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Abstract

Colorectal cancer risk stratification is crucial to improve screening and risk-reducing recom-

mendations, and consequently do better than a one-size-fits-all screening regimen. Current

screening guidelines in the UK, USA and Australia focus solely on family history and age

for risk prediction, even though the vast majority of the population do not have any family

history. We investigated adding a polygenic risk score based on 45 single-nucleotide poly-

morphisms to a family history model (combined model) to quantify how it improves the

stratification and discriminatory performance of 10-year risk and full lifetime risk using a pro-

spective population-based cohort within the UK Biobank. For both 10-year and full lifetime

risk, the combined model had a wider risk distribution compared with family history alone,

resulting in improved risk stratification of nearly 2-fold between the top and bottom risk quin-

tiles of the full lifetime risk model. Importantly, the combined model can identify people (n =

72,019) who do not have family history of colorectal cancer but have a predicted risk that is

equivalent to having at least one affected first-degree relative (n = 44,950). We also con-

firmed previous findings by showing that the combined full lifetime risk model significantly

improves discriminatory accuracy compared with a simple family history model 0.673 (95%

CI 0.664–0.682) versus 0.666 (95% CI 0.657–0.675), p = 0.0065. Therefore, a combined

polygenic risk score and first-degree family history model could be used to improve risk

stratified population screening programs.

Introduction

Colorectal cancer is the fourth deadliest cancer, causing nearly 900,000 deaths every year glob-

ally. Worldwide, colorectal cancer is the 2nd most common cancer in women and the 3rd in

men, with men having around 25% higher incidence and mortality compared with women [1,

2]. Colorectal cancer has several non-modifiable risk factors, including age, family history, sex

and genetic makeup. Roughly 5%–10% of colorectal cancer cases have an affected first-degree
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relative, and the strength of associated risk depends on the number and closeness of the rela-

tionship, and on the ages at diagnosis of the affected relative(s) and the age of the at risk con-

sult [3–9]. Efforts to better understand heritability of colorectal cancer in family studies

underscore the complex relationship with environmental components [10, 11].

Rare high penetrance mutations have been found to cause hereditary colorectal cancers,

including those predisposing to Lynch syndrome and familial adenomatous polyposis,

accounting for 5%–7% of all colorectal cancer cases. Known genetic mutations account for

only half of the cases in persons with such family histories [12]. The unexplained causes of

cases with a family history could be due to polygenic factors, such as common low penetrance

single-nucleotide polymorphisms (SNPs) [13, 14] or lifestyle causes that are also shared by

family members [15].

In recent years, an increasing number of susceptibility SNPs have been identified by

genome-wide association studies, which examine vast numbers of variants across the

genome for associations with disease risk [16, 17]. Although each susceptibility SNP has a

weak association with colorectal cancer risk, the cumulative association of many SNPs com-

bined as a polygenic risk score (PRS) can result in a substantial risk gradient (in both direc-

tions) and is potentially an effective risk stratification method [14, 18]. For example, Jenkins

et al. [19] used a cohort enriched for family history to show the value of a PRS in stratifying

individuals by risk, particularly those with a family history but not found to be carriers of

mutations associated with Lynch syndrome or familial adenomatous polyposis. Importantly,

their study confirmed that a 45 SNP panel in conjunction with having a family history of

colorectal cancer could identify non-trivial proportions of the population who would likely

benefit from earlier screening. The use of polygenic risk models to inform targeted screening

has potential benefit in clinical genetics settings for families in which high-risk mutations

cannot be identified [18].

Notwithstanding that observation, the reality is that about 90% of colorectal cancer cases

have no family history in first-degree relatives and it is this group that could benefit from

improved risk prediction [3]. Given the incidence of colorectal cancer diagnosed before age 50

years is increasing [20, 21], it is particularly important to focus on risk prediction to accurately

identify at-risk adults who may not be identified by current standard screening guidelines.

Therefore, there is an important justification for improved risk prediction tools to guide

screening and risk reduction.

Our aim is to investigate whether better risk stratification can be achieved in the general

population, using the UK Biobank, a prospective population-based cohort. To this end, we

have investigated the ability of a model comprising 45 SNPs (PRS) and first-degree family his-

tory to stratify risk in the general population and the discriminatory performance and calibra-

tion of the model to inform the potential utility in broad application risk stratified screening.

Methods

Study sample

The UK Biobank is a major biomedical database, comprises of 500,000 volunteers who were

aged 40–69 years when recruited in 2006–2010 from England, Scotland and Wales. The pur-

pose of the UK Biobank is to assist researchers in studying disease prevention, diagnosis and

treatment and investigate the determinants of a wide spectrum of diseases in middle and later

life [22, 23]. The UK Biobank has Research Tissue Bank approval (REC #16/NW/0274) that

covers analysis of data by approved researchers. All participants provided written informed

consent to the UK Biobank before data collection began. This research has been conducted

using the UK Biobank resource under Application Number 47401.
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Each participant has provided detailed personal and medical history information and has

undergone physical and biological measurements. Samples provided include blood, urine and

saliva. All participants who provided blood have been genotyped and genome-wide SNP data

is available for each [24]. All participants have agreed to their health status being followed-up

via linkage to health registries and general practice and hospital records. Therefore, the UK

Biobank is a powerful resource to study genetic associations and disease risk due to being a

prospective cohort, its large size, and the wealth of genetic and clinical information it has and

will collect. The eligibility criteria for this study are described in Table 1.

Generation of PRS

A PRS was calculated for each UK Biobank participant using the 45 SNPs (S1 Table) that were

found to be associated with colorectal cancer by previous studies [13, 25]. Using the method of

Mealiffe et al [26], we computed for each SNP a (relative) risk score utilising previously pub-

lished estimates of the odds ratio (OR) per risk allele and risk allele frequency (p) [19]. For

each individual SNP, we calculated the unscaled population average risk using the formula:

m ¼ ð1 � pÞ2 þ 2p 1 � pð ÞORþ p2OR2:

Weighted risk values were used to normalise the population average to 1, which were calcu-

lated as 1/μ, OR/μ and OR2/μ for the three genotypes (defined by the number of risk alleles 0,

1, or 2). The polygenic risk score for each participant was generated by multiplying the

weighted risk values for each of the 45 SNPs (assuming independent and additive risks on the

log odds scale) [19].

Outcome

The outcome of interest was invasive colorectal cancer diagnosis after baseline assessment.

Colorectal cancer was identified using linked cancer registry data using ICD-9 (1530–1539,

1540–1541), ICD-10 (C18–C20) codes or self-reported disease. Follow-up began at date of

baseline assessment and observations were censored at the earliest of date of diagnosis, date of

death or 31 March 2016 (the latest date for which linkage to cancer registries is complete),

whichever occurred first. For analysis of standardised incidence ratios (SIR) for 10-years of fol-

low-up, we ceased follow-up after 10 years.

Risk scores

We evaluated the following two models involving: (i) family history only (based on number of

affected first-degree relatives) and (ii) a combination of both family history and the PRS (com-

bined model). Relative risks for having 0, 1 or�2 first-degree relatives diagnosed with colorec-

tal cancer were obtained from a previous study [27], and centred to have a population average

of 1. In the study by Roos et al [27], the authors performed a systematic review and meta-

Table 1. Eligibility criteria.

N eligible Criteria N dropped

502,488 Active participants in UK Biobank

487,869 Reported sex same as genetically determined sex 14,619

409,289 White British and genetically Caucasian 78,580

406,745 No previous diagnosis of colorectal cancer at baseline 2,544

404,715 Aged 40–69 years at assessment date 2,030

403,998 Genome-wide SNP data available 717

https://doi.org/10.1371/journal.pone.0251469.t001
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analysis of cohort and case-control studies to investigate the effect of family history on colorec-

tal cancer relative risk and absolute risk values. We used the relative risk values for family his-

tory calculated from cohort studies, which were based mainly on white populations from

Western and Northern Europe, United States and Australia. One study focused on Asian pop-

ulation. The PRS model used 45 independent SNPs described previously by Jenkins et al [13,

19]. For SNPs rs10904849, rs35509282, rs4925386 and rs10911251, we used surrogate SNPs

rs10904850, rs11100443, rs11204472 and rs6669796 respectively, and for 19qhap (19q13.2)

and 11qhap (11q12.2), we used the tag SNPs rs1800469 and rs174537 respectively (S1 Table).

The combined model was created by multiplying the family history and PRS relative risk

terms. Calculation of absolute 10-year risk was performed using sex- and age-specific inci-

dence rates for England in 2013, and took into account competing mortality, obtained from

the UK Office for National Statistics [28]. For the calculation of the absolute full lifetime risk

to age 85, mortality rates were excluded. Risk scores were centred to have a mean of 1. SIRs

were calculated using the observed vs expected colorectal cancer incidence based on popula-

tion gender- and age-specific incidence rates for England in 2006–2016 [29]. Confidence inter-

vals for the SIR were calculated using the default method of a quadratic approximation to the

Poisson log likelihood for the log-rate parameter [30].

Statistical analysis

Model performance. Model discrimination was determined using the area under the

receiver operating characteristic curve (AUC). We assessed model calibration using logistic

regression analysis [31], for which the observed colorectal cancer case status was the depen-

dent variable and the log-odds of our model’s predicted probability for the outcome of colorec-

tal cancer during the follow-up time was the independent variable. The test for dispersion was

performed by evaluating the null hypothesis that the estimated regression coefficient was equal

to 1 in the model without a constant term [31]. Overdispersion occurs when the observed val-

ues have greater variability than the expected values produced by the model, while under-dis-

persion occurs when the observed values show less variation than expected. This is measured

using logistic regression where a slope>1 suggests predicted risks are too extreme and a slope

<1 suggests predicted risks are too moderate. We used logistic regression with no intercept

terms to assess dispersion for the 10-year risk and full lifetime risk for the combined model.

The coefficients were β = 1.088 for 10-year risk and β = 1.848 for full lifetime risk.

Broad sense calibration was measured using 10-year follow-up data from the UK Biobank,

for which the SIR (observed/expected incidence) was calculated for both models.

All statistical analyses were performed using Stata version 16.1 [30]. All statistical tests were

two sided and p< 0.05 was considered nominally statistically significant.

Results

Characteristics of participants and the mean and median PRS (relative risk), and 10-year and

full lifetime risks for the combined model are summarised in Table 2. The mean age at baseline

of colorectal cancer cases and controls was 61.45 years (SD 6.33) and 57.28 years (SD 7.96),

respectively.

Overall, the SIR of observed colorectal cancer compared with the number expected using

age- and gender-specific population incidences was 0.92 (95% CI = 0.88–0.95) (Table 3),

meaning that the colorectal cancer incidence in the UK Biobank data was 8% (95% CI = 5–12%)

less than expected. Furthermore, the SIR broken down by gender showed that the expected

incidence for females and males was 6% (95% CI = 1–11%) and 10% (95% CI = 6–14%),

respectively, less than expected (Table 3). When the SIR was broken down by age, for ages 60–
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69 (the majority of cases), the colorectal cancer incidence was ~11% (95% CI = 7–15%) less

than expected. This is consistent with the recognized healthy volunteer selection bias of the

UK Biobank [32, 33]. For ages 50–59 the incidence was ~3% less than expected, and for ages

40–49, the incidence was 6% higher than expected, but the confidence intervals included 1.

Model performance

For full lifetime risk, the AUC for the combined model was 0.673 (95% CI 0.664–0.682 and the

AUC for the family history model was 0.666 (95% CI 0.657–0.675). For 10-year risk, the AUC

of the combined model was 0.674 (95% CI 0.665–0.683) and the AUC of the family history

model was 0.668 (95% CI 0.659–0.677). The difference between the model fits was significant

(10-year risk: χ2 = 7.16, df = 1, p = 0.0075; full lifetime risk: χ2 = 7.42, df = 1, p = 0.0065).

The 10-year risk combined model was slightly under-dispersed (dispersion coefficient 1.08,

95% CI 1.07–1.09), while the full life risk combined model was considerably under-dispersed

(dispersion coefficient 1.84, 95% CI 1.83–1.86). Next, we performed broad sense calibration by

analysing the observed and expected ratio (SIR) using 10-year follow-up data. Our data

showed a small overestimation of risk for both the family history model (SIR = 0.94, 95% CI

0.91–0.98) and the combined model (SIR = 0.95, 95% CI 0.91–0.98), compared with the popu-

lation incidence data.

Risk stratification

We investigated the risk distributions of the family history model (Fig 1A and 1C) and the

combined model (Fig 1B and 1D) using the entire eligible UK Biobank cohort. Fig 1A shows

the full lifetime risk distribution for the family history model, where there are six possible

Table 2. Summary statistics for the eligible UK biobank cohort.

Unaffected Total

401,006

Affected (incident cases) Total

2,992

N (%) N (%)

Age at cohort entry (years)

40–49 88,648 (22.11) 198 (6.62)

50–59 133,056 (33.18) 800 (26.74)

60–69 179,302 (44.71) 1,994 (66.64)

Age when diagnosed with colorectal cancer (years)

40–49 – 79 (2.64)

50–59 – 496 (16.58)

60–69 – 1,647 (55.05)

70–79 – 770 (25.74)

Gender

Female 217,501 (54.24) 1,275 (42.61)

Male 183,505 (45.76) 1,717 (57.39)

Number of first-degree relatives diagnosed with

colorectal cancer

0 356,437 (88.89) 2,544 (85.03)

1 42,129 (10.51) 412 (13.77)

2+ 2440 (0.61) 36 (1.20)

Mean (SD) median Mean (SD) median

Full lifetime risk: combined model 0.068 (0.041) 0.057 0.080 (0.050) 0.067

10-year risk: combined model 0.011 (0.009) 0.008 0.016 (0.013) 0.013

Relative risk: PRS 0.999 (0.574) 0.848 1.112 (0.657) 0.934

https://doi.org/10.1371/journal.pone.0251469.t002
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Table 3. Standardised incidence ratios (SIR) using age- and gender-specific incidence rates—Overall and by subgroups.

Total observations O E SIR 95% CI

Overall risk 403,998 2992 3253.20 0.92 0.88–0.95

Risk by gender:

Female 218,776 1275 1355.90 0.94 0.89–0.99

Male 185,222 1717 1897.29 0.90 0.86–0.94

Risk by age-group:

40–49 88,846 198 186.61 1.06 0.92–1.22

50–59 133,856 800 824.73 0.97 0.90–1.04

60–69 181,296 1994 2241.86 0.89 0.85–0.93

Combined model—10-year risk

Quintile 1 (lowest) 80,368 166 199.63 0.83 0.71–0.96

Quintile 2 80,575 374 446.53 0.83 0.75–0.92

Quintile 3 80,753 552 679.77 0.81 0.74–0.88

Quintile 4 80,958 757 868.69 0.87 0.81–0.93

Quintile 5 (highest) 81,344 1143 1058.57 1.08 1.01–1.14

Combined model—Full lifetime risk

Quintile 1 (lowest) 80,568 366 543.82 0.67 0.60–0.74

Quintile 2 80,727 526 614.98 0.85 0.78–0.93

Quintile 3 80,762 561 657.90 0.85 0.78–0.92

Quintile 4 80,849 648 694.81 0.93 0.86–1.00

Quintile 5 (highest) 81,092 891 741.70 1.20 1.12–1.28

By number of affected first-degree relatives

0 358,981 2544 2857.48 0.89 0.85–0.92

1 42,541 412 371.93 1.10 1.00–1.22

2 2,409 35 23.02 1.52 1.09–2.11

Combined model—10-year risk: (No first-degree family history)

Quintile 1 (lowest) 71,412 124 171.16 0.72 0.60–0.86

Quintile 2 71,616 329 383.60 0.85 0.77–0.95

Quintile 3 71,753 465 592.75 0.78 0.71–0.86

Quintile 4 71,951 664 767.75 0.86 0.80–0.93

Quintile 5 (highest) 72,249 962 942.22 1.02 0.95–1.08

Top 10% 36,189 546 499.22 1.09 1.00–1.19

Top 5% 18,126 305 259.97 1.17 1.04–1.31

Bottom 10% 35,680 36 63.30 0.56 0.41–0.78

Bottom 5% 17,836 14 26.90 0.52 0.30–0.87

Combined model—Full lifetime risk: (no first-degree family history)

Quintile 1 (lowest) 71,621 333 479.16 0.69 0.62–0.77

Quintile 2 71,725 438 541.21 0.81 0.73–0.88

Quintile 3 71,782 494 579.08 0.85 0.78–0.93

Quintile 4 71,834 547 609.60 0.89 0.82–0.97

Quintile 5 (highest) 72,019 732 648.44 1.12 1.05–1.21

Top 10% 36,051 408 330.10 1.23 1.12–1.36

Top 5% 18,035 214 167.53 1.27 1.11–1.46

Bottom 10% 35,795 151 229.02 0.66 0.56–0.77

Bottom 5% 17,901 79 111.42 0.71 0.56–0.88

SIR was calculated based on number of cases observed and expected using sex-specific UK population rates of colorectal cancer incidence rates, calculated for the entire

eligible UK Biobank cohort or by gender, age group or by family history status, and stratified by full lifetime and 10-year risk categories for the combined model.

Abbreviations: O = observed, E = expected.

https://doi.org/10.1371/journal.pone.0251469.t003
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categories (0, 1 and 2+ affected first-degree relatives by gender) (median = 0.073, inter-quartile

range = 0.027, min = 0.053, max = 0.188). Fig 1B shows the full lifetime risk distribution for

the combined model (median = 0.057, inter-quartile range = 0.042, min = 0.011, max = 0.688).

Fig 1C and 1D show the 10-year risk distribution for the family history model (median = 0.010,

inter-quartile range = 0.009, min = 0.001, max = 0.055) and the combined model (median =

0.008, inter-quartile range = 0.009, min = 0.0004, max = 0.251) respectively.

The SIRs by quintiles of full lifetime risk and 10-year risk for the combined model are shown

in Table 3 and Fig 2. We observed an increase in risk gradient between full lifetime risk catego-

ries; persons in the top quintile of risk have ~35% higher colorectal cancer incidence than those

in the middle quintile and ~53% higher colorectal cancer incidence than those in the bottom

quintile. The 10-year risk quintile gradient was less than the full lifetime risk gradient, but

showed the same trend. To compare risk stratification of persons with a family history to those

without, we also broke down the SIR analysis by number of affected first-degree relatives and

for people without any family history. We observed that the top quintile, decile and 95th percen-

tile (for participants without family history) have similar risk values, compared to someone

with 1 affected first-degree relative. Also, the risk for people with 2 affected first-degree relatives

overlaps with the top risk categories (due to the large confidence interval) (Fig 2). Although the

range of SIR is diminished in the 10-year risk graph, the trend is still visible (Fig 2D).

Discussion

Colorectal cancer is a major public health issue worldwide, with high incidence in many west-

ernised countries [34], in addition to increasing incidence for young adults [35, 36]. Several

Fig 1. Risk distribution plots for the eligible UK Biobank participants. Plots show the Full lifetime risk distribution

for a model with family history only (A) and the combined model (B), and 10-year risk for the family history model

(C) and the combined model (D).

https://doi.org/10.1371/journal.pone.0251469.g001
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Fig 2. Comparison of the standardised incidence ratios (SIR) for different subgroups. SIR values were generated

based on number of cases observed and expected using sex-specific UK population incidences for the number of

affected first-degree relatives (FDR) vs the combined model for people without a family history. SIR values were

plotted against number of affected first-degree relatives in comparison with full lifetime (A) and 10-year (B) risk

categories for participants without family history.

https://doi.org/10.1371/journal.pone.0251469.g002
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modalities for early detection exist including colonoscopy and faecal occult blood testing. Evi-

dent in long-term trends available from US Surveillance, Epidemiology, and End Results data,

prevention of advanced colorectal cancer is feasible with screening programs based on colo-

noscopy as opposed to faecal occult blood testing. In comparison with UK and Australian

data, US colorectal incidences are below their Western counterparts and this could be due to

differences in screening programs. But every program comes at a cost (colonoscopy versus fae-

cal occult blood testing, for example). The US approach (by the American Cancer Society) [37]

to rising incidence in young adults is to lower colonoscopy screening age to 45—an approach

that will surely be more effective at detecting early onset disease, but at a far greater cost and

an increased risk of over screening thousands of adults. Furthermore, Ladabaum et al. [38]

provided evidence that screening compliance would be a more efficacious approach to reduce

colorectal incidence and death. The National Colorectal Roundtable announced in 2018 the

goal of achieving 80% colorectal screening participation in every community in the US. Build-

ing on that compliance goal, and keeping early onset disease in mind, novel risk stratification

approaches can only improve screening outcomes by enabling a focus on at-risk persons.

The majority of colorectal cancer cases do not have monogenic (Lynch syndrome and

familial adenomatous polyposis) causes, but have [39] multifactorial causes due to genetic,

environmental and lifestyle factors [1]. Risk stratification of the general population will assist

in identifying those at higher risk and enable the implementation of targeted screening and

risk reduction for this group. Currently, screening decisions in the general population are

based on age and family history (in UK, USA, and Australia), and recommendations for early

screening are based on the number (and age at diagnosis) of affected first-degree and second-

degree relative(s) (as determined by each country’s medical bodies) [40–42]. Basing screening

decisions on family history alone has its caveats, including incorrect reporting of cases in rela-

tives due to lack of knowledge of the cancer diagnosis, or of the site of the cancer [43, 44].

However, as the vast majority of colorectal cancer cases do not have a first-degree relative [3, 4,

45], current screening guidelines do not accurately identify persons above population average

risk thresholds. There are many other factors involved in the risk of colorectal cancer, includ-

ing genetic, environmental and lifestyle factors that, if measured and taken into account, can

more accurately identify where people are with respect to risk-based screening thresholds.

Given that there is the potential for more than 40% of colorectal cancer cases to be pre-

vented by behavioural modification, risk-stratification based on non-modifiable risk factors

(like family history and polygenic risk) could allow for pre-emptive screening and, impor-

tantly, cost-effective risk-reduction options. Notably, the potential benefits of a so-called

“healthy lifestyle” on colorectal cancer incidence appears to be evident across all polygenic risk

categories [46, 47].

In this study, we evaluated how much a PRS based on 45 SNPs [19] improves colorectal

cancer risk prediction when added to a simple family history model. By confirming the perfor-

mance of a PRS originally constructed using a cohort enriched for family history [19], we have

therefore demonstrated the clinical validity of this risk measure for the general population. We

have shown that adding a PRS to a model that includes only family history results in modestly

improved discriminatory performance. We have also shown that the variance of the risk distri-

bution of the combined model is much greater than that of the family history alone model, Fig

1). As a consequence, for the UK Biobank participants, using the combined model there were

more than 29,000 (~17% of) males with no affected first-degree relative but a full lifetime risk

scores greater or equal to ~11% (the family history model risk score of a male with one affected

first-degree relative in the UK Biobank). There were more than 34,000 (~17% of) females with

no affected first-degree relative with full lifetime risk scores (combined model) greater or

equal to ~7.3% (the family history model risk score of a female with one affected first-degree
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relative in the UK Biobank). In agreement with previous data [48–50], using a PRS we are able

to identify 72,019 participants with an increased risk equivalent to having an affected first-

degree relative. Importantly, the combined model captures the crucial components of non-

modifiable colorectal cancer risk.

In summary, we have found that stratifying colorectal cancer risk by including a PRS with

first-degree family history results in an improved risk prediction compared with using family

history alone for a sample that mirrors the general population, for which <15% had a family

history. This is in agreement with previous studies that have also shown that a PRS adds sub-

stantial value in colorectal cancer risk stratification and explains a sizeable excess risk of colo-

rectal cancer, independent of family history [17, 48]. Our new data strengthens the argument

for clinical application of polygenic risk assessment in the general population, and especially

for those without a family history, and supports the expansion of current recommendations

that focus only on family history and age as the main criteria for screening.

Better colorectal cancer risk stratification in the general population will improve identifica-

tion of at-risk individuals. A significant finding of our work is that 20% of participants based

on PRS have a similar full lifetime risk of colorectal cancer as the ~11% identified solely by a

first-degree family history, and therefore should thus be assessed with the same importance.

Reinforcing the importance of the polygenic risk score for assessing risk is the recent

finding that four of the SNPs included in our PRS (rs12241008, rs2423279, rs3184504, and

rs961253) have been shown to be associated with increasing adenoma count at colonoscopy

[51]. Adenoma count is not only an indicator of risk itself but is a measure of colorectal cancer

development. Identification of at-risk individuals based on a PRS-integrated model will allow

for the improved screening and thus removal of such lesions prior to malignant transforma-

tion. Furthermore, there is evidence that the PRS association is stronger for proximal com-

pared with distal disease [52] suggesting that risk assessment could help inform endoscopists’

colonoscopy procedural plan, such as a slightly slower withdrawal time [53].

From a health economic perspective, the model used in the present study, which incorpo-

rates only non-modifiable risk factors, exceeds the benchmark discrimination threshold

(AUC� 0.67) at which risk stratified colorectal cancer screening is thought to become cost

effective [54]. Future iterations of the combined model to include additional risk factors

should improve the calibration and discrimination and consequently improve the clinical util-

ity of such a tool for colorectal cancer screening uptake, compliance and screening cessation,

and post-polypectomy follow-up.

Conclusion

The practical clinical benefit of a risk assessment model that combines PRS and family history

is to identify adults who are at an increased risk of colorectal cancer, sufficient to qualify for

supplemental screening recommendations who would not otherwise be identified because

they do not have a family history, or do not have a strong enough family history to meet

screening thresholds.

Study limitations

Our study has several limitations. First, our model is under-dispersed, both for the 10-year

risk and full lifetime risk models. This could be resolved in a future study by recalibrating the

model or by updating the model with additional risk factors. We also found a small association

between family history and PRS (OR = 1.11), which is a limitation of our study, as this associa-

tion might explain the overestimation of risk we observed in the broad sense calibration for

10-year follow-up. This could be resolved by recalibration of the model in an independent
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dataset. Furthermore, the model only takes into account first-degree relatives, and we do not

break down the risk of first-degree relative by consultand’s age or age at diagnosis of the first-

degree relative. Given that familial risk, and the PRS associations, depend on these ages [55],

there will be some underestimation of risks for young adults and some overestimation of risk

for the majority of adults with mild family history, such as a first-degree relative diagnosed at

70 or older. In two recent meta-analysis, the overall colorectal cancer risk associated with fam-

ily history was found to be lower than previously reported, suggesting we are likely over-

estimating familial risk in older adults [27, 56]. Because of the substantial environmental con-

tribution to colorectal cancer, there remains unaccounted, modifiable risk not captured by this

combined model. Calibration of the model could be improved by increasing the number of

susceptibility SNPs and adding further clinical risk factors in the combined model, including

smoking history, alcohol and processed meat consumption and BMI. Secondly, the UK Bio-

bank recruited only between the ages of 40–69 years. There were few incident cases in partici-

pants in their 40s. This affected our ability to confirm published evidence [17, 48, 57],

suggesting superior clinical utility in PRS to help detect early-onset colorectal cancer before

age 50 years; we observed a not significant trend in the expected direction for the few young

age at diagnosis cases (S2 Table). Furthermore, a recently published study [58] has identified,

using exome data, 76 participants in the UK biobank who are potential Lynch syndrome carri-

ers, 17 of whom are cases. Although these are small proportions of the cohort, they could still

bias our results, causing an underestimation in some of our standard incidence ratio estimates.

To investigate this, we excluded participants from the analysis based on the published patho-

genic variants initially identified [58] and compared the SIR results to the original dataset. We

found no difference in comparison with the original analyses, as the majority of these potential

Lynch syndrome participants didn’t pass our eligibility criteria for the analysis (Table 1),

resulting in only two Lynch syndrome cases in the final dataset. Furthermore, as shown in

Table 3, SIR estimates from the entire cohort were lower than expected (by ~8%), suggesting

the UK biobank cohort is “healthier” with respect to colorectal cancer risk than the general

population. “Healthy lifestyle” is associated with colorectal cancer incidence regardless of PRS,

and because we do not yet incorporate modifiable risk factors, our model is not accounting for

those who are at high risk based on the PRS but are at low risk based on modifiable risk factors,

and vice versa. This could also affect the performance of our model in stratifying colorectal

cancer risk categories. Additionally, we do not account for risk differences for those partici-

pants who underwent bowel screening. Therefore, we could be overestimating short-term risk

for those who have had bowel screening.

Ten-year risk scores are meant to assess short-term risk of being diagnosed with colorectal

cancer and would be more efficacious for the general population if modifiable risk factors were

incorporated. This current model incorporates non-modifiable risk factors and is best suited

for determining baseline colorectal cancer risk without the consideration of highly modifiable

risk factors attributed to colorectal cancer [59]. Finally, we are aware of the population-specific

limitations of this study which was restricted to white, Northern-European population. While

there is evidence that many susceptibility SNPs are consistent in the strengths and direction of

their associations across ethnicities [60–62], there are ethnic specific-loci and variants that

have yet to be incorporated into this model.

Future directions

To improve the model calibration, we plan to perform future analysis using additional colorec-

tal cancer susceptibility risk SNPs and create an expanded combined model with additional

risk predictors to produce a more comprehensive colorectal cancer risk assessment tool,
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applicable across multiple ethnicities. Improvement and validation of the predictive ability of

such a colorectal cancer risk assessment tool will facilitate implementation and ultimately

hopefully adoption into routine clinical care.
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