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Colorectal cancer (CRC) is the second leading cause of cancer-related deaths. It is estimated that

about half the cases of CRC occurring today are preventable. Recent studies showed that human

gut microbiota and their collective metabolic outputs play important roles in CRC. However, the
mechanisms by which human gut microbial metabolites interact with host genetics in contributing

CRC remain largely unknown. We hypothesize that computational approaches that integrate and
analyze vast amounts of publicly available biomedical data have great potential in better understanding
how human gut microbial metabolites are mechanistically involved in CRC. Leveraging vast amount

of publicly available data, we developed a computational algorithm to predict human gut microbial
metabolites for CRC. We validated the prediction algorithm by showing that previously known CRC-
associated gut microbial metabolites ranked highly (mean ranking: top 10.52%; median ranking:
6.29%; p-value: 3.85E-16). Moreover, we identified new gut microbial metabolites likely associated with
CRC. Through computational analysis, we propose potential roles for tartaric acid, the top one ranked
metabolite, in CRC etiology. In summary, our data-driven computation-based study generated a large
amount of associations that could serve as a starting point for further experiments to refute or validate
these microbial metabolite associations in CRC cancer.

Colorectal cancers are the second leading cause of cancer-related deaths in in the United States and the third
most common cancer in men and in women'. In the United States alone, an estimated 135,430 men and women
will be diagnosed with CRC in the year 2017 and 50,260 will die from this disease?. It is estimated that forty-five
percent of CRC are preventable by modifiable environmental factors such as food, nutrition, lifestyle, and physical
activity, among others™*.

Human gut microbiota, the collection of microorganisms that live in the human digestive tracts, play cen-
tral roles in human health and diseases, by metabolizing nutrients and food components and by controlling the
immune response of the human body®-®. Growing evidence suggests that gut microbiota and their metabolites
not only influence carcinogenesis and tumor progression, but also influence the efficacy of anticancer thera-
pies’!'. Human microbiome (the collective genomes of the microbiota) studies have revealed that gut dysbiosis
(an imbalance in the intestinal bacteria) is associated with the increased incidence of CRC!'!!4,

Undigested dietary components that reach the large intestine are fermented by microbiota to produce a vari-
ety of metabolites and nutrients. It has become increasingly clear that the collective metabolic outputs of gut
microbiota strongly influence cancer susceptibility and progression®'>!¢. For example, recent studies have shown
that the short-chain fatty acid (SCFA) butyrate, one of the most abundant metabolites of gut microbiota in the
fermentation of fiber, has a role in the suppression of inflammation and colorectal cancer!’.

Currently, the mechanisms by which gut microbial metabolites interact with host genetics in promoting or
protecting against CRC remain unknown. Computational approaches have been widely used in drug develop-
ment'®?* and disease mechanism understanding?->’. We have recently developed a hypothesis-driven systems
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Figure 1. Datasets used in this study.

approach to understand how trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and
fat, is mechanistically involved in CRC?. Here, we present a data-driven computational approach to estimate
which microbial metabolites might affect CRC. The identification of human gut microbial metabolites and the
understanding of their role as key mediators through which bacteria might promote or protect against CRC is
important. Taken together, characterizing these microbial metabolites will likely enhance our understanding of
the complex gene-environment interactions in carcinogenesis, and add up to new possibilities for CRC diagnosis,
prevention, and treatment.

Data and Methods

Data. We used large amounts of publicly available data, including human metabolome, disease genetics,
chemical genetics, signaling pathways, and mouse genome-wide mutation phenotypes for both the prediction
and functional characterization of gut microbial metabolites for CRC (Fig. 1).

Data resources of CRC-associated genes. 'We used three complementary disease genetics resources to obtain
CRC-associated genes. We obtained (1) 32 CRC-associated genes from the Catalog of Published Genome-Wide
Association Studies (GWAS), a comprehensive collection of all published GWAS studies®’; (2) 38 CRC-associated
genes from the Online Mendelian Inheritance in Man (OMIM), a comprehensive collection of human genes and
genetic phenotypes for Mendelian disorders®; and (3) 31 genes that are significantly mutated in colorectal cancer
patients from the Cancer Genome Atlas (TCGA), a comprehensive cancer database and contains genetic and
clinical data for 283 colorectal patients®!. We used these three complementary and independent disease genetics
resources to demonstrate the robustness of the algorithms and our findings.

The Human Metabolome Database (HMDB). HMDB is a comprehensive database of small molecule metabolites
found in the human body*. Currently, HMDB contains 52,658 metabolites, including 172 metabolites originated
in human gut microbiota.

Data resource of metabolite-associated genes. We obtained metabolite/chemical-associated genes from STITCH
(Search Tool for Interactions of Chemicals). STITCH contains chemical-gene association data for > 300,000 small
molecules and 2.6 million proteins from 1,133 organisms®. We used chemical-gene associations found in human
body, which include 1,466,636 chemical-gene pairs, 259,171 chemicals, and 15,620 human genes.

Genetic pathway data. We used gene-pathway association data from the Molecular Signatures Database
(MSigDB) to construct molecular profiles for CRC and metabolites and to study the interplaying pathways under-
lying top identified microbial metabolites and CRC. MSigDB contains 10,295 annotated pathways and gene sets>.

Genome-wide mutational phenotypes in experimental mouse models. Recently, the Mouse Genome Database
(MGD) has made available large amounts of phenotypic descriptions of systematic gene knockouts in mouse
models*. We have recently shown that these strong causal gene-phenotype annotations (278,553 gene-phenotype
associations for 41,905 mutant alleles and 10,744 phenotypes) have great potential for virtual phenotypic screen-
ing for drug discovery?!~%. In this study, we used gene-phenotype associations from MGD to assess the functional
effects of top ranked microbial metabolites on CRC-related phenotypes.

Metabolome-wide prediction of gut microbial metabolites for CRC. The experimental flowchart is
summarized in Fig. 2 and described in details in subsequent sections.

Construct molecular profiles for diseases. We identified CRC-associated genes from the three disease genet-
ics databases: the GWAS catalog, OMIM, and TCGA. Pathways associated with each gene were obtained from
MSigDB. For each pathway, we assessed its probability of being associated with the given set of CRC-associated
genes as compared to its probability associated with the same number of randomly selected genes. The random
process is repeated 1000 times and a t-test was used to assess the statistical significance. As an example, the path-
way “colorectal cancer” is associated with 7 out of 31 (29.0%) CRC genes from TCGA, which represents a signifi-
cant 39-fold enrichment as compared to the random expectation of 0.7%. The molecular profile for CRC consists
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Figure 2. Rank metabolites for CRC based on profile similarities.

of a list of significantly enriched pathways. Three molecular profiles were built for CRC using genes from three
complementary disease genetics resources.

Build molecular profiles for chemicals/metabolites. ~ Similarly, we built one molecular profile for each of the
259,170 chemicals/metabolites from the STITCH database. For example, the molecular profile for butyric acid, a
human gut microbial metabolite, consists of 609 pathways.

Prioritize metabolites for CRC.  Metabolites were prioritized based on how their molecular profiles are similar to
CRC-specific molecular profile. We implemented three commonly used set similarity measures: overlap, Jaccard
coefficient, and cosine similarity®. Overlap is defined as the intersection of disease profile set and metabolite
profile set. Jaccard coefficient of two sets is defined as the size of the intersection divided by the size of the union.
The cosine similarity is defined as the Euclidean dot product of two sets. The output is a ranked list of 259,170
chemicals/metabolites for CRC prioritized based on their profile similarities with CRC.

Evaluation using known CRC-associated metabolites. We evaluated the prioritization algorithm using 32 known
CRC-associated metabolites extracted from a recent review paper'. Recall, mean and median rankings were used
for performance measures. Significance was calculated by comparing actual rankings to random expectation
(based on random expectation, a metabolite shall have an average ranking of 50%). We also examined the number
of known metabolites at 10 decile rankings. A good prioritization algorithm shall enrich true positives among
top-ranked entities. We calculated the number of known metabolites at each decile and plotted decile enrichment
distribution.

Evaluate the rankings of all human microbial metabolites for CRC. We investigated whether human gut microbial
metabolites in general are highly related to CRC in terms of molecular relevance. We examined the rankings of all
172 microbial metabolites among prioritized chemicals. Recall, mean and median rankings were calculated and
decile ranking was plotted.

Functional characterization of top ranked novel microbial metabolite in CRC.  Identify common
pathways between novel metabolite and CRC. 'We identified common genetic pathways that are significantly
enriched for the novel metabolite and CRC. We then developed an algorithm to further prioritize these com-
mon pathways. The ranking of each common pathway is a balance measure of rankings from the disease (CRC)
and from the metabolite. A pathway ranks highly if and only if it ranks highly for both the metabolite and the
disease. The ranking of a common pathway is defined as: ranking_combined = 2*(ranking_d * ranking_m)/(rank-
ing_d+ ranking_m), where ranking_d is the ranking score of a pathway for CRC; and ranking_m is the ranking
score of the same pathway for the metabolite.

Functional characterization of phenotypic effects of the novel metabolite on CRC. We obtained metabolite-associated
genes from STITCH and then mapped genes to their corresponding mouse gene homologs (e.g.,
SMAD4 = > 18Wsu70e) using human-mouse homolog mapping data from MGD*. The mapped mouse genes
were then linked to their corresponding mutational phenotypes in mouse models (e.g., SMAD4 = > increased
intestinal adenoma incidence, TP53 = > colon polyps) using gene-phenotype association data from MGD. For each
mapped phenotype, we assessed its probability of being associated with the given set of metabolite-associated genes
as compared to its probability associated with the same number of randomly selected genes. The random process
is repeated 1000 times and a t-test was used to assess the statistical significance. Similarly, we built a CRC-specific
phenotype profile using data from disease genetics databases. CRC- and metabolite-specific phenotype profiles were
intersected. Shared phenotypes were prioritized as described for prioritizing shared pathways between the metabo-
lite and CRC. A phenotype (e.g., colon polyps) ranked highly if and only if it ranks high for both CRC and the novel
metabolite.

Data availability. http://nlp.case.edu/public/data/CRC_Microbiome/.
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GWAS 0.813 10.52% 6.29% 3.85E-16
OMIM 0.813 12.67% 9.51% 1.62E-14
TCGA 0.813 12.21% 11.60% 9.38E-15

Table 1. Known CRC-associated microbial metabolites were ranked highly among 259,170 chemicals/
metabolites when three complementary disease genetics databases (The GWAS Catalog, OMIM and TCGA)
were used for obtaining CRC-associated genes.
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Figure 3. The decile ranking of known CRC-associated metabolites among 259,170 chemicals/metabolites.
Three complementary disease genetics databases (The GWAS Catalog, OMIM and TCGA) were used for
obtaining CRC-associated genes.

Results

Known CRC-associated microbial metabolites ranked highly. The algorithm found 26 of 32 known
metabolites (recall: 0.813) and the recall is determined by the coverage of the STITCH database. The not-per-
fect recall indicates that although STITCH is currently the most comprehensive chemical genetics database of
1,466,636 chemical-gene pairs for 259,171 chemicals/metabolites, the coverage for gut microbial metabolites is
not perfect. Known CRC metabolites ranked significantly high as compared to random expectation (Table 1). As
an example, when CRC-associated genes from the GWAS catalog were used to build disease-specific molecular
profile, known CRC-associated microbial metabolites on average ranked at top 10.52% among 259,170 chemicals/
metabolites, which is significantly higher than random expectation (P-value: 3.85E-6). These findings are consist-
ent when CRC-associated genes from three complementary disease genetics data resources were used (Table 1).

The decile rankings further demonstrate that the ranking algorithm effectively enriched known
CRC-associated metabolites at top. For example, 14 of 26 known metabolites are ranked at the first decile (top
10%) (Fig. 3).

We then examined which categories of microbial metabolites ranked highly for CRC. We classified known
metabolites into six categories'. Short chain fatty acids (SCFAs) are known to be involved in colon health!>!”.
Our study indeed shows that SCFAs ranked highest (top 3.86%) among all known CRC-associated metabolites.
The results are consistent when three independent disease genetics databases were used to obtain CRC-associated
genes (Table 2).

Human gut microbial metabolites in general ranked highly for CRC.  Microbial metabolites in gen-
eral are highly associated with CRC based on molecular convergence. The algorithm found 131 of 172 (recall:
0.761) metabolites originated in gut microbiota (as determined by HMDB database)®?. These 131 microbial
metabolites ranked consistently highly when CRC-associated genes from three complementary databases were
used (Table 3). As an example, microbial metabolites on average ranked at top 14.43% (P-value: 2.27E-57) among
259,170 prioritized chemicals/metabolites.

The decile rankings show that the majority of gut microbial metabolites were ranked at first decile (top 10%)
(Fig. 4). For example, when CRC-associated genes from the GWAS catalog were used to build disease-specific
molecular profile, 64 of 131 gut microbial metabolites were ranked at the first decile.

The top 20 ranked microbial metabolites are shown in Table 4. Seven of these top 20 metabolites are known
CRC-associated metabolites. Tartaric acid ranked at top 3, immediately following butyric acid, a well-known
microbial metabolite associated with CRC and colon health. Trimethylamine n-oxide (TMAO) also ranked highly
(top 13). Previous studies showed that TMAO is both mechanistically and clinically associated with increased risk
of CRC*#%7,

Tartaric acid may be both genetically and functionally involved in CRC.  Tartaric acid is the top one
ranked microbial metabolite that is not included in the list of 32 known CRC-associated metabolites. Tartaric acid
is a phytochemical found abundantly in nuts, apricots, apples, sunflower, avocado, grapes, among others?. Tartaric
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GWAS 1.00 3.86% 4.65% 3.07E-6
SCFAs OMIM 1.00 5.67% 5.53% 1.62E-5
TCGA 1.00 6.84% 5.53% 5.29E-5
GWAS 0.78 7.06% 1.56% 1.60E-5
Bile acids OMIM 0.78 6.34% 2.91% 3.67E-6
TCGA 0.78 6.20% 3.10% 3.22E-6
GWAS 0.60 9.51% 8.76% 0.005
Indoles OMIM 0.60 10.98% 11.24% 0.011
TCGA 0.60 10.21% 13.05% 0.005
GWAS 0.75 11.11% 10.51% 0.003
Cresols OMIM 0.75 16.29% 14.04% 0.006
TCGA 0.75 14.93% 14.50% 0.002
GWAS 0.80 18.34% 20.42% 0.010
Phenolic acids OMIM 0.80 20.43% 21.16% 0.019
TCGA 0.80 20.77% 17.93% 0.027
GWAS 1.00 23.12% 28.46% 0.149
Polyamines OMIM 1.00 31.03% 38.81% 0.328
TCGA 1.00 27.11% 34.39% 0.204

Table 2. Stratified rankings of known CRC-associated microbial metabolites among 259,170 prioritized
chemicals/metabolites. Three complementary disease genetics databases (The GWAS Catalog, OMIM and
TCGA) were used for obtaining CRC-associated genes.

GWAS 0.761 14.43% 10.11% 2.27E-57
OMIM 0.761 16.88% 12.13% 2.77E-46
TCGA 0.761 18.84% 12.47% 2.47E-37

Table 3. Rankings of gut microbial metabolites among 259,170 prioritized chemicals/metabolites.

Decile ranking of gut microbial metabolites
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Figure 4. The decile ranking of all human gut microbial metabolites among 259,170 chemicals/metabolites.
Three complementary disease genetics databases (The GWAS Catalog, OMIM and TCGA) were used for
obtaining CRC-associated genes.

acid is associated with 305 genes (based on the STITCH database). These genes are significantly associated with 611
pathways, demonstrating that tartaric acid may participate in many biological functions. Many of the top ranked
pathways are related to immune functions, including Cytokines and Inflammatory Response, IL12-mediated signaling
events, and Downstream signaling in naive CD8+ T cells. Among 117 pathways significantly associated for CRC, 64
(54.7%) pathways are also associated with tartaric acid, demonstrating that tartaric acid may be mechanistically
involved in CRC etiology. The top 20 pathways shared by both CRC and tartaric acid are shown in Table 5. Many
of these top common pathways are directly involved in CRC, including Regulation of nuclear SMAD2/3 signaling,
(-catenin pathway, WNT pathway, TGF-beta signaling pathway, and Colorectal cancer.
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1 Taurochenodesoxycholic acid 11 Isopropyl alcohol

2 Butyric acid 12 D-alanine

3 Tartaric acid 13 Trimethylamine n-oxide

4 Acetaldehyde 14 Taurodeoxycholic acid

5 Mannitol 15 Deoxycholic acid glycine conjugate
6 P-aminobenzoic acid 16 Acetone

7 Trans-ferulic acid 17 Zeaxanthin

8 Putrescine 18 3,4-dihydroxybenzeneacetic acid

9 ;};ejﬁzggoxycholic acid glycine 9 1-butanol

10 D-glutamic acid 20 Phenylethylamine

Table 4. Top 20 ranked microbial metabolites for CRC. Seven known CRC-related microbial metabolites are
highlighted in green.

1 Regulation of nuclear SMAD2/3 signaling 11 Xzi‘:?:;;:;ﬁi‘g\g{x}c

2 Integrin cell surface interactions 12 Regulation of retinoblastoma protein
3 ECM-receptor interaction 13 BMP receptor signaling

4 Small cell lung cancer 14 Prostate cancer

5 Beta-catenin pathway 15 giﬁ?i;;‘;ietﬁi; (rji\g}%t]ée)ntricular

6 Progesterone-mediated oocyte maturation | 16 Wnt-mediated signal transduction

7 Signaling by SCF-KIT 17 Colorectal cancer

8 Betal integrin cell surface interactions 18 ErbB4 signaling events

9 AP-1 transcription factor network 19 Internalization of ErbB1

10 TGF-beta signaling pathway 20 ﬁlet:_?;cigtoeg:m cell surface

Table 5. Top 20 pathways significantly associated with both CRC and tartaric acid.

To estimate the possible effects of tartaric acid on CRC, we identified mouse mutational phenotypes that
are significantly associated with both CRC and tartaric acid. A total of 2441 mouse mutational phenotypes are
significantly associated with tartaric acid, and 600 phenotypes are significantly associated with CRC. Among the
600 CRC-associated phenotypes, 267 (45%) phenotypes are also associated with tartaric acid. The top 20 shared
phenotypes are shown in Table 6. Both top 1 and 2 ranked phenotypes are directly related to digestive system.

Discussion

More than half the cases of cancer, including CRC, occurring today are preventable and about one-third of the
cases can be attributed to modifiable environmental factors such as food, nutrition, lifestyle, and physical activity,
among others*. The susceptibility, initiation, and progression of CRC and many other cancers is primarily driven
by gene-environment interactions. Human gut microbiota are important modifiable environmental factors that
are part of the ecosystem of our bodies' Functional studies in germ-free mouse models of cancer have demon-
strated that microbiota can affect cancer susceptibility and progression in various organs, including colon, how-
ever, the mechanisms by which gut microbial metabolites are involved in cancer remain unknown.

In this study, we presented a data-driven systems approach to identify and estimate gut microbial metabolites
playing a role in CRC. Our approach is a data-driven computational estimation, which can be applied to different
traits and diseases. In this study, we focused on CRC because of the vast availability of known CRC-associated gut
microbial metabolites. Our data-driven computational method to estimate associations can take a disease name
or a list of disease-associated genes as input, and the output will be a ranked list of microbial metabolites (along
with shared molecular signatures and functional phenotypes) for the input disease. For clarity, this ‘in silico’ study
is not functional microbiome study. Instead, it largely complements existing microbiome studies by identifying
microbial metabolites within vast amounts of existing database information of diseases, genes, pathways, func-
tional phenotypes, and metabolome.

However, our study holds several limitations that warrant further discussion. First, the relationships among
microbes, their metabolites, and hosts are complex, non-linear and bi-directional®. For example, recent studies
showed that gut microbial metabolites are involved in CRC etiology by altering host epigenome®. Our study
focused on the database-dependent interactions between microbial metabolites and CRC genetics of the host.
Indeed, we lack the necessary data in order to computationally model the effects of metabolites on microbe
populations, the host genetics on microbe variations or epigenetic effects on host genomes. The goal of this study
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Rank | Common Phenotype Rank | Common Phenotype

1 Abnormal intestinal goblet cell morphology | 11 Kidney failure

2 Abnormal intestinal epithelium morphology | 12 Increased osteoclast cell number

3 Abnormal forelimb morphology 13 Abnormal metastatic potential

4 Abnormal osteoclast physiology 14 Abnormal renal tubule morphology
5 Albuminuria 15 Abnormal head morphology

6 Abnormal facial morphology 16 Increased bone mineral density

7 Abnormal lymphopoiesis 17 Abnormal vascular wound healing
8 Glomerulosclerosis 18 Increased lymphocyte cell number
9 Decreased susceptibility to injury 19 Abnormal pancreatic islet morphology
10 Increased circulating creatinine level 20 Abnormal hindlimb morphology

Table 6. Top 20 phenotypes significantly associated with both CRC and tartaric acid. CRC-specific phenotypes
are highlighted (yellow).

was to provide estimates of associations between human gut microbial metabolites and CRC, which in turn may
inform the identification of responsible microbe composition in cancer etiology.

Second, host genetics can affect gut microbiota composition and metabolic outputs in response to environ-
mental factors*®!. A person’s genetic make-up can influence his/her response to environmental stressors, gut
microbiota population, and microbiome-genome interactions. As personal genetic and genomics information
becomes increasingly available, a patient-focused understanding of environment-microbiome-genome-cancer
interactions is possible by linking personal genome to metabolite-gene-pathway-disease connections as identified
in this study.

Third, among the 41,806 small molecule metabolites available in HMDB, only 172 metabolites (~0.4%) orig-
inate in gut microbiota. The field of microbiome research is a fast-moving target with an increasing number of
microbial metabolites being identified. The computational algorithms we developed have built-in flexibility and
capability to incorporate new data as it becomes available.

Lastly, our current study is pure ‘in-silico. Our goal was to generate estimates of associations data/hypotheses
that may be tested to refute or validate our suggestions of gut microbial metabolites role in CRC. We anticipate
that both the data-driven computational methods developed and the associations generated in this study will
likely stimulate further studies of microbiome-gene interactions in cancer etiology. Taken together, validating
identified metabolite-CRC associations in animal models or humans are needed in order to translate the findings
into cancer diagnosis, prevention, and treatment.
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