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Abstract

The identification of metal ion binding sites is important for protein function annotation and

the design of new drug molecules. This study presents an effective method of analyzing and

identifying the binding residues of metal ions based solely on sequence information. Ten

metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+,

Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were

sensitive to the conservation of amino acids at binding sites, and promising results can be

achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over

79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals

can also be accurately identified using the Support Vector Machine algorithm with multifea-

ture parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity

and hydrophilicity information and Mn2+ was insensitive to polarization charge information.

An online server was constructed based on the framework of the proposed method and is

freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

Introduction

Approximately one-third of all known proteins bind with metal ions [1,2]. The metal ions play

a crucial role in protein structure and function, for example the transportation of iron ions in

hemoglobin, the stabilization of zinc ions in the zinc finger domain, and the regulation of cal-

cium ions in calmodulin [3–7]. The realization of biological function depends on the interac-

tion between the ligand-binding residues and metal ions. The molecular mechanism involves

the metal ions binding with specific residues within proteins. In addition, the role of metal

ions in dSPNs [8,9] (disease-related single nucleotide polymorphisms) is directly related to

human disease, and the identification of metal ion-binding residues is of great significance for

the development of molecular drugs to treat human diseases.

During the last few years, many approaches have been developed to predict the binding

sites of protein-metal ions. The methods of identifying metal ion-binding residues are gener-

ally divided into two types. One type of method directly predicts the metal ion binding sites

using 3D structural information, and high accuracy can be achieved. The Fold-X force field
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algorithm was used by Joost et al. [10] to predict Ca2+, Zn2+, Cu2+ and Mn2+ ion binding resi-

dues, obtaining an overall accuracy from 90% to 97%. Deng et al. [11] developed graph theory-

based and geometry-based approaches to detecting calcium-binding sites and achieved a sensi-

tivity of nearly 90% for 123 calcium binding proteins. The CHED algorithm was developed by

Babor et al. [12,13] based on the three-dimensional (3D) structure to predict transition metal-

binding sites (Zn2+, Co2+, Ni2+, Fe2+, Cu2+, and Mn2+) in 349 apoproteins and 82 holoproteins,

achieving specificities of 95% and 96%, respectively. Jessica et al. [14] developed a Bayesian

classifier to predict zinc-binding sites in 349 zinc proteins and achieved a specificity of 99.8%

and sensitivity of 75.5%. Yang et al. [15] constructed the online server I-TASSER suite based

on sequence and structure information and predicted the ligand binding sites of proteins by

integrating many algorithms, including TM-SITE [16] and COFACTER [17], in series. The

method was evaluated in CASP11 [18] and performed very well.

For most proteins, the 3D structure has not been derived. The alternative methods use the

amino acid sequence information to identify the binding residues of metal ions in proteins, and

although the prediction accuracy is generally lower, this method is more universal. The Metsite

approach was developed by JS Sodhi et al. [19] using artificial neural networks to predict the

binding sites of six metal ions (Ca2+, Cu2+, Mg2+, Fe3+, Mn2+ and Zn2+) on 1018 protein chains.

The method achieved an accuracy of 94.5% by 5-fold cross-validation. In 2005, Lin et al. [20]

predicted the protein metal-binding residues from sequence information using artificial neural

networks; the method yielded a sensitivity higher than 90% and was very accurate under 5-fold

cross-validation. In 2006, Lin et al. [21] used SVM prediction systems that were trained on a

dataset containing 53,333 metal-binding residues to predict the binding residues of ten metal

ions. The method was evaluated on an independent set of 31,448 metal-binding residues, and

the computed prediction accuracy was higher than 74.9%. Lu et al. [22] predicted the metal

ion-binding sites (Ca2+, Mg2+, Cu2+, Fe3+, Mn2+ and Zn2+) in proteins by the fragment transfor-

mation method using both sequence and structural information and achieved an overall accu-

racy of 94.6% with a true positive rate of 60.5%. Hu et al. [23] developed a composite method

(IonCom) that combines the ab initio model with multiple threading alignments for 9 metal

ion binding site predictions and observed good results under 5-fold cross-validation.

The study of the binding residues of multiple metal ion ligands generally uses the same

characteristic parameters and the same prediction model. In fact, each metal ion ligand bind-

ing residue is different, and no single characteristic parameter can be sensitive to all metal

ligands; this is the reason for the different results. We aim to predict metal ion binding sites

based on only sequence information and to obtain robust results. In this study, based on

sequence information, the binding residues of 10 kinds of metal ions were derived using statis-

tical analysis and a prediction algorithm. At the same time, the sensitive characteristics of dif-

ferent types of metal ion binding residues were derived by calculation, and the proposed

prediction algorithms were evaluated by cross-validation and independent tests. This approach

also utilized a position-weighted scoring matrix and a support vector machine learning algo-

rithm to evaluate data and refine predictions. This combination of methods and analytical

approaches has culminated in a relatively effective tool for predicting metal binding sites with-

out the use of 3D structures. The advantages and disadvantages of our method are discussed.

Materials and methods

Non-redundant dataset

The proteins interacting with metal ions were downloaded from the BioLiP [24] database

using a pairwise sequence identity below 95%. There are ten metal ions that have a sufficient

number of binding residues to perform the statistical analysis, i.e., Zn2+, Cu2+, Fe2+, Fe3+,
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Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The proteins were further filtered by keeping only those

with a resolution less than 3.0 Å and a sequence length greater than 50 residues. Redundant

proteins were removed using the CD-HIT program [25] with a sequence identity threshold of

30%. Table 1 shows the summary statistics of the dataset. The number of protein chains varied

from 57 to 1428 for different metal ions. The binding segment was defined as the sequence seg-

ment with the binding residue centered in a fixed-length window. A similar definition was

used to specify the non-binding segments, where the center residue is a non-binding residue.

The number of binding segments in our dataset varied from 382 to 6408, and the number of

non-binding segments varied from 18777 to 480307. There was an increase in the number of

samples in each category compared to the Hu et al. Dataset.

To fairly test the performance of the proposed methods, we divided the dataset into two

parts: the training dataset used to fine tune the methods by cross-validation, and the indepen-

dent test dataset used to test the methods. The protein chains in the independent test

accounted for 1/5 of the total data. The statistics of the two datasets are shown in Table 2.

Methods

This study mainly adopted the global recognition method based on the combination of the

Position Weight Matrix Scoring (PWSM) algorithm and the Support Vector Machine (SVM)

algorithm. First the binding sites of the ten metal ions are predicted by the PWSM algorithm

using only the amino acid sequence, additional characteristic parameters are then input into

the SVM to continue predicting the binding sites, and the prediction results can finally be

obtained. The flowchart of this method is shown in Fig 1.

Position weight scoring matrix. PWSM is a classification algorithm that has been suc-

cessfully used in the prediction of transcription factor binding sites in genomes and super-

secondary structures [26, 27]. The scoring value is given by the following equation:

S ¼

XL

i¼1

Ciðwi;j � wi;minÞ

XL

i¼1

Ciðwi;max � wi;minÞ

ð1Þ

Here, wi;j ¼ log pi;j
p0;j

� �
; pi;j ¼

ni;jþ
ffiffiffi
Ni
p

=
21

Niþ
ffiffiffi
Ni
p

Table 1. The statistics of the dataset using the sequence segment of length 17 for the ten metal ions.

Metal ion Chainsa Binding segments Non-binding segments

Zn2+ 1428(142) 6408 405113

Cu2+ 117(110) 485 33948

Fe2+ 92(227) 382 29345

Fe3+ 217(103) 1057 68829

Co2+ 194(0) 875 55050

Mn2+ 459(379) 2124 156625

Ca2+ 1237(179) 6789 396957

Mg2+ 1461(103) 5212 480307

K+ 57(53) 535 18777

Na+ 78(78) 489 27408

aThe number of protein chains. The number in parentheses is the number of proteins in the Dataset of Hu

et al.

https://doi.org/10.1371/journal.pone.0183756.t001
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The conservation index at the i-th position may be defined by the following expression:

Ci ¼
100

log21
ð
X21

i¼1

pi;jlogpi;j þ log21Þ ð2Þ

In the above equation, wi,j is the weight probability of the jth amino acids at the ith position,

wi,max is the maximum value at the ith position, and wi,min is the minimum value at the ith posi-

tion. L is the length of amino acid sequence. Pi,j is the observed probability of the jth amino

acids at the ith position, and P0,j is background probability of the jth amino acid, respectively.

Ni is total number of all amino acids occurring at the ith position, nij is the frequency of the jth

amino acids at the ith position. The PWSM algorithm was used in this paper to extract the posi-

tion conservation of amino acid residues from segments. Based on the training set, two stan-

dard position weights matrices can be constructed using the binding segments and non-

binding segments, respectively. In the test set, we obtain 2 matrix scoring values for an arbi-

trary sequence segment using the binding and non-binding position weight matrices respec-

tively, and the maximum value will give the segment class to which the predicted segment

should belong. In addition, the two matrix scoring values can also be used as feature parame-

ters in the SVM algorithm. For example, the position conservation of an amino acid is 21 � L

dimensions for each sequence fragment, compressed into two dimensions

Support vector machine. The SVM is a machine learning algorithm proposed by Vapnik

[28] that performs well in the classification of small samples based on the principles of struc-

tural risk minimization. We established our identification model using the Libsvm-3.21 pack-

age based on the C-SVC classifier and a radial basis function (RBF) kernel. The parameters of

c and gamma were set to the default values [29]. The operation contains three steps: svm-scal-

ing, svm-training and svm-predicting. There will be an overfitting problem in the training pro-

cess when the dimensions of input vectors are too high. Thus, we reduced and refined the

dimension of input vectors by using the ID algorithm PWSM algorithm to enhance the learn-

ing ability and generalization ability of the SVM.

The validation and evaluation metrics. We used the following four standard measures to

evaluate the performance of the identification of metal ion binding residues: sensitivity (Sn),

specificity (Sp), accuracy of prediction (Acc) and Matthew’s correlation coefficient (MCC).

Table 2. The statistics of the training dataset and the independent test dataset.

Ligand Training dataset Independent test dataset

Chains Pa Nb Chains Pa Nb

Zn2+ 1142 5145 321161 286 1263 83952

Cu2+ 93 377 27548 24 108 6400

Fe2+ 73 301 23824 19 81 5521

Fe3+ 173 859 54945 44 198 13884

Ca2+ 989 5256 312876 248 1533 84081

Mg2+ 1168 4069 384365 293 1143 95942

Mn2+ 367 1685 124543 92 439 32082

Na+ 62 408 22411 16 81 4997

K+ 45 410 14882 12 125 3895

Co2+ 155 707 44300 39 168 10750

aThe number of positive (binding) samples
bThe number of negative (non-binding) samples.

https://doi.org/10.1371/journal.pone.0183756.t002
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These were calculated by the following formulae:

Sn ¼
TP

TPþ FN
� 100% ð3Þ

Fig 1. Schematic diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0183756.g001
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SP ¼
TN

TN þ FP
� 100% ð4Þ

Acc ¼
TPþ TN

TPþ TN þ FPþ FN
� 100% ð5Þ

MCC ¼
ðTP� TNÞ � ðFP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP � FPÞðTP� FNÞðTN � FPÞðTN � FNÞ

p ð6Þ

where TP is the number of correctly identified metal ion-binding residues, TN is the number

of correctly identified non-binding residues, FP is the number of non-binding residues identi-

fied as binding residues, and FN is the number of binding residues wrongly identified as non-

binding residues.

The proposed method was tested by 5-fold cross-validation, which is commonly used in the

prediction of ligand binding residues. The dataset was randomly divided into five sets. One set

was used for testing, and the remaining four sets were used for training. This process was

repeated five times in such a way that each set was used once for testing. The final performance

was obtained by averaging the performances of five sets. Since the number of negative samples

is much larger than that of the positive samples, to assure robustness of the proposed method,

the negative samples with approximately equal numbers of positive samples were randomly

extracted ten times in the 5-fold cross-validation. The final performance was obtained by aver-

aging the performance of ten repetitions.

The training dataset was used to fine-tune the parameters of the proposed methods, and the

independent test was used to test the methods.

Results and discussion

The study of the microenvironment and extraction of the feature

parameters

In this study, we used the sliding window method to analyze the protein sequence by a fixed

length L. The overlapping segments were generated with different window sizes (5, 7, 9, 11, 13,

15 and 17) for every protein sequence. If the central residue of the segment was a metal ion

binding residue, then we assigned the segment as positive; otherwise, it was assigned as a nega-

tive segment. To generate the segment corresponding to the terminal residues in a protein

sequence, we added an (L-1)/2 dummy residue "X" at both terminals of the proteins [30–34].

The position conservation of amino acids. The statistical analysis of the position conser-

vation of 6 metal ions (the other four metal ions) was performed using WEBLOGO [35] soft-

ware, and the result is shown in Fig 2 (S1 Fig). We selected a window length L of 17 as an

example to analyze. The x-axis represents 17 positions in metal ion-binding and non-binding

segments, the y-axis represents the conservation of amino acids in every position, with the

height of each letter corresponding to the occurrence probability of the corresponding amino

acid. As show in Fig 2, the position conservation of the alkali metal ions (Na+ and K+) binding

residues and environmental residues (except the binding residues) are strong. The environ-

mental residues of Mn2+ and the alkaline-earth metals (Ca2+, Mg2+) are also strong, but bind-

ing residues are stronger than those of the alkali metal ions. Interestingly, only transition metal

ions (Co2+, Cu2+, Fe2+, Fe3+ and Zn2+) binding residues are strong, and their preferred resi-

dues are C, H, D and E amino acids. The residues of Zn2+ are C, H, D and E amino acids, and

those of Cu2+ are H, C, E and D amino acids. The above analysis shows that the position
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conservation of amino acid residues is a good indicator of protein-metal ion binding, so it was

selected as the feature information to further develop an effective identification model.

The amino acid composition. The amino acid composition as important feature infor-

mation is commonly used in the identification of ligand binding residues and other studies

[32, 36]. Therefore, we analyzed the amino acid composition in metal ion-binding segments

and non-binding segments of six metal ions (the other four metal ions). As shown in Fig 3

(S2 Fig), the x-axis represents 20 amino acids in metal ion-binding and non-binding segments,

and the y-axis represents the occurrence probability of amino acids in every segment. There

was a significant difference between binding and non-binding segments; residues D and G

had larger occurrence in non-binding segments than in non-binding segments. In addition,

although glutamic acid E is a preferred residue (Fig 2), there are more E residues in non-

binding fragments (Fig 3). This reflects the fact that the distribution of the amino acids and the

amino acid composition information are not the same. Thus, the amino acid composition was

also selected as feature information.

In this study, the amino acid composition was reduced and refined by the Increment of

Diversity (ID) algorithm, a classifier that has been successfully used in the identification of

Fig 2. Illustration of position-specific conservation of amino acid residues in the binding and non-binding sequence segments for

ions of (A) Ca2+, (B) Mg2+, (C) K+, (D) Na+, (E) Zn2+ and (F) Cu2+. The larger residues are more conserved than the smaller ones. Each

subfigure of (A), (B), (C), (D), (E), and (F) contains two figures, where the left one indicates the position-specific conservation in positive

sequence segments and the right one indicates the position-specific conservation in negative sequence segments.

https://doi.org/10.1371/journal.pone.0183756.g002
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protein folds and subcellular localization [37, 38] in recent years. In the state space of dimen-

sion S, for a vector X: [n1, n2, . . ., ns] the measure of diversity source was

DðXÞ ¼ NlogN �
Xs

i¼1

ni logni: ð7Þ

For two state spaces of dimension S, for vectors X: [n1, n2, . . ., ns] and Y: [m1, m2, . . ., ms], the

measure of mixed diversity source X+Y was

DðX;YÞ ¼ ðN þMÞlogbðN þMÞ �
Xs

i¼1

ðni þmiÞlog bðniþmiÞ:

Fig 3. Statistical analysis of the amino acid composition in positive and negative segments for Na+, K+, Mg2+, Ca2+, Zn2+, and Cu2+.

https://doi.org/10.1371/journal.pone.0183756.g003
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The increment of diversity between the source of diversity X and Y was

IDðX;YÞ ¼ DðX þ YÞ � DðXÞ � DðYÞ ð8Þ

The component information was input into the ID algorithm. The standard discrete source is

constructed by training. Two discrete increment (ID) values can be obtained for each segment

of the test set. Finally, the obtained two-dimensional ID value is taken as the characteristic

parameter input to the SVM algorithm. Thus, the frequencies of 21 amino acids (including

dummy amino acids X) of each sequence fragment is a 21-dimensional vector compressed

into two dimensions.

Physicochemical properties of amino acids. Amino acids have different physicochemical

characteristics from their side chains. The interaction between the ligand binding residues and

metal ions are probabilistic in that the metal ions prefer to bind with specific side-groups of

residues. It was thus important to extract information from the side chains. Amino acids can

be grouped into different categories according to different criteria [39, 40]. Here, we extracted

the information of hydrophilicity and hydrophobicity (H) and polarization charge (C) as fea-

ture parameters. The 20 amino acids are grouped into 6 kinds according to hydrophilicity and

hydrophobicity (Table 3) and three kinds according to polarization charge (Table 4) [41, 42].

Secondary structure and solvent accessibility information. The prediction of secondary

structure and solvent accessibility is a key step in moving from the sequence to the tertiary

structure of proteins, reflecting spatial structure information of the backbone and side chains,

respectively [43]. In this study, secondary structure and solvent accessibility information were

predicted using ANGLOR [44] software. We counted frequencies of three secondary structure

types (alpha-helix (H), beta-strand (E) and coil(C)), using PWSM to extract the position con-

servation of secondary structure. The relative solvent accessibility (SA) is generally represented

as a Boolean value denoting whether the residue is buried (RSA < 25%) or exposed

(RSA > 25%). In this study, we did not adopt the above threshold Boolean value directly.

Instead, the distribution of the relative solvent accessibility for binding and non-binding resi-

dues was performed, and then, appropriate thresholds were chosen to categorize the relative

solvent accessibilities into different groups.

Fig 4 shows the example distribution of Fe3+ and Mn2+ ligands. As seen from subfigure (A),

there is an intersection at 0.25, and there are peaks at 0.35 and 0.45. Similarly, there is a peak at

0.25 and 0.45 in subfigure (B). Based on these observations, several partitions were evaluated.

The experiments showed that the following partition yielded the best results. The relative sol-

vent accessibilities are mainly concentrated in four regions (0~0.2, 0.2~0.45, 0.45~0.6 and

Table 3. Hydrophilic-hydrophobic classification of amino acids.

Classification Amino Acids Classification Amino Acids

strongly hydrophilic R, D, E, N, Q, K, H Proline P

weakly hydrophilic L, I, V, A, M, F Glycine G

strongly hydrophobic S, T, Y, W Cysteine C

https://doi.org/10.1371/journal.pone.0183756.t003

Table 4. The polarization charge property of amino acids.

Classification Amino Acids

positive charged K, R, P

negative charged D, E

uncharged N, Q, H, L, I, V, A, M, F, S, T, Y, W, C, G

https://doi.org/10.1371/journal.pone.0183756.t004
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0.6~0.85) represented by 4 letters (I, J, M, and N):

gðxÞ ¼

I x 2 ð0; 0:2�

J x 2 ð0:2; 0:45�

M x 2 ð0:45; 0:6�

N x 2 ð0:6; 0:85�

8
>>>><

>>>>:

ð9Þ

Here, we refined the solvent accessibility information via the PWSM algorithm, extracting the

two-dimensional matrix scoring as the characteristic parameter of the SVM algorithm.

The optimal window length

The binding sites for ten metal ions were extracted from the BioLiP database, containing the

alkali metals (Na+ and K+), the alkaline-earth metals (Ca2+ and Mg2+), and the transition met-

als (Zn2+, Cu2+, Fe2+, Fe3+, Co2+ and Mn2+). The optimal window lengths of the sequence seg-

ments for different metal ions were determined from the results of the statistical analysis of the

amino acid position conservation. If there were obvious differences between positive and nega-

tive segments of conservation information, the optimal window lengths could be determined

directly. Otherwise, we computed and analyzed seven windows (L = 5, 7, 9, 11, 13, 15, and 17),

combined with the four standard measures (Sp, Sn, Acc, and MCC) to obtain the optimal win-

dow. Our selected optimal windows (see Table 5) for the ten metal ions varied from 7 to 13,

Fig 4. The distribution of relative solvent accessibilities for binding and non-binding residues of (A) Fe3+ ligand and (B) Mn2+ ligand.

https://doi.org/10.1371/journal.pone.0183756.g004

Table 5. Performance of PWSM by 5-fold cross-validation.

Ligand Optimal windows (W) Sn (%) Sp (%) Acc (%) MCC

Zn2+ 7 94.8 83.5 89.2 0.788

Cu2+ 13 85.6 91.3 88.5 0.770

Fe2+ 9 92.7 78.0 85.3 0.715

Fe3+ 9 86.7 78.1 82.4 0.650

Co2+ 11 74.5 85.3 79.9 0.601

Mn2+ 7 87.3 63.6 75.9 0.526

Ca2+ 9 57.9 80.6 69.2 0.395

Mg2+ 9 55.6 80.9 68.3 0.378

K+ 11 61.3 72.0 66.6 0.335

Na+ 9 30.1 95.3 62.7 0.335

https://doi.org/10.1371/journal.pone.0183756.t005
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which was smaller than that of ATP and NAD [32,33] ligands (17 in general). Since the volume

of metal ions is generally small, they usually only bind with a few residues. Thus, the optimal

window length of metal ions should be smaller than that of the larger ligands. Our selection of

window length fits the interacting mechanisms of protein-ligands.

Identification of the binding residues for ten metal ions by PWSM

We identified the metal ion binding residues using position amino acid conservation as the

feature parameter via the PWSM algorithm. As shown in Table 5, the metal ions Zn2+, Cu2+,

Fe2+, Fe3+, and Co2+ yielded satisfactory results with Acc percentages greater than 79.9% and

MCC values greater than 0.6. These metal ions were sensitive to the position amino acid con-

servation and could be identified by the PWSM algorithm. Ca2+, Mg2+, Mn2+, Na+ and K+ had

various preferred residues and were less sensitive to the position amino acid conservation. The

results for these metal ions were less accurate, probably because there were not enough fea-

tures. In the next section, extra feature parameters have been extracted to further enhance the

performance.

Identification of binding residues for the metal ions by SVM

Five-fold cross-validation results. To improve the prediction performance for Ca2+,

Mg2+, Mn2+, Na+ and K+, the dimensions of amino acid composition were reduced and

refined using the ID algorithm. The obtained ID (AA) values were combined with position

conservation values (S(P)) calculated by the PWSM and input to the SVM. The results of

5-fold cross-validation are given in Table 6. As seen, the performance has been significantly

improved. For example, the Sn value of Na+ has been significantly improved from 30.1% to

73.6%.

We sequentially added to the feature parameter from the PWSM the values of secondary

structure (S(SS)), hydrophobicity and hydrophilicity (S(H)), polarization charge (S(C)) and

solvent accessibility information (S(SA)). The performance was stably improved by the addi-

tions. Table 7 lists the results for K+ (the results for other ions are provided in the supporting

information). The Acc value was improved from 66.6% to 80.3%; the MCC value was increased

from 0.335 to 0.607; and the values of Sp and Sn were balanced between 77.3% and 83.2%,

respectively.

We found that the results were not further improved by adding S(H) to the Ca2+ model or

by adding S(C) to Mn2+ (see Table 8). We discarded S(H) in Ca2+ and the corresponding val-

ues of Acc and MCC declined, which demonstrated that Ca2+ binding residues were not sensi-

tive to the single S(H) parameter, but this feature is significant in the calcium ion‘s model as a

whole (see Table 8). We also discarded S(C) in Mn2+, as the values of Acc and MCC were

almost unchanged. Mn2+ binding residues thus were not sensitive to S(C) as a whole (see lines

1 to 4 of Mn2+ in Table 8).

Table 6. The performance of SVM(S(P)+ID(AA)) by 5-fold cross-validation.

Ligand Sn (%) Sp (%) Acc (%) MCC

Mn2+ 73.4 83.9 78.7 0.577

Ca2+ 71.1 58.0 70.8 0.422

Mg2+ 64.2 73.9 69.0 0.382

K+ 72.2 67.5 69.8 0.397

Na+ 73.6 70.1 71.9 0.438

https://doi.org/10.1371/journal.pone.0183756.t006
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The final results of the SVM algorithm for identifying the binding residues of the ten metal

ions are listed in Table 9. As seen, the Acc values are greater than 74.8%, and the MCC values

are greater than 0.502 for all ions; Zn2+ is the highest, with an Acc value of 99.7% and an MCC

value of 0.993. This may be because large zinc finger domains exist in zinc proteins where

more than 90% of the Zn2+ preferred residues are C, H, D, and E. Both Zn2+ and Ca2+ are

abundant within the cell and have more known binding sites. Zn2+ typically utilizes fewer

ligands, with more side chains, and has fewer known sites, while Ca2+ utilizes both side-chain

and main-chain ligands, uses more ligands, and has more binding sites. According to our pre-

vious work [23], the average numbers of binding residues per ligand for Zn2+ and Ca2+ are 3.4

and 4.4, respectively. The performance of Ca2+ was much lower than that of Zn2+, which may

be caused by the complicated binding mechanism of Ca2+. The preferred residues and micro-

environment of Ca2+ were influenced by multiple feature parameters. For example, after add-

ing the feature parameter of PWSM values of secondary structure(S(SS)) the result was

improved, which supported the observation that backbone carbonyl oxygens, rather than side-

chain oxygens, frequently bind with Ca2+ [22]. The average numbers of binding residues per

ligand for Na+ and K+ were 5.4 and 6.5, respectively, both of which also had a lower perfor-

mance in comparison with Zn2+. This phenomenon indicates that the greater the average

number of binding residues, the more complicated the binding mechanism.

Independent test results. The proposed method was tested on the independent test set

and compared with the IonSeq method, which is a recently developed sequence-based method.

The performance of the proposed method was obtained by independent testing, while the

Table 7. Recognition results of ligand binding residues for K+ ion.

Algorithm (Parameter) Sn (%) Sp (%) Acc (%) MCC

PWSM(P) 61.3 72.0 66.6 0.335

SVM(ID(AA)+S(P)) 72.2 67.5 69.8 0.397

SVM(ID(AA)+S(P)+SS+S(SS)) 74.2 67.3 70.7 0.416

SVM(ID(AA)+S(P)+SS+S(SS)+S(H)) 78.5 72.7 75.6 0.513

SVM(ID(AA)+S(P)+SS+S(SS)+S(H)+S(C)) 70.2 88.1 79.2 0.593

SVM(ID(AA)+S(P)+SS+S(SS)+S(H)+S(C)+S(SA)) 77.3 83.2 80.3 0.607

ID(AA) represents the ID values of amino acid composition, S(P) represents the scoring values of position

amino acid conservation information, SS represents the scoring values of the frequency of secondary

structure, S(SS) represents the scoring values of second structure information, and S(H) represents the

scoring values of hydrophobicity and hydrophilicity information. S(C) represents the scoring values of

polarization charge information. S(SA) represents the scoring values of solvent accessibility information.

https://doi.org/10.1371/journal.pone.0183756.t007

Table 8. The performance of Ca2+ and Mn2+ by 5-fold cross-validation with feature tuning.

ID Algorithm (Parameter) Sn (%) Sp (%) Acc (%) MCC

Ca2+ SVM(ID(AA)+S(P)+SS+S(SS)) 69.0 75.7 72.3 0.448

SVM(ID(AA)+S(P)+SS+S(SS)+S(H)) 68.3 76.5 72.4 0.450

SVM(ID(AA)+S(P)+SS+S(SS)+S(H)+S(C)+S(SA)) 69.7 82.0 75.8 0.521

SVM(ID(AA)+S(P)+SS+S(SS)+S(C)+S(SA)) 71.3 79.1 74.8 0.502

Mn2+ SVM(ID(AA)+S(P)+SS+S(SS)+S(H)) 77.6 84.2 80.8 0.618

SVM(ID(AA)+S(P)+SS+S(SS)+S(H)+S(C)) 78.2 83.9 81.1 0.622

SVM(ID(AA)+S(P)+SS+S(SS)+S(H)+S(C)+S(SA)) 82.1 84.4 83.2 0.664

SVM(ID(AA)+S(P)+SS+S(SS)+S(H)+S(SA)) 82.0 84.8 83.4 0.667

https://doi.org/10.1371/journal.pone.0183756.t008
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performance of the IonSeq method was taken directly from a paper in which it was obtained

by cross-validation. The results are shown in Table 10. The results for Zn2+ are relatively high;

the results for Na+ and K+ are relatively low, and the prediction trend for different metal ions

is consistent with that obtained using IonSeq [23]. Since the number of non-binding residues

is far greater than that of binding residues, the results are lower than those obtained by cross-

validation. All the MCC values of the proposed method are slightly lower than those from Ion-

Seq. There are three possible reasons for this result. First, the advantage of the proposed

method is that it has a higher recognition accuracy at the fragment level, and the results from

the IonSeq method are directly taken from the original paper; those results were obtained by

cross-validation, while the results of our method were calculated by independent testing. Sec-

ond, the datasets used by the methods are slightly different. Although both datasets were

Table 9. The performance of the metal-ion-binding-residue prediction of SVM using 5-fold cross-

validation.

Ligand Sn (%) Sp (%) Acc (%) MCC

Zn2+ 99.8 99.5 99.7 0.993

Cu2+ 95.5 97.1 96.3 0.926

Fe2+ 91.9 90.7 91.3 0.826

Fe3+ 86.9 88.7 87.8 0.756

Ca2+ 71.3 79.1 74.8 0.502

Mg2+ 76.6 73.9 75.3 0.505

Mn2+ 82.1 84.4 83.2 0.664

Na+ 82.2 76.2 79.4 0.586

K+ 77.3 83.2 80.3 0.607

Co2+ 80.8 85.1 83.0 0.660

https://doi.org/10.1371/journal.pone.0183756.t009

Table 10. Comparison of our independent test results with IonSeq.

Ligand L Method Sn (%) Sp (%) Acc (%) MCC

Zn2+ 13 IonSeq 43.56 99.75 99.21 0.5043

7 OUR’S 94.1 84.3 84.4 0.2528

Cu2+ 15 IonSeq 50.65 99.69 99.01 0.5772

13 OUR’S 91.7 82.9 83.0 0.2458

Fe2+ 9 IonSeq 54.08 99.51 98.84 0.6370

9 OUR’S 90.1 73.6 73.9 0.1708

Fe3+ 11 IonSeq 52.27 99.81 99.21 0.2111

9 OUR’S 87.9 72.7 72.9 0.1584

Ca2+ 9 IonSeq 22.72 99.04 98.18 0.1825

9 OUR’S 59,5 79.2 78.9 0.1251

Mg2+ 15 IonSeq 5.57 99.98 99.49 0.4553

9 OUR’S 50.2 81.9 81.6 0.0871

Mn2+ 11 IonSeq 31.07 99.82 99.01 0.1516

7 OUR’S 76.5 79.8 79.8 0.1599

Na+ 13 IonSeq 77.14 74.04 74.09 0.2283

9 OUR’S 33.3 78.2 77.5 0.0348

K+ 11 IonSeq 8.52 99.88 97.32 0.2283

11 OUR’S 45.6 62.8 62.3 0.0301

Co2+ - IonSeq - - - -

11 OUR’S 0.732 0.823 0.822 0.176

https://doi.org/10.1371/journal.pone.0183756.t010
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derived from the BioLiP database, the number of samples in this paper is much larger than

that of the dataset used for IonSeq (Table 1). Third, the IonSeq program uses the Adaboost

algorithm [45] to construct the SVM model, which is aimed at the prediction of the protein

chain in the real case; in this paper we constructed a model mainly for the prediction of the

fragment. Additionally, the solvent accessibility partition in this paper is not yet accurate

enough, and we will continue to improve it in further research. The two methods thus have

their own advantages and can only be roughly compared.

Conclusion

In this study we proposed effective methods for predicting the binding residues of ten metal

ions. The following conclusions may be drawn. (1) The optimal window lengths of metal ions

were shorter than those of ligands with a larger volume. (2) The metal ions Co2+, Cu2+, Fe2+,

Fe3+ and Zn2+ were sensitive to amino acid position information and could be identified by

the PWSM. (3) The metal ions Mn2+, Na+, K+, Ca2+ and Mg2+ were influenced by multiple fea-

ture parameters including the ID of amino acid composition, second structure (SS), hydropho-

bicity and hydrophilicity (H), polarization charge (C) and solvent accessibility (SA). After

adding these feature parameters to the SVM, the identification results were significantly

improved. (4) The binding residues of Ca2+ were not sensitive to the single S(H) parameter.

The binding residues of Mn2+ were not sensitive to the S(C) parameter. In future work, we will

try to add 3D structure information to identify metal ion binding residues and improve the

predicted results.
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