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Abstract

Members of the GATA family of transcription factors play key roles in the dif-

ferentiation of specific cell lineages by regulating the expression of target

genes. Three GATA factors play distinct roles in hematopoietic differentiation.

In order to better understand how these GATA factors function to regulate

genes throughout the genome, we are studying the epigenomic and transcrip-

tional landscapes of hematopoietic cells in a model-driven, integrative fashion.

We have formed the collaborative multi-lab VISION project to conduct ValI-

dated Systematic IntegratiON of epigenomic data in mouse and human hema-

topoiesis. The epigenomic data included nuclease accessibility in chromatin,

CTCF occupancy, and histone H3 modifications for 20 cell types covering

hematopoietic stem cells, multilineage progenitor cells, and mature cells across

the blood cell lineages of mouse. The analysis used the Integrative and Dis-

criminative Epigenome Annotation System (IDEAS), which learns all common

Abbreviations: ATAC-seq, Assay for Transposase-Accessible Chromatin using sequencing; B, lymphoid B cells; cCRE, candidate cis-regulatory
element; CFUE, colony-forming units erythroid; CFUMk, colony-forming units megakaryocytic; ChIP-seq, Chromatin ImmunoPrecipitation assayed
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a model for GATA1-dependent erythroid maturation; GMP, granulocyte monocyte progenitor cell population; GTEx, Genotype and Tissue Expression
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H3 trimethylated on lysine 4, associated with promoters; H3K9me3, Histone H3 trimethylated on lysine 9, associated with heterochromatin;
H3K27ac, Histone H3 acetylated on lysine 27, associated with active regulatory elements; H3K27me3, Histone H3 trimethylated on lysine 27,
associated with transcriptional repression; H3K36me3, Histone H3 trimethylated on lysine 36, associated with transcriptional elongation; Hi-C,
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combinations of features (epigenetic states) simultaneously in two

dimensions—along chromosomes and across cell types. The result is a segmen-

tation that effectively paints the regulatory landscape in readily interpretable

views, revealing constitutively active or silent loci as well as the loci specifi-

cally induced or repressed in each stage and lineage. Nuclease accessible DNA

segments in active chromatin states were designated candidate cis-regulatory

elements in each cell type, providing one of the most comprehensive registries

of candidate hematopoietic regulatory elements to date. Applications of

VISION resources are illustrated for the regulation of genes encoding GATA1,

GATA2, GATA3, and Ikaros. VISION resources are freely available from our

website http://usevision.org.
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1 | INTRODUCTION

A person's genetic profile can have a significant impact on
complex traits such as disease susceptibility and response
to specific treatments. Genome-wide association studies
(GWASs) have mapped loci at which a common genetic
variation is associated with complex traits, but the mecha-
nistic connection between genotype and phenotype is
rarely understood. This is because most trait-associated
genetic variants are not in the 1–2% of the genome that
encodes mRNA, but rather in a much larger noncoding
genome.1 Although no DNA-based grammar has been
developed yet to interpret these noncoding variants,2 the
fact that they are highly enriched in chromatin with epige-
netic features associated with gene regulatory elements
offers new avenues to understanding their impact on
phenotypes.3–5 Efforts to harvest GWAS results for poten-
tial medical application have led to the concept of preci-
sion medicine, in which a person's genotype is used to
improve lifestyle choices and develop therapeutic interven-
tions specifically for that person.6 However, precision med-
icine requires more than genotypes and associations.
Precision medicine needs a thorough understanding of the
epigenome to interpret the large majority of trait-
associated genetic variants that lie outside coding regions.

The problem we address is how to utilize the enor-
mous amounts of emerging epigenetic data effectively
both for basic research and precision medicine. Powered
by advances in sequencing technologies, biochemical
reagents, and bioinformatic analyses, many laboratories
and large consortia, such as ENCODE,4 Roadmap
Epigenome Project,7 GTEx,8 BluePrint,9,10 and IHEC11)

are determining transcriptome profiles and producing
genome-wide views of the regulatory landscape.12 At this
point, data acquisition may no longer be the major bar-
rier to understand the mechanisms of gene regulation
during normal and pathological development. In fact, the
volume of data produced is already overwhelming for
most investigators. We seek to understand how epige-
netic features regulate differentiation and how that regu-
lation is altered in disease. Major challenges include the
integration of epigenetic data in terms that are accessible
and understandable to a broad community of researchers,
building validated quantitative models explaining how
changes in epigenetic features affect the dynamics of
gene expression across differentiation and translation of
the information effectively from mouse models to poten-
tial applications in human health.

Consider any genetic locus implicated in develop-
ment, differentiation, behavior, or disease. Investigators
may want to study the regulation of expression of gene(s)
in that locus, for example, to understand how genetic var-
iants could affect its expression. This investigation could
be greatly facilitated by abundant genome-wide data sets
on multiple epigenetic features. Currently, to utilize such
information, an investigator would examine epigenetic
data around this locus in web-based genome browsers
and databases. These resources are useful, but they do
not cover all the relevant aspects of chromatin structure,
dynamics, and expression. After finding the available
data, the investigator will need to analyze the results to
predict candidate cis-regulatory elements (cCREs),
including enhancers, silencers, or insulators. While pro-
gress continues to be made in the predicting cCREs,
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issues of completeness (how sensitive are the cCREs for
discovering true regulatory elements?) and specificity
(how likely is it that the cCREs are true regulatory ele-
ments?) are actively debated. Developing more useful col-
lections or registries of high-quality cCREs is a major
current need in functional genomics.

We have formed an interdisciplinary collaborative
team to address these needs via ValIdated Systematic
IntegratiON of epigenomic data (VISION) to analyze
and interpret molecular mechanisms regulating hemato-
poiesis in mouse and human. We are consolidating hun-
dreds of epigenomic data sets and applying integrative
approaches to generate robust candidate functional
assignments to DNA segments. These assignments,
coupled with gene target predictions and results of
genome editing experiments, are the input to machine-
learning approaches that generate quantitative models
for how each candidate CRE contributes to the regulation
of its target gene. Importantly, these models will be rigor-
ously tested and validated by targeted genome editing in
reference loci and then applied genome wide. Further-
more, we are developing resources to enable more accu-
rate translation of regulatory insights between mouse
and human. The results from our project will inform
investigators about candidate CREs and their predicted
roles in regulating their loci of interest, thus enabling
them to design model-driven experiments to deepen their
understanding of the investigated process.

In this concise review, we focus on our efforts to inte-
grate the large amount of genome-wide information on
epigenetic features and transcriptomes in a systematic
manner to assign chromatin states across hematopoietic
cells and predict cCREs. These resources are illustrated
with respect to the GATA factors, both the genes
encoding them and the binding patterns of the proteins
in erythroid and lymphoid T cells. A further examination
of the Ikzf1 gene encoding the Ikaros transcription factor
illustrates the power of our integrative approaches to
deduce data-driven hypotheses about differential regula-
tion of gene expression in hematopoiesis.

2 | COMPILE AND DETERMINE
EPIGENETIC FEATURES AND
TRANSCRIPT LEVELS ACROSS
HEMATOPOIETIC
DIFFERENTIATION

Over the past decade, the amount of information about
gene expression levels and epigenetic regulatory land-
scapes in mammalian hematopoietic cells has increased
exponentially, both through the work of individual
laboratories13–27 as well as the work of major consortia

such as ENCODE and Blueprint. These data currently
are provided in differing formats from diverse resources,
with no common data processing or analysis, for exam-
ple, to find significant peaks of signals. Our first step in
the VISION project was to compile the data sets, process
the data in a consistent manner, and provide the data in
a manner enabling investigators to find all relevant
information.

Building on resources independently developed in lab-
oratories within the VISION project, we have established
a distributed data network to enhance accessibility and
develop a unified interface to the users. The CODEX
resource, developed by the Gottgens group, maintains a
compendium of next-generation sequencing data sets per-
taining to transcriptional programs of mouse and human
blood development.28 The compendium currently con-
tains over 1,700 publicly available data sets, all uniformly
processed to facilitate comparisons across data sets.
CODEX contains ChIP-seq, DNase-seq, and RNA-seq data
sets, which are available as signal tracks, mapped
sequence files, peak calls, and transcript levels for the
RNA-seq. The CODEX website also provides a number of
analysis tools including correlation analysis, sequence
motif discovery, analysis of overrepresented gene sets, and
comparisons between mouse and human. The SBR-Blood
resource, developed by the Bodine lab, has compiled
expression data, ChIP-seq, and Methyl-seq data for mouse
and human hematopoietic cells (990 data sets), including
normalizations across disparate data sets.29 Both of these
resources feed into the VISION project, which provides
raw and normalized data sets selected to cover specific
groups of features in mouse and human hematopoiesis,
segmentations by integrative modeling (see below), and
catalogs of cCREs, among other resources, on the website
http://usevision.org. This website includes a link to a
genome browser with epigenetic and expression data sets
during hematopoiesis as well as the 3D Genome
Browser developed by the Yue lab.30 In addition to the
effort to compile and analyze existing data, new data are
being generated both within the VISION project and in
other laboratories that expand the coverage of epigenetic
features across cell types and bring in data sets on new
transcription factors or co-factors.

Our initial efforts were in mouse hematopoiesis
because of the large number of epigenomic and trans-
criptomic data sets that were available in both primary
maturing cells (exemplary references at the beginning of
this section) and in the multilineage progenitors to blood
cells.31 In addition, epigenomic data were included from
selected cell lines that have been used extensively as
models for multilineage myeloid cells (HPC7 cells32) and
for GATA1-dependent erythroid maturation (G1E and
G1E-ER4 cells33). The cell populations investigated have
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traditionally been viewed in a simple hierarchy
(Figure 1a). Recent studies, especially of single cell trans-
criptomes, have revealed much greater complexity along
with additional intermediate cells.34 However, the simple
hierarchy used here serves as a useful organizing struc-
ture for considering relationships among the interrogated
cell types. For assignments to chromatin states, we
focused on nuclease accessibility of chromatin, as deter-
mined by DNase-seq35 or ATAC-seq36 binding by the
structural protein CTCF, and posttranslational modifica-
tions of histone H3 N-terminal tails37 associated with
enhancers (H3K4me1), promoters (H3K4me3), active
enhancers and promoters (H3K27ac), transcriptional
elongation (H3K36me3), polycomb repression
(H3K27me3), or heterochromatic repression (H3K9me3).
For some cell types, all these features were determined
(Figure 1b). Notably, the remaining cell types were miss-
ing data on multiple features. We stress that this problem
with missing data is not unique to our work, but rather it
is commonly seen in all large-scale analyses including

Roadmap, ENCODE, and Blueprint. We suggest that the
approach developed in VISION (see later) will be broadly
useful in any setting with missing data. Estimates of tran-
scription levels were available from RNA-seq in all the
investigated cell types.

3 | SYSTEMATICALLY LEARN
AND ASSIGN EPIGENETIC STATES
ACROSS CELL TYPES

The large numbers of interrelated epigenetic data sets
described above present immense opportunities for under-
standing differential gene regulation if these data can be
integrated into robust annotation of likely functional
DNA. A key challenge is to build quantitative models
explaining how the dynamics of epigenomes across many
cell types lead to gene expression changes and phenotypic
diversity.4,38 A current approach for describing epigenetic
landscapes is genome segmentation,39,40 which assigns
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FIGURE 1 Mouse hematopoietic cell types and genome-wide data sets used in integrative analysis in the VISION project. (a) The
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progenitor cell population; ERY, erythroblasts; G1E and ER4, cell lines that serve as a model for GATA1-dependent erythroid maturation;

GMP, granulocyte monocyte progenitor cell population; HPC7, cell line that serves as a model of a multipotent myeloid progenitor cell;
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states to genomic segments exhibiting unique patterns of
chromatin marks. Existing genome segmentation
tools39–42 were developed primarily for segmenting the
epigenomes of single cell types. Although genomes from
different cell types may be concatenated together, such an
approach ignores the position-specific epigenetic events
conserved across related cell types. We have used the
IDEAS method (Integrative and Discriminative
Epigenome Annotation System) for two-dimensional seg-
mentation along chromosomes and across cell types
because of its improved accuracy and consistency in assig-
ning epigenetic states.43,44 This method uses a Bayesian
model to approximate quantitative data distributions
without signal binarization. It also utilizes Bayesian tech-
niques to automatically determine the best model sizes,
including the number of states.

Importantly, the statistical framework for IDEAS
allows it to assign likely epigenetic states to cell types
based on the data distributions for signals across cell
types. Thus, even if particular features have not been
determined in a cell type, the system can still assign a
likely state based on the known signals in other locally
related cell types. This model-based inference of states
has better performance than current data imputation pro-
cedures.45 As noted above (Figure 1b), many of the cell
types of interest did not have data on all features, but we
were able to utilize this ability of IDEAS to produce seg-
mentations despite missing data to generate informative
segmentations across all the cell types examined.

The IDEAS segmentation method is analogous to
integration by mixing. One can consider the signal track

for each epigenetic feature as a signal with a distinctive
color, as illustrated in Figure 2 with deep red for DNase-
seq, purple for CTCF, and so on. An intuitive way to inte-
grate the eight tracks of information is simply by mixing,
for example, by merging all the colored tracks into one.
That approach does bring out some aspects of the com-
bined features, such as CTCF and nuclease accessibility
50 to Zfpm1 and a mix of K4 monomethylation and K36
trimethylation of H3 through the body of the gene. How-
ever, the mixing can also blend too many colors together
to distinguish clear states, such as around the transcrip-
tion start site (TSS) and the region around the 30 end of
Zfpm1. The systematic integration by segmentation can
be thought of as a principled, objective way to find well-
defined, discrete combinations of features that occur fre-
quently throughout the epigenomes examined (the epige-
netic states). Each genomic segment is then assigned to
the one state that best matches the known (or inferred)
epigenetic signals in each cell type. Thus, the IDEAS
track below “merge tracks” gives a principled resolution
of the mixtures of the epigenetic features.

For the eight epigenetic features across 20 mouse
hematopoietic cell types, IDEAS generated a 27-state
model (Figure 3). Each state was defined by a quantita-
tive profile of signal strengths from the features, illus-
trated by the heat map. Each of the eight features was
assigned a color, and these were used in turn to establish
automatically a color for each state based on the contri-
bution of each feature to that state. Thus, the several
promoter-like states were colored in various shades of
red, the enhancer-like states were given yellow to orange
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colors, CTCF-containing states had purple colors, tran-
scribed states were colored in states of green, states asso-
ciated with polycomb repression were blue, and the
heterochromatic state was gray. The most frequently
occurring state (state 0) was a quiescent state, with very
low signal for each of the eight features. Many of these
combinations of features have been described previously,
and the segmentation provided a systematic means to
identify those combinations as states that are assigned
consistently across cell types. The IDEAS states also gave
a discrete set of several promoter-associated or enhancer-
associated states, which can be further examined experi-
mentally for functional roles.

The epigenomic data were determined in many differ-
ent laboratories at different times, with systematic differ-
ences in protocols, sequencing depths, and other factors
that could impact the integrative analysis. Thus, consis-
tency in data processing and appropriate normalization
of the data were also key components of the IDEAS seg-
mentation pipeline. More complete descriptions of the
approaches developed and utilized are given else-
where.46,47 The impact of normalization is illustrated in

Figure 2. The upper tracks of individual features show
the raw numbers of reads mapped to DNA intervals for
one of two replicates, all set to the same scale. However,
after normalizing to adjust for differences in sequencing
depth and in the signal-to-noise ratio, the H3K27me3 sig-
nal was boosted such that it drove the assignment of
some DNA segments at the left end of the diagram to the
polycomb repressed (blue) state.

The accuracy and effectiveness of the IDEAS seg-
mentation can be evaluated by comparison to orthogo-
nal data that provides an alternative view of the
functions implied by the segmentation. Specifically, we
examined the binding patterns of GATA transcription
factors known to regulate gene expression in different
hematopoietic lineages. The transcription factors
GATA1, GATA2, and GATA3 have been strongly associ-
ated with enhancers and transcriptional switches in ery-
throid, myeloid progenitor cells, and lymphoid cells,
respectively.48 Thus, one may expect the enhancer-like
states in the Zfpm1 gene in erythroblasts to be bound by
GATA1. Indeed, the ChIP-seq pattern for GATA1 coin-
cided well with those states (orange in the IDEAS track,
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Figure 2). Moreover, these enhancer-like states were co-
bound by the transcription factor TAL1 in erythroblasts
(Figure 2). This co-binding by GATA1 and TAL1 has
been strongly associated with gene activation,17,18,49 and
the ChIP-seq patterns for these transcription factors
lend strong support to the epigenetic state assignments.
Many of these predicted enhancers of Zfpm1 were
shown to increase expression from a reporter gene in
transfected cells, giving further credence to the segmen-
tation results.25,50

By conducting the segmentation jointly across cell
types as well as along chromosomes (the two-
dimensional segmentation), the IDEAS method also
brings out differences between cell types. The segmenta-
tion of Zfpm1 in CD4+ T-cells differed greatly from that
in erythroblasts (Figure 2). Many of the DNA segments
in the gene body that were enhancer-like in erythroblasts
were either in the quiescent (white) or transcribed
(green) states in CD4+ T-cells. The region around the
TSS was assigned to promoter-like (red states). Notably,
this same TSS region is bound by GATA3 in CD4+ T-
cells, as indicated by the ChIP-seq signal (obtained from
CODEX for data from Reference 51). Thus, expression of
Zfpm1 appears to be regulated at the TSS in CD4+ T-
cells, whereas multiple internal enhancers are utilized in
erythroid cells.

4 | DEFINE A LARGE SET OF
cCREs IN MOUSE HEMATOPOIETIC
CELLS

The integrative segmentation from IDEAS allowed us to
take a straightforward approach to predicting candidate
cis-regulatory elements or cCREs.47 The nuclease-
accessible DNA intervals (hypersensitive sites or HSs) in
each cell type were determined by peak-calling method
on the DNase-seq and ATAC-seq data. We then gathered
all HSs from all cell types (requiring replication within a
cell type if available) and merged the overlapping ones.
This set of HSs was then filtered to remove any that were
only in the quiescent state (0) in all cell types. The
remaining set contained all HSs that were in an IDEAS
state indicative of dynamic histone modifications or
CTCF binding in at least one of the cell types examined.
This simple two-step method for predicting cCREs relies
on the sophistication of IDEAS for assigning DNA inter-
vals to one of the commonly occurring combinations of
epigenetic features. It does not rely on any particular
combination of histone modifications to predict cCREs,
and it should be robust to changes in epigenetic land-
scape that result from switches in regulatory and expres-
sion patterns between cell types.

The initial registry of cCREs consisted of 205,019
DNA intervals in 18 hematopoietic cell types in mouse
(no nuclease sensitivity data were available for 2 of the
20 cell types, Mk from fetal liver, and CLP). The absence
of full knowledge of functional elements and neutral ele-
ments across genome precludes a rigorous determination
of the sensitivity and specificity of this initial cCRE regis-
try. However, this collection does look promising in sev-
eral respects. The registry captured virtually all the
known erythroid cCREs, and it included a large majority
(two-thirds) of DNA segments bound by the transcription
co-activator EP300 in murine erythroleukemia cells,
CH12 cells (a model for B cells), and fetal liver.47 Thus,
the recall appears to be reasonable. Further experimental
tests should provide insight into the precision or specific-
ity of the cCRE predictions.

The cCREs in and around the Zfpm1 gene are shown
on the bottom line of Figure 2. They include the candi-
date enhancer-like regions discussed above, as expected.
Many other cCREs are also present, which raises ques-
tions such as the following: (1) In what cell types does a
particular cCRE appear to be active? (2) What transcrip-
tion factors may be bound to a cCRE? (3) How likely is it
that a cCRE is regulating a gene of interest? Continuing
work in the VISION project strives to address such ques-
tions. Question 1 is addressed by the state assignments
for each cCRE in each cell type, which can be down-
loaded or browsed at the project website. Question 2 is
being addressed by utilizing the resources in CODEX to
annotate cCREs with binding data from ChIP-seq. Ques-
tion 3 is being addressed by developing quantitative
models to “explain” gene expression data in terms of
IDEAS state assignments across cell types. Future work
should bring in chromatin interaction data and addi-
tional machine learning approaches.

5 | ILLUSTRATE THE VISION
RESOURCES AT LOCI ENCODING
GATA FACTORS AND IKAROS

As discussed above, the GATA family of transcription fac-
tors is well known for regulation of gene expression in spe-
cific cell types and lineages. Examination of the genes
encoding these factors and another key regulator of gene
expression in hematopoietic cells, Ikaros (IKZF1), illus-
trates the types of insights that investigators can glean
from the integrative analyses in the VISION project. Levels
of expression of the genes were estimated from the RNA-
seq data from recent publications27,31 that were compiled
at the VISION website (Figure 4a). Consistent with the lin-
eage specificity previously reported, expression of Gata1
was most prevalent in erythroid cells and the multilineage
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progenitor cell populations CMP and MEP, with more
modest expression in megakaryocytic cells. The Gata2
gene was expressed more highly in the multilineage pro-
genitor cell populations with some persistence into mega-
karyocytic cells. High levels of Gata3 expression were
found primarily in a subset of the lymphoid cells, namely,
NK, CD4+, and CD8+ T-cells. In contrast, expression of
Ikzf1 was expressed at higher levels and in a broader pat-
tern, with expression in most hematopoietic cell types
albeit lower in maturing erythroid cells.

The epigenetic landscapes summarized as states from
the IDEAS model showed patterns that fit with the cell
type specificity of expression, and they revealed potential
regulatory elements (cCREs) involved in cell type-specific

control of expression. The IDEAS tracks around Gata1
showed active epigenetic states in MEP, erythroid, and
megakaryocytic cells (Figure 4b), which also express this
gene. Furthermore, this locus has six cCREs, four of
which have been shown to be enhancers or promoters
regulating Gata1 expression in erythroid cells.52,53 Both
known CREs and novel cCREs were bound by GATA1 in
erythroid cells, albeit at varying levels, but none were
bound by GATA2 in the myeloid progenitor cell model
HPC7 cells or by GATA3 in CD4+ T-cells. In cell types
not expressing Gata1, the locus was largely in the quies-
cent state, indicating that histone H3 in the chromatin of
these cell types was undergoing little to no dynamic
modifications.
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Several regulatory elements have been mapped in the
Gata2 locus, both proximal and internal to the gene as
well as distal, close to the Rpn1 gene.50,54,55 These regula-
tory elements were in active epigenetic states in the
expressing cell types, and the distal CRE was in an active
state in a broader range of cell types (Figure 4c). Several
of the CREs were bound by GATA2 in HPC7 cells
(as well as the previously reported binding in G1E cells,
not shown), but little to no binding was observed for
GATA1 or GATA3. In contrast to the quiescent state
observed for nonexpressing cells for the Gata1 locus, the
Gata2 locus was in a polycomb-repressed state
(H3K27me3) in many of the nonexpressing cells. These
distinct mechanisms inferred for repression (quiescent
vs. polycomb) were deduced simply by examining the
IDEAS tracks, and they illustrate insights that follow eas-
ily from integrative analysis and modeling.

The DNA interval around the TSS of the Gata3 gene
was in an active promoter-like epigenetic state and was
bound by GATA3 in lymphoid cells, consistent with the
expression pattern (Figure 4d). However, several addi-
tional DNA segments internal to the gene and upstream
(between Gata3 and Taf3) were in active states and were
inferred to be cCREs. Thus, the regulation of Gata3 may
involve multiple CREs. As with the Gata2 locus, the
Gata3 locus tended to be in a polycomb-repressed state in
many nonexpressing cell types. Surprisingly, the cCREs
around Gata3 were in active epigenetic states in
multilineage progenitor cells such as LSK, despite the
very low levels of expression. This apparently precocious
activation of the epigenetic landscape may serve as a type
of lineage priming, or it could reflect some lineage com-
mitment in this cell population.

The epigenetic states and transcription factor binding
around the more widely expressed Ikzf1 revealed patterns
indicative of lineage-specific regulatory mechanisms
(Figure 5). In addition to the transcribed states internal
to the gene in almost all cell types, multiple cCREs in
active states were observed around the TSS, upstream to
the gene, in the third and seventh introns, and down-
stream. Strikingly, the pattern of binding of GATA factors
was lineage-specific, with GATA2 binding at an upstream
cCRE and in intron 3 in multilineage progenitors,
GATA1 binding at a different set of cCREs upstream and
in intron 3 in erythroid cells, and GATA3 binding in still
a different pattern in CD4+ T-cells. The cCREs tended to
be in active enhancer-like or promoter-like states in the
cell types for which binding by GATA factors was also
observed. These distinct GATA binding patterns, coupled
with active epigenetic states from IDEAS, indicate sub-
stantial lineage specificity in the cCREs and transcription
factors utilized to achieve an appropriate level of expres-
sion of Ikzf1 in the various hematopoietic cell types.

6 | FUTURE PERSPECTIVES

A major goal of the VISION project is to provide inte-
grated views of epigenomic landscapes and trans-
criptomes from mammalian hematopoietic cells that
will inform gene regulatory models to advance our
understanding of global gene regulation. Importantly,
these integrative views should enable other investigators
to formulate data-based, testable hypotheses to advance
their specific research interests. This review has focused
on our recent work with mouse hematopoietic cells,
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organizing and analyzing about 150 tracks of epi-
genomic data from 20 cell types to produce a segmenta-
tion into well-defined epigenetic states using the IDEAS
method. The consistent and distinctive colors associated
with each state present the segmentation results as a
type of painting, with one multicolored panel for each
cell type. Thus, enhancer-like and promoter-like ele-
ments can be easily seen in a genome browser, as well
as changes in the states among cell types. The epigenetic
state assignments were used to annotate nuclease HSs
and produce an initial registry of cCREs in mouse hema-
topoietic cells. This set of slightly over 200,000 cCREs
serves as a large set of candidate regulatory elements
that can be used in many ways for further research.
Likely regulatory elements are now readily available for
any gene, along with information about the epigenetic
state of the chromatin covering that gene in the
20 hematopoietic cell types. The registry of cCREs can
be examined for overlaps with lists of peaks of transcrip-
tion factor binding (from ChIP-seq) for further infer-
ences about potential functions of the cCREs.

Building from these initial resources, we have now
compiled a large number of epigenomic data sets on
human blood cells from the IHEC Blueprint Consor-
tium10 and many individual laboratories, including
recent data on multilineage progenitor cells.56 These data
are being integrated via IDEAS segmentation, and an ini-
tial registry of cCREs is being built using the approaches
described here for mouse hematopoietic cells. In addition
to the purposes already discussed, these resources will be
particularly valuable for improving the interpretation of
human genetic variants associated with various blood cell
traits and diseases. Large-scale GWASs have revealed
many variants associated with traits of interest in hema-
tology, and we now expect that many of the causative
variants are acting through impacts on gene regulation.57

Having a set of high-quality cCRE predictions decreases
the search space for likely functional variants. Thus, the
cCRE predictions may enable more precise, higher reso-
lution studies of the potential impacts of the trait-associ-
ated, noncoding genetic variants.

A continuing challenge for utilizing cCRE predictions
is the ambiguity in inferring a target gene. Regulatory
elements can be far away from their target gene, and it is
not uncommon for a CRE to be separated from its target
gene by multiple nontarget genes. Substantial efforts
within the VISION project and elsewhere are tackling
this enduring challenge. Measurements of chromatin
interaction frequencies in an all-against-all mode such as
Hi-C58 or using capture strategies to focus on particular
regions or interactions23,59 should provide important
information to leverage with respect to target gene
assignments. We are currently utilizing high-resolution

Hi-C data26 and capture-C data23,60 from erythroid cells
for multiple studies including improvement of target
gene assignments.

The integrative maps of the regulatory landscape
and the cCRE predictions were designed to provide
accessible views and resources to enable a wide spec-
trum of users to benefit from the numerous and deep
epigenomic data sets available. For the most part, the
epigenetic states learned by IDEAS match those
expected from decades of work on the impact of chro-
matin structure on gene regulation. However, there is
still the potential for discoveries of novel relationships.
We are currently using the epigenetic states and cCREs
as input into additional analytical approaches to try to
uncover novel insights and global models. For example,
we are using multivariate regressions47 and machine
learning approaches61 to estimate the impact of individ-
ual cCREs on potential target genes, which can then be
tested using directed mutagenesis. As these quantitative
models for explaining levels of gene expression across
cell types improve, they may reveal unexpected, previ-
ously unknown relationships. Indeed, one of the several
important outcomes from our VISION project is devel-
opment of new methods to provide robust results to
drive further research.

All resources from the VISION project are publicly
available via our website http://usevision.org. We hope
that this review will encourage use of these resources.
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