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ABSTRACT: In recent years, neural network-based soft sensor technology has been widely
used in industrial production processes and has excellent optimization, monitoring, and quality
prediction performance. This paper proposes a horizontal data augmentation strategy to provide
highly available data for subsequent prediction models, called the combined autoencoder data
augmentation (CADA) strategy. This paper has developed a CADA-based convolutional neural
network (CADA-CNN) soft sensor model and applied it to the process of industrial debutanizer
and industrial steam volume. In terms of method validation, this paper compares the output data
of the proposed CADA by the Spearman correlation coefficient to verify the strategy’s feasibility.
Then, the output data of the CADA strategy is fed into the artificial neural network (NN),
support vector regression (SVR), and convolutional neural network (CNN) for comparison
experiments. The final experimental results show that our proposed CADA-CNN model has
lower prediction error and better prediction error distribution.

1. INTRODUCTION
In the industrial production process, to better control the
product quality, various advanced control, optimization, and
monitoring technologies are widely used.1,2 Applying these
advanced technologies often requires many instruments and
relies on real-time feedback on product quality.3 However,
some analytical tools have the characteristics of long sampling
periods and high latency. Therefore, in complex industrial
production processes, product quality data often require a high
cost to be measured, including time cost, labor cost, and capital
cost.4 Soft sensor technology is considered a substitute for
traditional analytical instruments due to its rapid response, low
maintenance cost, and simple operation.5 It can provide
predictive estimates of key variables by building mathematical
models from easily measurable auxiliary variables such as
pressure, temperature, and flow.
Soft sensors can generally be classified into two main

categories: mechanism-based modeling and data-driven
modeling. Mechanism-based modeling is based on a deep
understanding of the process mechanism through macroscopic
or microscopic equilibrium equations to determine the
mathematical relationships between key variables and easily
measurable auxiliary variables.6,7 This modeling method has
high requirements for modelers, and the modeling process is
time-consuming and difficult to maintain. With the rapid
development of computer technology, data-driven modeling
methods are being used more and more extensively in
industrial production processes.8,9 These modeling approaches
use to process data exclusively without considering its physical
meaning, and the modeling is simple and easy to maintain.

Typical data-driven modeling approaches include multivariate
analysis, statistical theory, and neural network modeling. The
development of artificial neural network algorithms has been
hot in recent years, and this approach is also widely used in soft
sensor modeling. For example, artificial neural network (NN)
and support vector regression (SVR), which are used
extensively as baseline methods;10,11 deep belief networks
(DBN), which build a joint probability distribution between
data and labels;11,12 autoencoder networks (AE), which use
input data for supervision to guide the network in learning
mapping relationships;2−4,6,13 long- and short-term memory
networks (LSTM), which can “remember” and can be applied
to time series;1,14−17 and convolutional neural networks
(CNN), which is based on visual principles and pays more
attention to local features.18−23 For soft sensor modeling,
neural networks extract useful features from many easily
accessible auxiliary variables and then build a model between
the key variables and the extracted features for prediction.
With the development of artificial neural networks for many

years, the improvements and applications in various research
directions can demonstrate their excellent feature representa-
tion capabilities.10 Typically, the abundant data collected in the
process plant are high-dimensional with strong correlations
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and high redundancy, which is also known as data-rich but
information-poor.2 The ability to represent the features of a
neural network comes from the data. Therefore, a large
amount of representative data is essential to capture the hidden
characteristics of the data and the characteristics of the data
distribution. Although the process auxiliary variables are easily
accessible, acquiring key variables is still costly.1 Data
augmentation is an effective strategy that can not only create
data samples for model training but also help to improve the
generalization ability of the model.3

This paper proposes and applies a combined autoencoder
data augmentation (CADA) strategy to soft sensor modeling.
On the one side, this paper uses the proven nonlinear
autoregressive moving average model to expand the dataset
with historical data. On the other hand, this paper uses the
autoencoder network to perform initial feature extraction on
the data. It regards the extracted features as the dataset’s coarse
screening features and uses them to enhance the data features.
Then, the data obtained by the two methods are combined and
used as sample input data for the subsequent regression
prediction model. Instead of generating a new virtual sample,
this paper expanded the data features through the adaptive
combination of the two methods based on the original data,
which helps express more valuable data features in subsequent
regression predictions. In the regression analysis phase, the
CNN model extracts high-value features from the input data
and adds key variables to the top layer of the network to fine-
tune the entire CNN network.
This paper adopts a structural adaptive approach to discuss

the feasibility of the CADA strategy. This paper built the
complete CADA-CNN soft sensor model and compared the
experiments with artificial neural network (NN) and support
vector regression (SVR) regression models. The results
demonstrate that our proposed CADA-CNN model has a
lower prediction error and better prediction error distribution
than the comparable models.
In this paper, our main contributions are summarized as

follows.
(1) This paper proposes a combined autoencoder data

augmentation (CADA) strategy, a generic framework,
and a preliminary exploration is carried out in this paper.

(2) In this paper, three models of the CADA strategy are
built and the feasibility of the strategy is explored by
conducting a correlation analysis.

(3) In this paper, a CADA-CNN soft sensor model is
designed based on the proposed CADA strategy and the
hyperparameters in the model are experimentally
analyzed.

The rest of this article is structured as follows. Section 2
shows the related working studies of the proposed method and
how the combined method works. Section 3 provides a
detailed description of the combined autoencoder data
augmentation strategy and the overall process of the soft
sensor model under this strategy. Then, Section 4 presents
results and a discussion on the process debutanizer unit and
the process steam volume to show the effectiveness of the
proposed strategy. In Section 5, the main work of the paper is
summarized, and an outlook for future research is provided.

2. RELATED WORK
Neural network models require large amounts of data to
support them, which is expensive and time-consuming for

many applications to obtain. Therefore, this paper focuses on
finding data augmentation strategies that combine with the
current research hotspots. Our goal is to find more efficient
data augmentation strategies and provide high-quality data for
subsequent regression prediction models, and this is a data
preprocessing process. Guided by extensive expert experience,
this paper proposes a combined autoencoder data augmenta-
tion strategy for soft sensor modeling. Our proposed strategy is
related to two aspects of the research literature: First, this
paper investigated widely used data augmentation methods
and their application to soft sensor modeling. Second, this
paper investigates methods for updating and improving the
autoencoder neural network and how to use it for modeling.

2.1. Data Augmentation. Data augmentation is a simple
and effective strategy that provides a large representative
sample of data for effective model learning but also helps to
improve the generalization ability of the model.3 In general,
data augmentation methods can be divided into horizontal and
vertical augmentation in terms of the distribution of the
augmented data. If the data containing the auxiliary variables
and the corresponding labeled variables is considered a
complete piece of data, the vertical augmentation of the data
can be seen as increasing the number of entries in the dataset.
For example, graphic image processing24−27 may generate new
data by flipping, cropping, and adding noise. These methods
are considered to help improve the generalization of the
model. In regression analysis, such as predicting the weather,
industrial product quality forecasting, and soft sensor modeling
prediction, data augmentation is typically performed using
generative adversarial networks (GAN)28−31 and linear
interpolation methods.3,32 The horizontal augmentation of
data can be seen as expanding the number of attributes for
each piece of data while maintaining the current data size. For
example, the horizontal dimension of the data is raised to a
larger extent using an autoregressive moving average model.33

The methods mentioned above are often dataset-dependent
and are realized by trial and error under the guidance of much
expert knowledge.3 The horizontal and vertical data
augmentation methods described above can be seen as
mutations or redistributions of local data, thus reducing the
model’s sensitivity to small changes to improve the model’s
generalization ability. However, mutations can introduce
foreign features not inherent in the dataset, and redistribution
may change the original distribution of features in the data.
Furthermore, this corruption is persistent and can misguide
feature extraction when passed between layers of the model,
which may eventually lead to a weakened feature representa-
tion of the model. Thus, we propose a combined autoencoder
data augmentation (CADA) strategy, hoping to use global
features extracted by neural networks to alleviate the above
problem.
We need to find a base data augmentation method according

to the following conditions to validate our proposed CADA
strategy. First, we need to find a data augmentation method
within the soft sensor field as a baseline method; Second, the
baseline method must be rigorously proven; Third, the
baseline method must be validated over a long period by a
multiliterature study. In the course of the thesis research, we
found that the nonlinear autoregressive moving average model
met the above requirements. The specific rationales are as
follows: First, the method was rigorously proven. L. Fortuna et
al.33 used a nonlinear autoregressive moving average model for
data augmentation on the debutanizer column dataset in 2005
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and provided rigorous proof of their proposed nonlinear
fourth-order model. Second, the method has a long history of
extended research. In 2018, Yuan et al.2 proposed a novel
variable-wise weighted stacked autoencoder (VWSAE) model
based on this method and experimentally verified the superior
performance of the model. In 2019, Zhou et al.4 proposed a
stacked quality-driven autoencoder approach based on this
method to construct a high-performance soft sensor model and
experimentally verified that the model has better prediction
results. In 2020, Ren et al.17 proposed a supervised long short-
term memory network based on this method to capture hidden
features in dynamic data and experimentally verify the
effectiveness of the network. Generating adversarial networks
is a promising approach to data augmentation that uses games
between generators and discriminators to generate highly
credible data. It can be seen as a vertical augmentation method
to raise the number of data entries. The CADA strategy
proposed in this paper is a horizontal augmentation method,
which increases the attribute columns of the data while
maintaining the original amount of data. Hence, the vertical
expansion methods in refs 3 and 31 are not discussed in this
paper.
The nonlinear autoregressive moving average model is used

to fit the real input/output data,33 and the model output can
be expressed as

y k F y k n y k u k n u k

u k n u k

( ) ( ( ), , ( 1), ( ), , ( ),
,

( ), , ( )),m m m

1 1 1= ··· ···
···

···
(1)

where y(K) is the current system output estimation, y(k − i) is
a generic lagged sample of the system output, and ui(k − j) is a
lagged sample of the i-th system input. The maximum output
delay of the model is assumed to be n, and ni represents the i-
th maximum delayed input. The unknown function F(·) is the
regression analysis function, and only the proven fourth-order
model is extracted as the baseline method in this paper, so the
regression function is not discussed. The specific use of this
fourth-order model is described in the case studies in Section
4.

2.2. Autoencoder Neural Network (AE). The autoen-
coder is an unsupervised learning model based on a
backpropagation algorithm with optimization methods.2,3

The single autoencoder is a three-layer network structure as
in Figure 1, with an input layer on the left, a hidden layer in the

middle, and an output layer on the right. The whole network
model can be divided into two parts: the encoding part and the
decoding part. This network model’s encoding and decoding
parts are symmetrical, i.e., the number of nodes in the input
layer is equal to that in the output layer. The middle hidden
layer can be a single layer or multiple layers. When there are
numerous hidden layers, they can be considered various AEs
stacking to form a stacked autoencoder. The autoencoder uses
the input data X as supervision to guide the neural network to
learn a mapping relationship that reconstructs the output XR.
The AE model has some sparsity and can complete the

automatic selection of data features and the automatic
completion of the dimensionality reduction process, thus
forcing the neural network to learn high-value features. As
shown in Figure 1, the encoding process of AE is from the
input layer to the hidden layer, where the high-dimensional
input data x is encoded into the low-dimensional hidden
variable h through the nonlinear mapping function f(·)

h f Wx b( )= + (2)

where W is the weight matrix and b is the bias vector. The
decoding process of AE is a process from the hidden layer to
the output layer, reflecting the hidden layer data through the
inverse mapping function g and reconstructing the input data x̃
in the output layer

x g Wh b( )= + (3)

where W̃ and b̃ are the corresponding weight matrices and bias
vectors in the decoding process. The objective of the model is
to minimize the reconstruction error, i.e., the error between the
input data x and the output data x̃ so that more high-value
features are retained in the parameter set θ = {W, W̃, b, b̃}.
Denote the raw observed input dataset as xi ∈{x1, x2,...,, xn},
To obtain the parameter set θ, the reconstruction error can be
minimized by calculating the loss function as

l W W b b
n

x x( , , , )
1

2 i

n

i i
1

2

= || ||
= (4)

The AE network forces the hidden layer to extract high-value
features through extraction and reconstruction operations.
Subsequent regression prediction models can directly use these
extracted features.2,4,6 Hence, the extracted high-value features
can be considered globally relevant and do not destroy the
feature distribution of the original data.

3. SOFT SENSOR MODELING
This section will detail the proposed combined autoencoder
data augmentation strategy and the complete soft sensor
modeling steps. Our introduction will be divided into the
following two aspects: first, we introduce the combined
autoencoder data augmentation strategy and its internal
modes of structural adaptation and present a validation
method for the strategy. Second, we introduce the modeling
process of the soft sensor modeling and the evaluation metrics
of the model.

3.1. Combined Autoencoder Data Augmentation
(CADA) Strategy. The main idea of this paper is derived
from ref 3: the data enhancement approach aims to provide
highly representative training data for subsequent regression
models. And in refs 2 and 4, we learn that autoencoder
networks have the characteristics of automatic compression
and forced extraction of high-value features. Therefore, thisFigure 1. Autoencoder (AE) neural network model diagram.
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paper attempts to use a traditional nonlinear autoregressive
moving average model combined with an autoencoder to find a
data augmentation method with higher performance gains.
Our proposed CADA strategy is a preliminary exploration of

an adaptive combination of the two methods. So in this paper,
we explore three modes, one original mode (the baseline
mode) and two other research modes (the structural adaptive
comparison modes), the specific mode flow diagram shown in
Figure 2. Mode 1 uses a fourth-order nonlinear autoregressive
moving average model, demonstrated in ref 33. We have
embedded this method in the CADA strategy and used it as
our baseline model for comparison purposes. In mode 2, we
used an AE network to perform coarse feature extraction from
the raw data. We combined the output of the hidden layer with
the expanded data from the fourth-order nonlinear autore-
gressive moving average model of mode 1. In mode 3, we first
use mode 1 to expand the raw data and then use the AE
network to perform coarse extraction of features on the
expanded data. After the calculation is completed, the hidden
layer output of the AE network is extracted and combined with
the expanded data of mode 1. As the CADA strategy is
horizontal in this paper, the “connection” in modes 2 and 3 is
to expand the data to a higher number of columns. The two
methods are reusable in the CADA strategy, and all exist in a
single model. Only the input and output interfaces of the data
need to be adjusted between the different modes. The details
of the data flow are shown in Figure 2.
In this paper, Spearman’s rank correlation coefficient is used

to verify the feasibility of the CADA strategy. In this paper, the
correlation coefficient is an indication of the direction of
correlation between the auxiliary variable X and the key
variable Y. When X increases and Y tends to increase, the
Spearman correlation coefficient is positive; when X increases
and Y tends to decrease, the Spearman correlation coefficient is

negative. In particular, when the Spearman correlation
coefficient is zero, indicating no convergence of Y as X
increases, the Spearman correlation coefficient increases in
absolute value as X and Y get closer to a complete monotonic
correlation. The Spearman correlation coefficient is defined as
the Pearson correlation coefficient between rank variables. For
a sample with a capacity of n rows and m columns in this
paper, the correlation coefficient for the m data columns is

x x y y

x x y y

( )( )

( ) ( )
i i i

i i i i
2 2

=
(5)

3.2. CADA-CNN Soft Sensor Model. The soft sensor
model in this paper is divided into two stages. The first stage is
the data augmentation stage, where we augment the data using
the CADA strategy. The second stage is the regression
prediction stage. We use a convolutional neural network
(CNN) that focuses more on local features to perform the
regression prediction of features, as the features are augmented
for local data in the first stage. Therefore, the complete soft
sensor model is called the CADA-CNN model. Intuitively,
Figure 3 shows the CADA-CNN soft sensor model diagram.
This paper shows the specific CNN network structure in the

regression analysis stage in Figure 3. In this stage, we set up
three convolutional layers, interspersed with a pooling layer in
the second and third convolutional layers, and finally used a
fully connected neural network for the predictive representa-
tion of the features and to obtain the predicted output in the
output layer. The specific algorithmic flow of the CNN
network is shown in Table 1.
In this paper, the three modes of CADA strategy are

modeled, respectively, and the modeling process is shown in
Figure 4, with the following modeling steps.

Figure 2. Flowchart of the three different modes in the CADA strategy (mode 1 is the baseline mode, and modes 2 and 3 are the research modes
with different structural assignments for the two methods).

Figure 3. Diagram of CADA-CNN soft sensor model.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01747
ACS Omega 2022, 7, 30782−30793

30785

https://pubs.acs.org/doi/10.1021/acsomega.2c01747?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01747?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01747?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01747?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01747?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01747?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01747?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01747?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(1) Step 1: The auxiliary variable selection, collection, and
preprocessing.

(2) Step 2: Determine train and test datasets.
(3) Step 3: The autoencoder network in the CADA strategy

is pre-trained, the number of iterations and learning rate
of this network is determined, and the feasibility of the
CADA strategy is verified by correlation analysis.

(4) Step 4: Pre-training the CADA-CNN model and
determining the learning rate of the CNN network in
this model.

(5) Step 5: The CADA-CNN soft sensor model is trained
according to the hyperparameters determined in steps 3
and 4.

(6) Step 6: Fine-tune the overall network and modify the
network parameters slightly.

(7) Step 7: Testing the test set and evaluating the
performance of the soft sensor model.

This paper uses the three model indicators used in refs 2−4
to evaluate the model.
Mean absolute error (MAE) is defined as

n
y yMAE

1

j

n

j
1

pred= | |
= (6)

Root mean square error (RMSE) defined as

n
y yRMSE

1
( )

j

n

j
1

pred
2=

= (7)

R-square (R2) is defined as

R y y y y1 ( ) / ( )
j

n

j j

n

j
2

1
pred

2
1

2=
=

=
(8)

4. RESULTS AND DISCUSSION
This section performs a comparative ablation study of CADA
strategies using a debutanizer column and an industrial steam
volume dataset. We will describe and analyze the following
four aspects. First, we introduce the dataset used for this case
study and its associated variables. Second, we present the usage
of the baseline method identified in this paper and the model
structure parameters of the neural network used. Third, we
experimentally set the hyperparameters of the AE network in
the CADA strategy and performed a correlation analysis on the
output data. Fourth, we experimentally determine the

Table 1. Convolutional Neural Network Algorithm Flow

algorithm: convolution regression

input: Output of CADA stage X(DA), key variables Y

output: key variables for prediction Ypred
1: parameter setting: batch size, epochs, learning rate.
2: loss function: mean absolute error (MAE).
3: optimizers: Adam.
4: conv parameter setting: kernel size, padding, activation function.
5: initial weight.
6: repeat:

7: loss (MAE) ← y y
n j

n
j

1
1 pred| |=

8: weight ← updated parameters by gradient descent
9: until: convergence of weight

Figure 4. Flowchart of CADA-CNN soft sensor modeling.
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hyperparameters of the CADA-CNN soft sensor model and
analyze the model’s index scores and prediction results on the
test set.

4.1. Debutanizer Column. Separating crude oil is a very
complex and important refining process in the petroleum
industry. The debutanizer column is an important industrial
refinery furnace for separating liquefied petroleum gas and
stabilized light hydrocarbons, mainly for desulphurization and
naphtha splitting. The flowchart of the debutanizer column is
shown in Figure 5. To ensure product quality, the butane
content at the bottom of the debutanizer column must be
minimized. As a result, the real-time measurement of the
butane content in the column is the key point for the accurate
control of the refinery process. As a result, the real-time
measurement of the butane content in the column is the key
point for the accurate control of the refinery process. However,
the concentration of C4, which can reflect the butane content,
cannot be measured directly but requires continuous measure-
ment and analysis of the subsequent overheads of the
deisopentane tower with the aid of a gas chromatograph.
In summary, the gas chromatograph has a serious delay in

measuring butane content, and the equipment is expensive to
maintain, which cannot guarantee the real-time control of the
refinery process. To alleviate these problems, soft sensor
technology, which is easy to operate and low maintenance,
predicts the C4 content. The seven points in Figure 5 are the
data collection points for the auxiliary variables, and Table 2
describes the auxiliary and key variables.

4.2. Baseline Method and Model Structural Parame-
ters. In this subsection, we present the following two aspects.
First, we present the specific operation of the determined
baseline method, i.e., the fourth-order nonlinear autoregressive
moving average model, on the debutanizer column dataset.
Second, we present the model structure parameters of the two
neural networks in the proposed CADA-CNN model, namely,
the autoencoder and the convolutional neural network.
There are seven auxiliary variables and one key variable in

the debutanizer column dataset. The dataset is expanded
according to the proven fourth-order nonlinear autoregressive
moving average model using historical data for the u5 attribute
and the key variable y. The specific data expansion is shown in
the augmentation matrix (9).33 A total of 2390 data samples
are collected in this process, of which 1000 samples are used as
the training dataset and the remaining samples as the test
dataset.

u k u k u k u k u k u k u k u

k u k u k y k y k y k

y k

( ), ( ), ( ), ( ), ( ), ( 1), ( 2),

( 3), ( ( ) ( ))/2, ( 1), ( 2), ( 3)

, ( 4) T

1 2 3 4 5 5 5 5

6 7

[

+

]
(9)

In this paper, three modes are set up in the CADA strategy,
where mode 1 uses data augmentation such as the
augmentation matrix (9), and in modes 2 and 3, the
autoencoder network (AE) is used. Therefore, we need to
configure the AE network structure, which is referenced in ref
2 and set to [13 8 3]. Since there are 13 variables in the
augmented variable vector of the data after the fourth-order
nonlinear autoregressive moving average model, the number of
neurons in the input layer of AE is 13. The high-value features
extracted from the hidden layer of the AE network were
expanded into the data vector and the data were passed into
the CNN network as k × k, thus setting the middle hidden
layer neurons of the AE network to three. In the regression
analysis stage, the structure of the CNN network is shown in
Figure 3. The Adam optimizer is used for optimization, the loss
function is set to MAE, the convolutional kernel size is 2 × 2,
the padding method is the same, and the relu function is used
as the activation function.

Figure 5. Debutanizer column flowchart.

Table 2. Variable Description for the Debutanizer Column

input variables variable description

u1 top temperature
u2 top pressure
u3 reflux flow
u4 flow to next process
u5 6th tray temperature
u6 bottom temperature A
u7 bottom temperature B

y butane content
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4.3. CADA Parameter Determination and Correlation
Analysis. In this subsection, we present the following two
aspects. First, we experimentally determine the hyperpara-
meters for the CADA stage. Second, we perform a correlation
analysis of the output data from the CADA stage.
In the CADA strategy, both mode 2 and mode 3 use the

autoencoder network, so we need to experimentally limit the
number of iterations and learning rate of the autoencoder
network. In exploring the number of iterations, we refer to the
setting in ref 2 and set the learning rate tentatively at 0.01 (this
learning rate will be experimentally validated subsequently),
with 2000 iterations on mode 2 and mode 3, respectively,
whose network loss varies with the number of iterations as
shown in Figure 6. In Figure 6, as can be seen, the pattern of

loss change is the same for both modes. The loss of the
autoencoder network stopped decreasing after nearly 1000
iterations, so we set the number of iterations for each mode in
the CADA stage at 1000.
We tentatively set the learning rate at 0.01 and

experimentally determined the number of iterations to be
1000 when exploring the variation pattern of the number of
iterations versus loss. Therefore, seven sets of experiments are
conducted to set the learning rate. Respectively, set the
learning rate (lr) to {0.001,0.005,0.01,0.05,0.1,0.5,1}, the
relationship between the learning rate, loss, and iterations is
shown in Figure 7. As seen in Figure 7, the loss of both mode 2
and mode 3 decreases smoothly as the number of iterations
increases when the learning rate is 0.001 and 0.005. As the

learning rate continues to rise, the loss of mode 2 and mode 3
fluctuate as the number of iterations rises. Hence, we can
determine that the change in loss is close to a critical state at a
learning rate of around 0.005. Meanwhile, to reduce the
fluctuations during multiple independent experiments, we
selected the learning rate of the CADA stage as 0.001.
To compare the correlation of the data constructed by the

three modes in the CADA strategy more intuitively, we
numbered the data in the three modes. The numbering
description table is shown in Table 3. The data columns

numbered 1−7 are the raw data columns, those numbered 1−5
and 8−15 are the data columns outputted by mode 1, those
numbered 1−5 and 8−18 are the data columns outputted by
mode 2, and those numbered 1−5 and 8−15 and 19−21 are
the data columns outputted by mode 3. The key variable y data
column was used to calculate the Spearman correlation
coefficient with the original seven attribute columns in the
dataset and the output data columns of the three modes. The
Spearman correlation coefficient calculation results are shown
in Table 4 and Figure 8. The correlation coefficients calculated

Figure 6. CADA stage, mode 2, and mode 3 loss variation diagram.

Figure 7. CADA stage, loss, iterations, and learning rate variation diagram.

Table 3. Description of Data Column Numbers

data description number

raw data 1−7
mode 1 output 1−5,8−15
mode 2 output 1−5,8−18
mode 3 output 1−5,8−15,19−21

Table 4. ρ for the Output Data of the Three Modes in the
CADA Strategy

number ρ number ρ
1 0.068678652 12 0.996632657
2 0.21090934 13 0.987065435
3 0.248085121 14 0.971603143
4 0.149349171 15 0.950779782
5 0.21023562 16 0.096137048
6 0.064929623 17 0.128862912
7 0.043576496 18 0.074797045
8 0.24673177 19 0.471020202
9 0.286921231 20 0.820837668
10 0.330141462 21 0.790777659
11 0.053040193
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for the data columns numbered 1−15 are constant. In contrast,
the data columns numbered 16−21 are calculated from the
high-value features extracted by the AE network and will
change each time. Therefore, we use the network settings
determined from the above experiments to ensure the stability
of the AE network, set the number of iterations to 1000 and
the learning rate to 0.001, and repeat 20 times to calculate its
mean value.
As shown in Table 4 and Figure 8, the correlation

coefficients of the raw data are low. However, after the
fourth-order nonlinear moving average method of mode 1, the
expanded data columns have high correlation coefficients, as
shown in the data columns numbered 9,10,12,13,14,15,
respectively. The high-value features extracted by the AE
network also have similarly high correlation coefficients, as
shown in the data columns numbered 20,21 respectively. The
data numbered 16−18 are the high-value features extracted
from the AE network in mode 2. The results show that mode 2
has a lower correlation coefficient than mode 3, and mode 3
has a higher correlation coefficient than some of the data in
mode 1.
Our proposed CADA strategy can significantly expand the

data columns with a higher correlation on the base method,
thus demonstrating the strategy’s feasibility.

4.4. CADA-CNN Soft Sensor Model. In this subsection,
we present the following three aspects. First, the hyper-
parameters of the CADA-CNN soft sensor model are
determined. Second, the experimental results of the model
and the scores of the model evaluation indicators are analyzed.
Third, the prediction error of the model is analyzed.
In this paper, we use 1000 data as the training set and the

remaining data as the test set, so we set the batch size to 50
and the epochs to 20 by referring to the setting in ref 4. We
conducted five groups of experiments for the CNN regression
network to determine the size of a learning rate of
{0.001,0.003,0.005,0.008,0.01}. The variation of its learning
rate and MAE loss with increasing epochs is shown in Figure 9.

As shown in Figure 9, there is a substantial decrease in loss
during the first three epochs of the experiment and a slight
decrease in loss during subsequent training. The loss in the first
epoch of the model decreases when the learning rate decreases.
In addition, the smaller the learning rate, the smaller the MAE
loss when training is completed with 20 epochs. Therefore, to
minimize the training error, we set the learning rate of the
CNN regression network in the CADA-CNN model to 0.001.
This paper uses the parameters described above to build the

CADA-CNN soft sensor model and conduct experiments. In
which we use the base regressors as used in ref 2 for
comparison tests in the regression analysis stage, which are
multilayer artificial neural networks (NN) with the structure of
[13 10 7 4 1]2, support vector regression (SVR). And two
citation comparison models are used, VWSAE-NN2 and
SQAE-NN4. The complete experimental indicator scores are
shown in Table 5.

Figure 8. Histogram of ρ for each data column (the maximum ρ values for each part of the legend are marked in the figure).

Figure 9. Plot of CADA-CNN model learning rate and MAE loss with
epoch.
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From the evaluation metrics in Table 5, as can be seen, in
mode 3, the MAE, RMSE, and R2 metrics of the CADA-CNN
model outperformed the comparison model VWSAE-NN. The
MAE and RMSE metrics of the CADA-CNN model are
slightly higher due to the different data selection and less
improvement, but the R2 metric is better than that of the
SQAE-NN model. Overall, the CADA-CNN model out-
performed mode 2 and mode 1 (baseline mode) under
mode 3. As shown in Table 4 and Figure 8, this result
indirectly illustrates the lower correlation coefficients calcu-
lated for the high-value features extracted by the AE neural
network in mode 2 and the higher correlation coefficients in
mode 3. As can be seen from the results of the ablation
experiments only involving autoencoders in Table 5, the AE-
only experimental metrics are inferior and cannot be compared
to the better models available. To provide a more intuitive

understanding of the prediction results of the soft sensor
model, we extracted the prediction results of the regression
model as a CNN for each of the three modes, which is
represented in Figure 10.
From Figure 10a, we can see that the prediction results

under the three modes of the CADA strategy are significantly
different. In mode 1, the prediction curve for the data
augmentation mode using the fourth-order nonlinear autore-
gressive moving average model is in the middle of the three
modes. However, the prediction curves for mode 2 and mode 1
are essentially the same, but in some regions, such as around
the data point with the test set number in [70,120] in Figure
10b, the prediction curve for mode 2 is lower than that for
mode 1. Possible reasons for this occurrence are fluctuations in
the model when predicting particular data points, inadequate
support of feature data, etc. As can be seen in Figure 10a,b,
mode 3, i.e., after the expansion of mode 1 and then using the
AE network for coarse feature extraction, and combining the
outputs of the two methods, has a high degree of fit with the
real value, which also reflects that mode 3 has a high score
among the various evaluation indicators obtained in Table 5.
From Figure 10, it is only possible to see whether the
predictions fit the real value, so we calculated the error
between the predicted and real value for each mode in the
CADA-CNN model, which is derived from the difference
between the predicted and real value. The detailed prediction
errors for each mode are shown in Figure 11.
Figure 11 presents the difference between the predicted and

true values using an area plot. The area chart is bounded by the
prediction error curve, using the area between the curve and
the zero axis to represent the magnitude of the error value and
the fluctuations in the prediction. From Figure 11, we can
visualize that in mode 1, the prediction error is between

Table 5. Results of CADA-CNN Model Metrics

CADA model MAE RMSE R2

AE-only NN 0.0705 0.0910 0.7781
SVR 0.0741 0.1053 0.7022
CNN 0.0562 0.0791 0.8323

mode 1 (baseline mode) NN 0.0259 0.0491 0.9321
SVR 0.0519 0.0656 0.8846
CNN 0.0284 0.0421 0.9478
VWSAE-NN2 0.0277 0.0379 0.9444
SQAE-NN4 0.0220 0.0303 0.9646

mode 2 NN 0.0350 0.0646 0.8764
SVR 0.0468 0.0649 0.8869
CNN 0.0318 0.0471 0.9404

mode 3 NN 0.0267 0.0449 0.9434
SVR 0.0433 0.0599 0.9035
CNN 0.0273 0.0361 0.9651

Figure 10. Graph of prediction results versus true values for the CADA-CNN model in three modes: (a) comparison of prediction results for all
test data and (b) comparison of prediction results for test data number 70 to 120.
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[−0.1,0.2], and the experiment in this mode serves as our
baseline. In mode 2, there is a significant fluctuation in the
prediction error, which expands to a range between
[−0.2,0.35]. In this mode, the prediction error decreases for
most of the data points in the test set. Still, it increases
significantly around some particular points, such as the data
point with the test set number [70,120]. In mode 3, the range
of the prediction error is further reduced to [−0.1,0.15], and
the prediction error in the entire test set is significantly
reduced compared to baseline.
The prediction results are statistically presented to reflect

the prediction error distribution of the CADA-CNN model
under the three modes. The complete histogram of the
prediction error distribution is shown in Figure 12. As can be

seen from the error distribution curve in Figure 12, the error
distribution of the baseline method, i.e., the CADA-CNN
model under mode 1, is biased to the right of the zero labels,
indicating an uneven error distribution. The prediction error
distributions for modes 2 and 3 are not skewed and are evenly
distributed around the zero labels. Meanwhile, the sharper the
error distribution curve, the more concentrated the distribu-
tion. In Figure 12, the error distribution curve for mode 2 is
flatter than that for mode 3, which means that mode 2 has a
larger prediction error than mode 3. It also shows that the

CADA-CNN model has a better prediction error distribution
under mode 3.

4.5. Industrial Steam Volume. Thermal power gener-
ation uses the released heat energy when fuel is burned to heat
the water in the boiler to produce steam. The steam is
accumulated in a special pressure tank and is used to drive the
turbine. As a result, the turbine rotates the generator for
electricity production. The flowchart of thermal power
generation is shown in Figure 13. In this process, the energy
conversion efficiency of the boiler is the key to the efficiency of
electricity generation. In other words, the transformation
efficiency of the fuel is realized when the fuel is burned to heat
the water in the boiler and to produce high temperature and
pressure steam. The factors affecting the energy transfer of this
process are complex, including the boiler’s adjustable
parameters, such as fuel charge, ventilation air volume, boiler
water volume, and boiler operating conditions, such as boiler
bed temperature, bed pressure, furnace chamber temperature,
pressure, etc.
There are 38 auxiliary variables and 1 key variable in the

data. A total of 2884 data samples are collected, of which 2500
samples are used as training data and the rest as test data. In
this experiment, we focus on testing the effectiveness of the
CADA strategy and the performance of each model. Therefore,
we use the same parameter configuration as in the previous
experiments. The specific data expansion for the baseline
model is shown in the augmentation matrix (10).33 In
addition, we should adjust the number of output neurons of
the AE network to 5 to facilitate the integration of data from
modes 2 and 3. The complete experimental indicator scores are
shown in Table 6.
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From the evaluation metrics in Table 6, the trends in the
overall experimental results are the same as the previous
debutanizer column experiments. The results for mode 3 were
all better than the other ablation experiments, the results for
AE-only and mode 1 were essentially the same, and the results
for mode 2 were slightly better than the former two baselines.
Since the experimental results on both datasets trended the
same, we did not extract and analyze the industrial steam
volume experiment results.

Figure 11. Error area chart of the predicted and true value of CADA-CNN model in three modes.

Figure 12. Histogram of error distribution statistics for the CADA-
CNN model in the three modes (the bars in the figure are the number
of error statistics in that range, and the curves in the figure indicate
the distribution of that error).
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5. CONCLUSIONS
This paper discusses the feasibility of the data augmentation
strategy, which combines the autoencoder network with the
nonlinear autoregressive moving average model. Meanwhile, a
CADA-CNN soft sensor model is designed, and the
effectiveness of the strategy and model is validated by
experiments in an industrial process debutanizer column and
ablation testing of CADA strategies on an industrial steam
volume dataset. The experimental results show that our
proposed CADA strategy has a large improvement in the
prediction performance of the subsequent regression model.
The proposed CADA-CNN model has a smaller prediction
error and a better error distribution at mode 3.
In this paper, subject to several requirements mentioned in

the paper, our proposed CADA strategy is only combined with
the proven fourth-order nonlinear autoregressive moving
average model, which may be combined more effectively
with other methods. Moreover, in this paper, we only use the
autoencoder network, and there may be more efficient
networks to replace its position. The strategy validated in
this paper also offers the possibility of further exploration in
different areas. For example, the CADA strategy could be
useful in classification problems, where autoencoder networks
have many research applications.
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