surface 0.028 0.028 1,24 1.642 0.212
N = 128

Mode 0.187 0.187 1,32 15.056 < 0.001

Surface 0.124 0.124 1,32 10.004 0.003

Mode × Surface 0.022 0.022 1,32 1.789 0.191

N = 256

Mode 0.127 0.127 1,24 9.389 0.005

Surface 0.112 0.112 1,24 8.229 0.008

Mode × Surface 0.003 0.003 1,24 0.227 0.638
N = 512

Mode 0.152 0.152 1,24 13.093 0.001

Surface 0.150 0.150 1,24 12.930 0.001

Mode × Surface 0.000 0.000 1,24 0.043 0.838
N = 983

Mode 0.128 0.128 1,24 14.794 < 0.001

Surface 0.119 0.119 1,24 13.759 0.001

Mode × Surface 0.000 0.000 1,24 0.097 0.758
∗Boldfaced values indicate significant differences at the two-tailed alpha of
0.05.
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Table 2. Outcomes of linear mixed-effects modeling with Satterthwaite’s
approximation for small sample size, examining the influence of locomotion
Mode and Surface on the Hurst exponent, Ĥ , estimated using DFA for stride
interval time series of length N = 32, 64, 128, 256, 512, 983.

Mean SqSum Sq DF F P
∗

N = 32

Mode 0.144 0.144 1,32 3.960 0.055
Surface 0.276 0.276 1,32 7.584 0.009

Mode × Surface 0.148 0.148 1,32 4.053 0.053

N = 64

Mode 0.284 0.284 1,24 11.346 0.003

Surface 0.254 0.254 1,24 10.140 0.004

Mode × Surface 0.111 0.111 1,24 4.447 0.046

N = 128

Mode 0.200 0.200 1,24 9.280 0.006

Surface 0.159 0.159 1,24 7.385 0.012

Mode × Surface 0.091 0.091 1,24 4.230 0.051
N = 256

Mode 0.060 0.060 1,24 1.958 0.174
Surface 0.127 0.127 1,24 4.129 0.053
Mode × Surface 0.002 0.002 1,24 0.077 0.784
N = 512

Mode 0.148 0.148 1,32 6.754 0.014

Surface 0.076 0.076 1,32 3.442 0.073
Mode × Surface 0.017 0.017 1,32 0.758 0.391

N = 983

Mode 0.161 0.161 1,24 12.951 0.001

Surface 0.062 0.062 1,24 4.960 0.036

Mode × Surface 0.009 0.009 1,24 0.714 0.406
∗Boldfaced values indicate significant differences at the two-tailed alpha of
0.05.

Linear-mixed effects modeling of Ĥ estimated using the HK method
revealed that Running is associated with greater Ĥ (i.e., stronger long-
range correlations in stride-to-stride variations) compared to Walking, and
Overground locomotion is associated with greater Ĥ compared to Treadmill
locomotion (Fig. 5; Table 1). These results are supported by previous stud-
ies that have reported similar effects of locomotion Mode and Surface on the
long-range correlations in stride-to-stride fluctuations [92, 112]. These results
also remain consistent across all values of N (32, 64, 128, 256, 512, 1024), sug-
gesting that the HK method is sensitive to task constraints for stride interval
time series as short as 32 strides. Lastly, it is noteworthy from a movement
science perspective that locomotion Mode and Surface exert their influence
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Fig. 5 The effects of locomotion mode and surface on the Hurst exponent, Ĥ,
estimated using the HK method do not depend o such as uniform or truncated
Gaussian distributions, etc. the stride interval time series length (see Table 1 for

the outcomes of the statistical tests). Each panel plots the Mean values of Ĥ, estimated
using the HK method for stride interval time series of length N = 32, 64, 128, 256, 512, 983.
Light blue and light red circles indicate Ĥ values for individual participants in the respective
conditions. Error bars indicate 95% CI across 8 participants.

independently. However, this effect must be replicated, given the relatively
small sample size.

In contrast to the HK method, the results for the linear-mixed effects mod-
eling of Ĥ estimated using DFA wax and wane depending on the stride interval
time series length (Fig. 6; Table 2). For N = 32, Overground locomotion
seems to produce greater Ĥ values than Treadmill locomotion. However, for
N = 64, Running is associated with greater Ĥ than Walking, and the inter-
action effect of locomotion Mode and Surface appears. Both factors show an
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Fig. 6 The effects of locomotion mode and surface on the Hurst exponent,
Ĥ, estimated using DFA wax and wane depending on the stride interval time
series length (see Table 2 for the outcomes of the statistical tests). Each panel

plots the Mean values of Ĥ, estimated using DFA for stride interval time series of length
N = 32, 64, 128, 256, 512, 983. Light blue and light red circles indicate Ĥ values for individual
participants in the respective conditions. Error bars indicate 95% CI across 8 participants.

effect for N = 128, but then the effects of both factors disappear for N = 256.
Then again, for N = 512—the typical recommendation for the application of
DFA in gait analysis [117], Running is associated with greater Ĥ compared to
Walking, and for N = 983, the effect of locomotion surface meets conventional
levels of statistical significance.

These results suggest that DFA, when used with short empirical time series,
increases the likelihood of the Type II error because we failed to find consistent
effects that are present when the time series is long. Therefore, DFA should
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be reasonably accurate based on our simulations. This is problematic from the
perspective of accumulating knowledge in movement science (and other fields)
because such findings do not meet conventional levels of statistical significance
still pervasive in scientific literature irrespective of relentless criticism [118–
122]. We argue that this phenomenon may be more prevalent than previously
thought in studies using the Hurst exponent as a dependent variable, which
could have severe theoretical consequences. The above-described results on
stride interval time series strongly support the idea that adopting the HK
method in favor of DFA could drastically reduce the likelihood of Type II
errors in behavioral sciences where H is a critical dependent variable. On a
more substantive level, we recognize that the HK method produces lower H
values than are typically observed in the gait literature. Whether these specific
results generalize to other contexts is a matter of extensive replication.

4.2 Context 2: Intertap interval time series in a
syncopation task

It has now been well established that the series of time intervals produced in
repetitive tapping also show persistence or long-range correlations in sample-
to-sample variations [123–126]. Instead of being a universally prevalent generic
property of sensory time series, these long-range correlations in taping interval
time series constitute a constant and recognizable characteristic of individuals
performing a specific tapping activity, e.g., synchronizing with pacing signals
of different fractal properties [30, 123, 126–128]. Tapping interval time series
thus offer another empirical test case to compare the performance of the HK
method and DFA.

4.2.1 Methods

Intertap interval time series were collected. Intertap intervals were recorded
as participants pressed the letter “M” on their keyboard at a pace they could
maintain for 1 minute. Participants performed tapping for 8 min in four con-
ditions: three paced conditions: “Persistent,” “Random,” and “Periodic,” and
one without pacing,” “Free.” In paced conditions, participants synchronized
their finger taps to the metronome by pressing the letter “M.” In the Persistent
condition, participants synchronized their tapping to a variable and structured
metronome with interbeat interval time series exhibiting a Hurst’s exponent,
H , of 1.0. In the Random condition, participants synchronized their tapping
to a non-correlated metronome with interbeat interval time series exhibiting
H of 0.5. In the Periodic condition, participants synchronized their taps to an
invariant metronome (i.e., traditional metronome). Finally, in the Free con-
dition, participants pressed the letter “M” at a self-selected pace. The Mean
and SDs of Persistent and Random signals were set equal to each participant’s
preferred tapping characteristics. The Periodic signal period was set equal to
each Participant’s preferred tapping interval. The order of the four conditions
was randomized for each participant.



Springer Nature 2021 LATEX template

Better than DFA 19

The tapping trial was successful if the number of taps in the pacing con-
dition was within 10% of the self-paced condition. Nineteen participants who
fulfilled this criterion in all three pacing conditions were included for further
analysis. Intertap interval time series of lengths N = 32, 64, 128, 256 were sub-
mitted to the HK method and DFA. Intertap interval time series of all four
lengths were shuffled to preserve the probability distribution but destroyed any
temporal correlations and submitted to the HK method and DFA. As opposed
to the original time series expected to yield Ĥ > 0.5. these shuffled time series
were expected to yield an Ĥ value of 0.5, indicating an absence of long-range
correlations.

We utilized LME models using Satterthwaite’s approximation to examine
the effects of the Pacing condition on Ĥ values for the tapping interval time
series estimated using the HK method and DFA. Pacing condition served as
the fixed effect, and Participant identity was included as a random effect. All
mixed-modeling was performed in R [80] using the function lmer() from the
package “nlme” [114] and the function anova() from the package “lmertest”
[115]. Statistical significance was set at the Type I error rate of 5%.

4.2.2 Results

The central tendencies—Mean and Median—of Ĥ for the tapping interval
time series estimated using the HK method, as well as the distribution of Ĥ ,
do not depend on the time series length N , except for N = 32 for which the
HK method yields marginally larger Ĥ (Fig. 7, top). In contrast, while the
Mean and Median Ĥ for tapping interval time series estimated using DFA do
not appear to depend on the time series length N , the Ĥ values show a larger
dispersion around the Mean compared to the counterparts estimates using the
HK method (Fig. 7, bottom). While the Ĥ values estimated using the HK
method lie with the tight bounds of [0, 1], the Ĥ values estimated using DFA
often exceed the upper bound of 1. Another notable distinction is a narrower
range of Ĥ for the shuffled tapping interval time series estimated using the HK
method compared to DFA. Overall, Ĥ of tapping interval time series estimated
using the HK method estimates show smaller dispersion about the central
tendency and are more consistent with the theory of the Hurst exponent.

To investigate the sensitivity of both methods to task constraints, we ana-
lyzed the influence of the Pacing condition on Ĥ values for the tapping interval
estimated using both methods. We performed this modeling separately for
each time series length N = 32, 64, 128, 256.Tables 3 & 4 describe the model
outcomes.
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Fig. 7 The Hurst exponent, Ĥ, for the finger tapping interval time series esti-
mated using the HK method do not depend on the time series length N, but Ĥ

estimated using DFA show a strong dependence on N, resulting in larger Ĥ for
smaller and larger N. The right and the left violin plots represent the distribution of Ĥ
for the original and shuffled tapping interval time series, respectively, estimated using the
HK method (top) and DFA (bottom). Vertical lines represent the interquartile range of the

original Ĥ values, white circles represent the median value of Ĥ, and horizontal lines repre-
sent the Mean value of Ĥ for the original stride interval time series. Horizontal dash-dotted
green and red lines indicate Ĥ = 0.5 and Ĥ = 1, respectively.

Table 3. Outcomes of linear mixed-effects modeling with Satterthwaite’s
approximation for small sample size, examining the influence of the Pacing
condition on the Hurst exponent, Ĥ , estimated using the HK method for the
tapping interval time series of length N = 32, 64, 128, 256.

Mean SqSum Sq DF F P
∗

N = 32

Pacing condition 0.170 0.057 3,57 1.8591 0.147

N = 64

Pacing condition 0.763 0.254 3,76 10.727 < 0.001

N = 128

Pacing condition 0.763 0.254 3,76 19.113 < 0.001

N = 256

Pacing condition 0.532 0.177 3,57 14.787 < 0.001
∗Boldfaced values indicate significant differences at the two-tailed alpha of
0.05.
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Table 4. Outcomes of linear mixed-effects modeling with Satterthwaite’s
approximation for small sample size, examining the influence of the Pacing
condition on the Hurst exponent, Ĥ , estimated using DFA for the tapping
interval time series of length N = 32, 64, 128, 256.

Mean SqSum Sq DF F P
∗

N = 32

Pacing condition 0.763 0.254 3,76 10.727 < 0.001

N = 64

Pacing condition 0.519 0.173 3,76 2.567 0.061

N = 128

Pacing condition 1.355 0.451 3,76 18.774 < 0.001

N = 256

Pacing condition 1.560 0.520 3,76 22.876 < 0.001
∗Boldfaced values indicate significant differences at the two-tailed alpha of
0.05.

The Ĥ values estimated using the HK method differed across the Pacing
conditions for the tapping interval time series of length N = 64, 128, 256 but
not for N = 32 (Fig. 8; Table 3). In other words, the Ĥ values estimated
using the HK method are sensitive to the pacing condition for the tapping
interval time series comprising at least 64 intervals, and this sensitivity is
consistent across progressively longer time series. In contrast, the effect of
the Pacing condition on the Ĥ values estimated using DFA wax and wane
depending on the tapping interval time series length, appearing for N = 32
but disappearing for N = 64 (Fig. 9; Table 4). Hence, the HK method yields
more consistent effects of the different temporal structures of the pacing signal
on the Hurst exponent of tapping intervals in a syncopation task. These results
align with the above results on stride interval time series and strengthen the
argument that DFA increases the likelihood of Type II error and makes an
even more compelling case for adopting the HK method over the age-old DFA
for estimating the Hurst exponent in behavioral sciences.

4.3 Context 3: Reaction time (RT) time series in simple
and choice RT tasks

Reaction time (RT) is a workhorse of cognitive science and many other areas
of psychological science. Often, RTs are collected from many (sometimes
hundreds or thousands) of trials under the assumption that for a given exper-
imental task, there exists a “true” RT that can be extracted from repeated
sampling. The key to that assumption is that variation in RTs reflects inde-
pendent white noise. However, persistence in sample-to-sample variations or
0.5 < H < 1 is not limited to predominantly movement tasks—such as walk-
ing, running, or finger tapping, but tasks involving spatial or temporal interval
estimation also seem to show 1/fα noise unambiguously [129–131]. Simple RT
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Fig. 8 The effects of pacing conditions on the Hurst exponent, Ĥ, estimated
using the HK method do not depend on the tapping interval time series length
(see Table 2 for the outcomes of the statistical tests). Each panel plots the Mean

values of Ĥ, estimated using the HK method for the tapping interval time series of length
N = 32, 64, 128, 256, 512, 983. Light blue circles indicate Ĥ values for individual participants.
Error bars indicate 95% CI across 19 participants.

tasks and choice RT tasks, such as lexical decision-making, also seem to pro-
vide unambiguous information about the state of the physiological system in
that the RT time series in these tasks also yields 0.5 < H < 1 [28, 31, 131–133].
Therefore, we also compare the performance of the HK method and DFA using
RTs from three tasks (a simple RT, a forced-choice RT, and time estimation
task), all conducted in a similar experimental format.

4.3.1 Methods

RT time series were reanalyzed from a published study [131]. Six healthy adults
responded to the Arabic digits 1, 2, 3, 4, 6, 7, 8, and 9 displayed on a computer
screen. The experimental phase consisted of 1024 stimuli after 24 practice stim-
uli, with each stimulus appearing equally frequently in a randomized order for
each task and participant. Each participant completed three tasks: (i) simple
RT, in which they pressed the “?/” key with their right index finger imme-
diately after detecting the stimulus. In addition to instructing participants to
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Fig. 9 The effects of pacing condition on the Hurst exponent, Ĥ, estimated
using DFA wax and wane depending on the tapping interval time series length
(see Table 4 for the outcomes of the statistical tests). Each panel plots the

Mean values of Ĥ, estimated using DFA for the tapping interval time series of length
N = 32, 64, 128, 256, 512, 983. Light blue circles indicate Ĥ values for individual participants.
Error bars indicate 95% CI across 19 participants.

avoid anticipations, feedback “TOO FAST” was presented for two seconds fol-
lowing responses < 100 ms to prevent anticipatory responding (e.g., [134]). (ii)
Choice RT, in which they pressed the “?/” key with their right index finger in
response to an even number and pressed the “z” key in response to an odd num-
ber, “as fast as possible without making errors.” (iii) one second time interval
estimation, in which participants pressed the “?/” key with their right index
finger to mark an estimated time interval of one second after each stimulus
was presented. The task order was counterbalanced across participants.

Each task (i.e., Simple RT, Choice RT, and time interval Generation) was
performed with a relatively short response-stimulus interval (RSI) and a Long
RSI, yielding a total of 3 tasks × 2 RSI = six sessions conducted on different
days. One set of RSIs was randomly drawn from a uniform distribution that
extended from 200 ms to 600 ms, and the set of long RSIs was obtained by
adding a constant 600 ms to the set of short RSIs, and hence the long RSIs
varied between 800 ms and 1200 ms. The order of the RSIs was randomized for
each task and participant. The experiment—aimed at collecting RT time series
of length N = 1024—yielded RT time series with a minimum length N = 1020.
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RT time series of lengths N = 32, 64, 128, 256, 512, 1020 were submitted to
the HK method and DFA. RT time series of all four lengths were shuffled to
preserve the probability distribution but destroyed any temporal correlations
and submitted to the HK method and DFA. As opposed to the original time
series expected to yield Ĥ > 0.5. these shuffled time series were expected to
yield an Ĥ value of 0.5, indicating an absence of long-range correlations.

We utilized LME models using Satterthwaite’s approximation to examine
the effects of Task and RSI on Ĥ values estimated using both methods. Pacing
condition served as the fixed effect, and Participant identity served as the ran-
dom effect. Task (Simple RT vs. Choice RT vs. Generation) and RSI (Short vs.
Long), along with their interactions, served as three fixed effects, and Partici-
pant identity served as the random effect. All mixed-modeling was performed
in R [80] using the function lmer() from the package “nlme” [114] and the
function anova() from the package “lmertest” [115]. Statistical significance
was set at the Type I error rate of 5%.

4.3.2 Results

The central tendencies—Mean and Median—of Ĥ for RT time series esti-
mated using the HK method, as well as the distribution of Ĥ , do not depend
on the time series length N , showing only marginal dependence of the dis-
tribution of Ĥ on N (Fig. 10, top). In contrast, while the Mean and
Median Ĥ for the RT time series estimated using DFA do not differ among
N = 64, 128, 512, 1024, the values are visibly greater for N = 32 and smaller
for N = 256 (Fig. 10, bottom). Furthermore, while the Ĥ values estimated
using the HK method lie with the tight bounds of [0, 1], the Ĥ values esti-
mated using the DFA frequently exceed the upper bound of 1, especially for
short time series. Another notable distinction is a narrower range of Ĥ for the
shuffled RT time series estimated using the HK method compared to the DFA.
Overall, and similar to the results above, the HK method estimates Ĥ that
show smaller dispersion about the central tendency and lesser dependence on
the length of the RT time series.

To investigate the sensitivity of both methods to task constraints, we ana-
lyzed the influence of the Task and RSI on Ĥ on Ĥ values for the tapping
interval estimated using both methods. We performed this modeling separately
for each time series length N = 32, 64, 128, 256. Tables 5 & 6 describe the
model outcomes.

Time interval generation is associated with greater Ĥ (i.e., stronger long-
range correlations in sample-to-sample variations) compared to simple RT and
choice RT, and RSI shows significant interaction with the task (Fig. 13). Fur-
thermore, these effects of Task and Task × RSI interaction remain consistent
across all values of N (32, 64, 128, 256, 512, 1020; Table 5), suggesting that
the HK method is sensitive to task constraints for RT time series as short as
32 RTs. This result dovetails with what we found in the stride interval time
series and tapping interval time series reported above.
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Fig. 10 The Hurst exponent, Ĥ, for the response-stimulus interval time series
estimated using the HK method do not depend on the time series length N, but
Ĥ estimated using DFA show a strong dependence on N, resulting in larger Ĥ

for smaller and larger N. The right and the left violin plots represent the distribution of
Ĥ for the original and shuffled response-stimulus interval time series, respectively, estimated
using the HK method (top) and DFA (bottom). Vertical lines represent the interquartile

range of the original Ĥ values, white circles represent the median value of Ĥ, and horizontal
lines represent the Mean value of Ĥ for the original stride interval time series. Horizontal
dash-dotted green and red lines indicate Ĥ = 0.5 and Ĥ = 1, respectively.
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Table 5. Outcomes of linear mixed-effects modeling with Satterthwaite’s
approximation for small sample size, examining the influence of Task and RSI
on the Hurst exponent, Ĥ , estimated using the HK method for the RT time
series of length N = 32, 64, 128, 256, 512, 983.

Mean SqSum Sq DF F P
∗

N = 32

Task 0.228 0.114 2,36 11.634 < 0.001

RSI 0.031 0.031 1,36 3.202 0.082
Task × RSI 0.232 0.116 2,36 11.840 < 0.001

N = 64

Task 0.226 0.113 2,36 11.913 < 0.001

RSI 0.005 0.005 1,36 0.554 0.462

Task × RSI 0.257 0.128 2,36 13.501 < 0.001

N = 128

Task 0.145 0.073 2,36 9.826 < 0.001

RSI 0.022 0.022 1,36 3.039 0.090
Task × RSI 0.318 0.159 2,36 21.538 < 0.001

N = 256

Task 0.061 0.030 2,36 5.985 0.006

RSI 0.012 0.012 1,36 2.342 0.135
Task × RSI 0.258 0.129 2,36 25.337 < 0.001

N = 512

Task 0.088 0.044 2,30 10.154 < 0.001

RSI 0.002 0.002 1,30 0.470 0.498
Task × 0.181 0.091 2,30 20.990 < 0.001

N = 1020

Task 0.088 0.044 2,36 14.371 < 0.001

RSI 0.001 0.001 1,36 0.414 0.5241

Task × RSI 0.164 0.082 2,36 26.747 < 0.001
∗Boldfaced values indicate significant differences at the two-tailed alpha of
0.05.
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Table 6. Outcomes of linear mixed-effects modeling with Satterthwaite’s
approximation for small sample size, examining the influence of Task and RSI
on the Hurst exponent, Ĥ , estimated using DFA for the RT time series of
length N = 32, 64, 128, 256, 512, 983.

Mean SqSum Sq DF F P
∗

N = 32

Task 0.282 0.141 2,36 2.287 0.116
RSI 0.028 0.028 1,36 0.451 0.506
Task × RSI 0.390 0.195 2,36 3.169 0.054

N = 64

Task 0.388 0.194 2,36 9.529 < 0.001

RSI 0.028 0.028 1,36 1.384 0.247

Task × RSI 0.226 0.113 2,36 5.549 0.008

N = 128

Task 0.125 0.062 2,36 3.189 0.053

RSI 0.041 0.041 1,36 2.103 0.156
Task × RSI 0.321 0.160 2,36 8.205 0.001

N = 256

Task 0.157 0.079 2,36 5.538 0.008

RSI 0.003 0.003 1,36 0.243 0.625
Task × RSI 0.249 0.124 2,36 8.752 0.001

N = 512

Task 0.194 0.097 2,36 6.628 0.004

RSI 0.035 0.035 1,36 2.398 0.130
Task × RSI 0.131 0.065 2,36 4.465 0.019

N = 1020

Task 0.159 0.080 2,30 5.618 0.008

RSI 0.044 0.044 1,30 3.113 0.088

Task × RSI 0.208 0.104 2,30 7.354 0.003
∗Boldfaced values indicate significant differences at the two-tailed alpha of
0.05.

In contrast to the HK method, the effects of task constraints Ĥ estimated
using the DFA again vary as a function of RT time series length (Fig. 14;
Table 6). For N = 32, the Ĥ values neither varied with Task nor with RSI.
For N = 128, neither Task nor RSI affects the Ĥ values estimated using
the DFA, but the two factors show a significant interaction effect. For N =
64, 256, 512, 1020, the Ĥ values estimated using DFA show similar sensitivity
to the task constraints as do the Ĥ values estimated using the HK method.

These results further support our proposition that adopting the HK
method might reduce the likelihood of the Type II error in not being able
to find an actual effect of task constraints on the Hurst exponent when it
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Fig. 11 The effects of Task and RSI on the Hurst exponent, Ĥ, estimated using
the HK method do not depend on the response-stimulus interval time series
length (see Table 5 for the outcomes of the statistical tests). Each panel plots the

Mean values of Ĥ, estimated using the HK method for the response-stimulus interval time
series of length N = 32, 64, 128, 256, 512, 1020. Light blue and light red circles indicate Ĥ

values for individual participants in the respective conditions. Error bars indicate 95% CI
across 6 participants.

exists—irrespective of whether the task is predominantly motor (e.g., walking,
running) or predominantly cognitive (e.g., simple RT, complex RT).

4.4 Context 4: RT time series in a listening task

The above examples of stride interval time series, tapping interval time series,
and RT time series illustrate that the HK method reduces the likelihood of
Type II error when comparing the Hurst exponent across task constraints
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Fig. 12 The effects of Task and RSI on the Hurst exponent, Ĥ, estimated using
DFA wax and wane depending on the response-stimulus interval time series
length (see Table 6 for the outcomes of the statistical tests). Each panel plots the

Mean values of Ĥ , estimated using DFA for the response-stimulus interval time series of
length N = 32, 64, 128, 256, 512, 1020. Light blue and light red circles indicate Ĥ values for
individual participants in the respective conditions. Error bars indicate 95% CI across 6
participants.

from multiple measurement modalities and settings, ranging from gross and
fine motor tasks to classic cognitive/psychological experiments. However, other
things equal, Types I and II errors are inversely related [135–138], raising the
possibility that the HK method might increase the likelihood of Type I error,
i.e., increasing the likelihood of finding the effect of an independent factor
when it does not exist. To investigate whether this is the case, we analyzed
an RT time series dataset in which the H values estimated using DFA did not
differ as a function of task constraints.
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4.4.1 Methods

RT time series were reanalyzed from a published study [139]. Data was
collected on twenty adults (nine men and eleven women, M ± SD age =
20.10 ± 1.29 years) after obtaining informed consent. Participants were ran-
domly assigned to hear the voice of either an adult woman or Acapela’s U.S.
English text-to-speech female voice “Sharon” (Acapela Inc., Mons, Belgium),
using the iPad app “Voice Dream.” They both produced speech recordings
of 2,027 words from The Atlantic article “Torching the Modern-Day Library
of Alexandria.” Also, they both produced words interspersed with pauses to
allow parsing.

E-Prime software (Psychology Software Tools Inc., Pittsburgh, PA) pre-
sented audio recordings of each word in its original sequence through head-
phones. Participants sat at an E-Prime-ready computer and were instructed:
“Listen to the audio stimuli and press the spacebar after you feel as though you
have understood the word you just heard. Try to pay attention to the passage
because comprehension and word-memory questions will be asked at the end
of the experiment. However, if you miss a word, do not worry and continue to
move on because you cannot go back.” When the spacebar was released, a word
recording played. The following word may be heard by pressing the spacebar
once more, either during or after the recording playback, allowing participants
to skip the entire word in favor of the subsequent one. E-Prime measured
the RT in ms from the beginning of each word until the succeeding button
press. The experiment yielded RT time series of lengths N = 2027 and 2025
in human speech and text-to-speech conditions, respectively. RT time series of
lengths N = 32, 64, 128, 256, 512, 1024 were submitted to the HK method and
DFA. Intertap interval time series of all six lengths were shuffled to preserve
the probability distribution but destroyed any temporal correlations and sub-
mitted to the HK method and DFA. As opposed to the original time series
expected to yield Ĥ > 0.5. these shuffled time series were expected to yield an
Ĥ value of 0.5, indicating an absence of long-range correlations.

We utilized independent samples t-tests to examine the effects of Speech
(Human speaker vs. Text-to-speech synthesizer) on Ĥ values estimated using
both methods. All tests were performed in R [80] using the function t.test().
Statistical significance was set at the Type I error rate of 5%.

4.4.2 Results

The central tendencies—Mean and Median—of Ĥ for RT time series in the
listening task estimated using the HK method, as well as the width of the
distribution of Ĥ , show a marginal reduction with the time series length N
(Fig. 13, top). In contrast, the Mean and Median Ĥ for RT time series
estimated using DFA show a strong dependence on N , resulting in larger Ĥ
for smaller and larger N (Fig. 13, bottom). Furthermore, while the Ĥ values
estimated using the HK method lie with the tight bounds of [0, 1], the Ĥ values
estimated using the DFA frequently exceed the upper bound of 1, especially
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Fig. 13 The Hurst exponent, Ĥ, for reaction time series estimated using the
HK method do not depend on the time series length N, but Ĥ estimated using
DFA show a strong dependence on N, resulting in larger Ĥ for smaller and
larger N. The right and the left violin plots represent the distribution of Ĥ for the original
and shuffled stride interval time series, respectively, estimated using the HK method (top)

and DFA (bottom). Vertical lines represent the interquartile range of the original Ĥ values,

white circles represent the median value of Ĥ, and horizontal lines represent the Mean value
of Ĥ for the original stride interval time series. Horizontal dash-dotted green and red lines
indicate Ĥ = 0.5 and Ĥ = 1, respectively.

for short time series. Another notable distinction is a visibly narrower range of
Ĥ for the shuffled RT time series estimated using the HK method compared
to DFA. As we observed in the above-discussed examples, the HK method
estimates Ĥ that show smaller dispersion about the central tendency and lesser
dependence on the length of the RT time series.

To investigate whether the high task sensitivity of the Hurst exponent
estimated using the HK method—as shown in the above-described examples—
can result in a Type I error, we next analyzed examine the effects of Speech
on Ĥ values estimated using both the HK method and DFA. We submit-
ted the Ĥ values estimated using both methods to independent samples
t-tests. We performed these tests separately for each time series length N =
32, 64, 128, 256, 512, 1024.

For each time series length, the H values measuring the strength
of persistence in RT time series in the listening task do not differ
between participants listening to the Human speaker and the Text-to-
speech synthesizer, irrespective of whether these were estimated using
the HK method (t9 = −0.728,−0.941,−0.649,−0.518,−0.434,−0.425,
p = 0.485, 0.371, 0.533, 0.617, 0.675, 0.681 for N = 32, 64, 128, 256, 512, 1024,
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Fig. 14 The effect of the speaker—human vs. text-to-speech (TTS)
synthesizer—on the Hurst exponent, Ĥ, estimated using the HK method and
DFA does not depend on the reaction time series length. Each panel plots the Mean

values of Ĥ, estimated using the HK method and DFA for reaction time series of length
N = 32, 64, 128, 256, 512, 983. Light blue and light red circles indicate Ĥ values for individual
participants in the respective conditions. Error bars indicate 95% CI across 10 participants.

respectively) or the DFA (t9 = 0.580,−1.124,−1.765,−1.640,−1.486,−0.967,
p = 0.576, 0.290, 0.111, 0.135, 0.171, 0.359 for N = 32, 64, 128, 256, 512, 1024,
respectively; Fig. 14). These results suggest that the HK method balances
Type I and Type II errors. Furthermore, the method reduces the likelihood of
the Type II error by not missing an effect of an independent factor when it
exists—as illustrated by our results on stride interval time series and RT series
in simple and choice RT tasks, without increasing the likelihood of the Type I
error by finding an effect of an independent factor when it does not exist—as
illustrated by this example.
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5 Discussion

We compared the performance of two methods of fractal analysis—the cur-
rent gold standard, DFA, and a Bayesian approach that is not well-known in
behavioral sciences: the Hurst-Kolmogorov (HK) method—in estimating the
Hurst exponent of synthetic and multiple empirical time series. Simulations
demonstrate that the HK method consistently outperforms the DFA in three
critical ways: the HK method (i) accurately assesses long-range correlations
when the measurement time series is short, (ii) shows minimal dispersion about
the central tendency, and (iii) yields a point estimate that does not depend on
the length of the measurement time series or its underlying Hurst exponent.
Comparing the two methods using empirical time series from multiple settings
further supports those findings.

The practical limitations of DFA (e.g., N ≥ 500) is a significant draw-
back across the board in basic, applied, and clinical areas of science [67].
From a fundamental science perspective, experiments are often constructed to
obtain long sequences of measurements (e.g., RTs, stride intervals, heartbeats).
Those experimental designs are slow to collect, create physical and cognitive
burdens for participants, and potentially confound with fatigue. Additionally,
assessing the immediate influence of experimentally induced perturbations is
often desirable. However, a requirement for long time series makes it difficult
to determine whether observed dynamics result from immediate reaction or
longer-term learning. These concerns amplify in applied and clinical domains
concerned with real-time monitoring and quick clinical assessments. We show
that the HK method might help bypass these limitations because the method
estimates the Hurst exponent with reasonable accuracy for time series as short
as 64 samples. Specifically, we found that the Hurst exponent yielded by the
HK method closely matches the a priori known Hurst exponent of synthetic
time series as short as 64 samples. In contrast, DFA consistently overestimates
the Hurst exponent for short time series and for time series with large actual
Hurst exponent. Furthermore, while the difference in performance tends to
shrink with increasing time series length, the HK method consistently out-
performed DFA, producing a notably smaller error in estimating the Hurst
exponent even for time series as long as 1052 samples.

Numerous authors have noted that DFA produces a large dispersion around
the Mean estimate of the Hurst exponent and that this dispersion increases
with the actual Hurst exponent and decreases with the time series length [65–
70], factors that may severely limit the reproducibility of research findings.
Alterations to the DFA algorithm, for instance, the evenly spacing algorithm
used in our simulations and subsequent analyses, reduce the dispersion around
the Mean by as much as 36% [65]. Our simulations show that the HK method
can estimate H with almost no dispersion around the Mean estimate for time
series as short as 64 samples. Even for time series of just 32 samples, the disper-
sion is negligible, as opposed to considerable dispersion in the Hurst exponent
estimated by DFA. Hence, the HK method confers substantial benefits over
the traditional DFA by increasing estimates’ consistency—a critical feature
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when using the Hurst exponent as a biomarker in clinical applications wherein
the objective is to differentiate between groups (e.g., healthy vs. pathological
individuals).

Finally, the present results provide irrefutable evidence that while DFA is
precariously sensitive to the time series length—as has been known for long
[66, 73], the HK method yields consistent values of the Hurst exponent irre-
spective of the time series length. For instance, in one study [67], the Hurst
exponent derived from the first 150 strides of the 15-min walking experiment
did not match the Hurst exponent from the entire 15-min trial. We also found
comparable trends with the Hurst exponent estimated by DFA for empirical
data on stride-to-stride variations for walking and running both on the tread-
mill and the overground surface, but the Hurst exponent estimated by the HK
method remained consistent across different lengths taken from the empirical
time series.

Empirical data poses several issues that might influence the accuracy
and dispersion in the estimation of the Hurst exponent, such as trends
[56, 140, 141], nonstationarity [140, 142], nonlinearity [55], and the Hurst
exponent being larger than one [60, 143–145]. Therefore, multiple efforts have
been made to tailor the DFA algorithm to make it more suitable for empir-
ical data showing one or more of these issues [58, 146–151]. Future studies
could investigate how the HK method is sensitive to the presence of either
one or a combination of strong trends, nonstationarity, nonlinearity, and
larger-than-oneH . Our research team is currently involved in all those aspects.

6 Conclusion

The purpose of the work presented above was to compare the HK method
and DFA in several contexts relevant to behavioral scientists interested in
time series analysis. Without variation, simulation results showed that the
HK method bypasses many of the known limitations of DFA; it (i) accurately
assesses long-range correlations when the measurement time series is short,
(ii) shows minimal dispersion about the central tendency, and (iii) yields a
point estimate that does not depend on the length of the measurement time
series or its underlying Hurst exponent. In contrast, our results also show that
the DFA results applied to brief measurement time series (N ≤ 500 should
be interpreted with caution. As a general conclusion, the HK method out-
performs DFA in many ways, encouraging its systematic application to assess
the strength of long-range correlations in empirical time series in behavioral
sciences.
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