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a b s t r a c t

Metagenomic sequencing provides a culture-independent avenue to investigate the complex microbial
communities by constructing metagenome-assembled genomes (MAGs). A MAG represents a microbial
genome by a group of sequences from genome assembly with similar characteristics. It enables us to
identify novel species and understand their potential functions in a dynamic ecosystem. Many computa-
tional tools have been developed to construct and annotate MAGs from metagenomic sequencing, how-
ever, there is a prominent gap to comprehensively introduce their background and practical performance.
In this paper, we have thoroughly investigated the computational tools designed for both upstream and
downstream analyses, including metagenome assembly, metagenome binning, gene prediction, func-
tional annotation, taxonomic classification, and profiling. We have categorized the commonly used tools
into unique groups based on their functional background and introduced the underlying core algorithms
and associated information to demonstrate a comparative outlook. Furthermore, we have emphasized the
computational requisition and offered guidance to the users to select the most efficient tools. Finally, we
have indicated current limitations, potential solutions, and future perspectives for further improving the
tools of MAG construction and annotation. We believe that our work provides a consolidated resource for
the current stage of MAG studies and shed light on the future development of more effective MAG anal-
ysis tools on metagenomic sequencing.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Microbes are essential for nutrient cycling and metabolic pro-
cesses in living beings and the environment [1,2]. Despite their
crucial associations with physiology, their genomic characteristics
and co-existence with other species have been poorly character-
ized. Microbes can be characterized using traditional culture-
dependent approaches (Fig. 1A) that involve the isolation and
sequencing of individual microbes from lab-based cultures [3,4].
However, some microbes cannot be easily isolated and cultured
in vitro due to their complex natural habitats, such as unrepro-
ducible environmental, temporal, physical, biochemical and
genetic complexities [5]. Traditional methods are limited to identi-
fying a narrow spectrum of microbes, and they leave many
microbes uncharacterized [6,7]. However, these microbes may be
identified by metagenomic sequencing, which enables the retrieval
of genomic sequences from a mixture of microbial DNA by next-
generation sequencing in a culture-independent way [8–10]. Thus,
this method is broadly known as the culture-independent method
(Fig. 1A). Many studies have adopted metagenomic sequencing to
explore the effects of microbes on human health. This has provided
new research opportunities in biomedical science and revealed a
great number of novel associations between the host microbiome
and disease. For instance, a meta-analysis identified several associ-
ations between gut microorganisms, such as Fusobacterium nuclea-
tum, Parvimonas micra and Gemella morbillorum, and colorectal
cancer [11]. Thingholm et al. examined several bacterial genera,
including Akkermansia, Faecalibacterium, Oscillibacter and Alistipes,
those significantly depleted in obese individuals. These genera
were found to be associated with producing short-chain fatty acids
and were linked with alterations in serum metabolite concentra-
tions [12].

Most previous studies on the microbiome have relied heavily on
the availability of reference genomes. They have involved the
direct alignment of sequencing data against reference genomes,
marker gene sets or species-specific sequences for taxonomic
assignments. The k-mer frequencies and read depth of universal
single-copy genes are commonly used to estimate taxonomic
abundance [13]. However, as reference genomes are incomplete,
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it is currently only possible to explore associations for microbes
with high-quality reference genomes. This inevitably introduces a
technical challenge to the identification of associations involving
novel genes or microbes. For instance, approximately 40–50% of
human intestinal microbes lack a high-quality reference genome
[14,15]. Therefore, a well-characterized collection of reference gen-
omes generated from metagenomic sequencing is required.

With recent advances in sequencing technologies and computa-
tional tools, this challenge has been attempted to be addressed by
constructing metagenome-assembled genomes (MAGs). A MAG
refers to a group of scaffolds with similar characteristics from a
metagenome assembly that represent the microbial genome. In
this approach, sequencing reads are assembled into scaffolds and
then the scaffolds are grouped into candidate MAGs based on
tetranucleotide frequencies (TNFs), abundances, complimentary
marker genes [16], taxonomic alignments [17] and codon usage
[18]. The MAGs with high completeness and low levels of contam-
ination are then used for further taxonomic annotation and gene
prediction (Fig. 1B). Many studies have generated valuable refer-
ence genomes for the human microbiome using MAGs. Using gen-
ome assemblies from large-scale metagenomic sequencing data,
Pasolli et al. identified more than 150,000 MAGs, of which more
than 50% described previously uncharacterized microbes [19]. This
discovery has increased the average read mapping rates from
67.76% to 87.51% for the human gut microbiome. Almeida et al.
[20] constructed the Unified Human Gastrointestinal Genome
(UHGG) by integrating previously published MAGs and microbial
reference genomes from publicly available databases. The UHGG
identified 4,644 gut prokaryotes from 204,938 nonredundant
MAGs. These newly identified genomes have been shown to have
distinct functional properties and be associated with complex
human diseases, which may improve the current predictive models
[10,21].

Here, we review advances in computational tools and tech-
niques used to construct MAGs. They are primarily categorized
and described in two sections: upstream (Section 2) and down-
stream (Section 3) analyses. Upstream analyses are designed to
construct MAGs, and they include sequence quality control (QC),
metagenome assembly, assembly QC and metagenome binning.



Fig. 1. Schematic representation of the different approaches used in the metagenomic research field. (A) A schematic contrast between culture-independent (metagenomics)
methods, and culture-dependent methods. The process for generating sequencing data for the two strategies have been illustrated. (B) A schematic contrast between
assembly-based and reference-based approaches on metagenomic sequencing data.
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Downstream analyses are designed to annotate MAGs, and they
include gene prediction, gene functional annotation, taxonomic
classification and profiling. In Section 4, we introduce the compu-
tational requisition, comparative performance and selective guid-
ance of these tools. We also discuss the potential challenges and
some plausible strategies to address them in Section 5. This review
thoroughly investigates the computational tools used to identify
microbes using MAGs, based on metagenomic sequencing, and it
provides reasonable solutions to overcome the current challenges
associated with the technical limitations in this field.

2. Tools for upstream analyses to construct MAGs

2.1. Tools for sequence QC

The first inevitable step in constructing MAGs is to perform QC
of the metagenomic sequencing data and to remove spurious and
contaminating reads. For short-read sequencing, the QC step
includes filtering low-quality nucleotides/reads, removing adapter
sequences, processing enrichment bias and generating quality
assessment metrics [22,23]. There are several popular tools avail-
able for sequence QC, such as FastQC (https://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc/), fastp [24], Trimmomatic [25]
and SOAPnuke [26] (Table 1). FastQC provides a visual illustration
of base quality, the distribution of GC content and nucleotide bias.
fastp enhances the QC processing speed by using advanced multi-
threading implementation. Trimmomatic and SOAPnuke are the
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two most frequently used tools that are optimized for Illumina
and BGISEQ sequencing platforms, respectively. Eliminating con-
taminating reads from host genomes is another essential process,
as the contaminants may get carried forward through the DNA
extraction process and they may introduce bias in subsequent
analyses. This step may be performed to remove reads that can
be aligned to the host genome.

Long-read sequencing technologies, such as single-molecule
real-time sequencing by Pacific Biosciences (PacBio), nanopore
sequencing by Oxford Nanopore Technologies (ONT), synthetic
long reads (SLR) and linked-read sequencing, rely on different QC
principles, and the corresponding tools are also different. For
example, SequelTools [27] can be used to examine the quality of
PacBio long reads by filtering out the low-quality reads and pro-
ducing multiple statistical plots. Another tool, proovread [28],
has been developed to iteratively correct the base errors of long
reads using high-quality short-reads. Some programs, such as
NanoPack [29] and MinIONQC [30], are designed for ONT sequenc-
ing data. NanoPack focuses on processing and statistically evaluat-
ing raw ONT long reads, whereas MinIONQC enables the rapid
comparison of multiple ONT flow cells. Recently, an integrated tool,
LongQC [31], has been developed to process long reads from both
PacBio and ONT platforms. It can automatically produce multiple
statistical insights, including adapter statistics, quality statistics,
GC content and a per-read base error estimation. SLR and Linked-
read sequencing data allow the use of QC tools designed for
short-read sequencing [32–34].

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Table 1
Tools for sequence quality control. For each tool, the sequencing technologies (column 2), the original publications (column 3), Characteristics (column 4) and the websites to
download these tools (column 5) are illustrated. The sequence quality control tools and related content are explained in Section 2.1.

Tools Technologies Publications Characteristics Websites

fastp short reads, SLR and
linked reads

Chen et al. 2018 [24] ultra-fast; exhaustive functions https://github.com/OpenGene/fastp

FastQC short reads, SLR and
linked reads

excellent visualization; exhaustive functions https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/

Trimmomatic short reads, SLR and
linked reads

Bolger et al. 2014 [25] flexible and exhaustive functions http://www.usadellab.org/cms/index.
php?page=trimmomatic

SOAPnuke short reads, SLR and
linked reads

Chen et al. 2018 [26] reduced memory; predefined modules https://github.com/BGI-flexlab/SOAPnuke

SequelTools long reads Hufnagel et al. 2020 [27] user-friendly; exhaustive functions https://github.com/ISUgenomics/
SequelTools

proovread long reads Hackl et al. 2014 [28] iterative consensus; computationally efficient https://github.com/BioInf-Wuerzburg/
proovread

NanoPack long reads Coster et al. 2018 [29] exhaustive functions https://github.com/nanopack
MinIONQC long reads Lanfear et al. 2019 [30] suitable for large projects referring to multiple

samples.
https://github.com/roblanf/minion_qc

LongQC long reads Fukasawa et al. 2020 [31] platform-independent, computationally
efficient and user-friendly

https://github.com/yfukasawa/LongQC

Table 2
Tools for metagenome assembly. For each assembler, the sequencing technologies (column 2), the original publications (column 3), and summaries of the core algorithms
(column 4) and the websites to download these tools (column 5) are illustrated. The assemblers and related algorithms are explained in Section 2.2. DBG: De Bruijn graph; OLC:
overlap-layout consensus.

Tools Technologies References Core algorithms Websites

Omega short reads Haider et al. 2014 [35] OLC http://omega.omicsbio.org
MetaVelvet short reads Namiki et al. 2012 [36] DBG http://metavelvet.dna.bio.keio.ac.jp
MetaVelvet-SL short reads Afiahayati et al. 2015 [38] DBG http://metavelvet.dna.bio.keio.ac.jp/MSL.html
MetaVelvet-DL short reads Liang et al. 2021 [39] DBG http://www.dna.bio.keio.ac.jp/metavelvet-dl/
IDBA-UD short reads Peng et al. 2012 [40] DBG http://www.cs.hku.hk/~alse/idba_ud
MEGAHIT short reads Li D et al. 2015 [41] DBG https://github.com/voutcn/megahit
metaSPAdes short reads Nurk et al. 2017 [43] DBG https://github.com/ablab/spades
Ray Meta short reads Boisvert et al. 2012 [45] DBG http://denovoassembler.sf.net.
Athena-meta linked reads Bishara et al. 2018 [46] DBG https://github.com/abishara/athena_meta
cloudSPAdes linked reads Tolstoganov et al. 2019 [47] DBG https://github.com/ablab/spades/releases/tag/cloudspades-paper
Nanoscope SLR Kuleshov et al. 2016 [34] DBG https://github.com/kuleshov/nanoscope
Canu long reads Koren et al. 2017 [51] OLC https://github.com/marbl/canu
NECAT long reads Chen et al. 2021 [52] String Graph https://github.com/xiaochuanle/NECAT
wtdbg2 long reads Ruan et al. 2020 [53] Fuzzy Bruijn Graph https://github.com/ruanjue/wtdbg2
metaFlye long reads Kolmogorov et al. 2020 [54] OLC https://github.com/fenderglass/Flye
DBG2OLC short and long reads Ye et al. 2016 [56] DBG and OLC https://github.com/yechengxi/dbg2OLC
OPERA-MS short and long reads Bertrand et al. 2019 [57] DBG https://github.com/CSB5/OPERA-MS
Unicycler short and long reads Wick et al. 2017 [58] DBG https://github.com/rrwick/Unicycler
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2.2. Tools for metagenome assembly

2.2.1. Metagenome assemblers for short-read sequencing
The conventional metagenome assemblers for short-read

sequencing were designed using overlap-layout consensus (OLC)
approaches (Table 2). For example, Omega [35] stores the prefix
and suffix sequences of each read within the hash tables, and these
sequences are then used to construct a bi-directed graph after link-
ing the reads with their overlapping sequences. This graph is later
simplified by removing transitive edges to explore the paths with
minimum cost. Due to inherent issues with the OLC approach, it
is difficult for Omega to process a large number of short reads,
and it is also unable to distinguish chimeric contigs. There are sev-
eral other assemblers designed using the De Bruijn graph (DBG),
which splits the reads into k-mers and reduces the computer mem-
ory requirement (Table 2). MetaVelvet [36] constructs a DBG with
Velvet [37] and partitions it into subgraphs using coverage peaks of
the k-mers to divide different microbial genomes. The chimeric
contigs and the contigs with repetitive sequences are then identi-
fied and split using paired-end information and local read depth
divergence. MetaVelvet-SL [38] detects potential chimeric nodes
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in the DBG and deconvolves them using support vector machines.
MetaVelvet-DL [39] constructs an end-to-end deep learning model
with convolutional neural networks (CNNs) and Long Short-Term
Memory. It has been shown to be more powerful than
MetaVelvet-SL at deciphering chimeric contigs. A common prob-
lem when constructing DBGs is the selection of k-mer size, as it
has a substantial impact on the ability to deal with repetitive
sequences and uneven node depths [39]. To optimize the choice
of k-mers, IDBA-UD [40] attempts to prune the graph iteratively
and merge bubbles with increasing k-mer sizes. The k-mer size is
determined if significantly different depths of the components of
the graph are observed. MEGAHIT [41,42] couples the process of
selecting k-mer sizes with a succinct DBG and shows strong com-
putational efficiency. metaSPAdes [43] is a commonly used
metagenomic assembler that improves the SPAdes tool [44] by
introducing a novel heuristic strategy to differentiate inter-
species repeats. It assumes an uneven depth in the assembly graph
and builds multiple DBGs with different k-mer sizes. The hypothet-
ical k-mers are designed to identify chimeric contigs. Another
advanced tool, Ray Meta [45], generates the local depth distribu-
tion for each seed path in a DBG. It can be deployed explicitly on

https://github.com/OpenGene/fastp
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/index.php?page=trimmomatic
http://www.usadellab.org/cms/index.php?page=trimmomatic
https://github.com/BGI-flexlab/SOAPnuke
https://github.com/ISUgenomics/SequelTools
https://github.com/ISUgenomics/SequelTools
https://github.com/BioInf-Wuerzburg/proovread
https://github.com/BioInf-Wuerzburg/proovread
https://github.com/nanopack
https://github.com/roblanf/minion_qc
https://github.com/yfukasawa/LongQC
http://omega.omicsbio.org
http://metavelvet.dna.bio.keio.ac.jp
http://metavelvet.dna.bio.keio.ac.jp/MSL.html
http://www.dna.bio.keio.ac.jp/metavelvet-dl/
http://www.cs.hku.hk/%7ealse/idba_ud
https://github.com/voutcn/megahit
https://github.com/ablab/spades
http://denovoassembler.sf.net
https://github.com/abishara/athena_meta
https://github.com/ablab/spades/releases/tag/cloudspades-paper
https://github.com/kuleshov/nanoscope
https://github.com/marbl/canu
https://github.com/xiaochuanle/NECAT
https://github.com/ruanjue/wtdbg2
https://github.com/fenderglass/Flye
https://github.com/yechengxi/dbg2OLC
https://github.com/CSB5/OPERA-MS
https://github.com/rrwick/Unicycler


Table 3
Tools for assembly quality control. List of tools for assembly quality control. For each tool, requires reference genomes or not (column 2), the original publications (column 3) and
the websites to download these tools (column 4) are illustrated. The quality control tools and related descriptions are presented in Section 2.3.

Tools Require reference genome Publications Websites

MetaQUAST Yes Mikheenko et al. 2016 [60] http://bioinf.spbau.ru/metaquast
REAPR No Hunt et al. 2013 [62] https://www.sanger.ac.uk/tool/reapr/
VALET No Olson et al. 2019 [63] https://github.com/marbl/VALET
DeepMAsED No Mineeva et al. 2020 [64] https://github.com/leylabmpi/DeepMAsED
CheckM No Parks et al. 2015 [81] https://github.com/Ecogenomics/CheckM
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the distributed computing system and enables metagenome
assembly on computer clusters without large memory
requirements.

2.2.2. Metagenome assemblers for long-read sequencing
Due to the lack of long-range genome connectedness, the

assemblers designed for short-read sequencing are generally lim-
ited to processing intra- and inter-species repeats. Assemblers
designed for both virtual (SLR and linked reads) and physical
(ONT and PacBio) long reads have shown great promise in generat-
ing assemblies with excellent continuity. For virtual long reads,
Bishara et al. [46] developed Athena to improve metagenomic
assembly by considering the co-barcoded linked reads between
contigs. It constructs a scaffold graph by linking the contigs from
metaSPAdes based on the support of paired-end reads. The local
assembly is performed by recruiting the co-barcoded linked reads
shared by the contig pairs connected in the scaffold graph. cloud-
SPAdes [47] builds upon the assembly graph of metaSPAdes and
evaluates the similarities between the barcode sets of two edges,
which measures the probability that the sequences are derived
from the same genomic region. The edges with high similarity
are then connected to simplify the graph. Nanoscope [34] inte-
grates SOAPdenovo [48] and Celera [49] to assemble short reads
and SLRs independently and merge their contigs using Minimus2
[50]. As the physical long reads generated by PacBio and ONT plat-
forms have much higher base error rates than short reads, the
developers of long-read assemblers have implemented dedicated
modules for base error correction. Some tools use pre-assembly
error correction. Canu [51] and NECAT [52] correct the sequencing
errors in long reads before genome assembly using the OLC
approach. Rather than correcting error-prone long reads, wtdbg2
[53] enables the process of inexact sequence matches to build a
consensus from the intermediate contigs. metaFlye [54] has been
built on Flye [55] and has dedicated features to process long reads
from a mixture of microbial genomes. It combines the long reads
into error-prone disjointigs and collapses the repetitive sequences
into a repeat graph.

2.2.3. Metagenome assemblers for hybrid assembly
Short-read and long-read sequencing techniques are somewhat

complementary to each other, as short reads have high base quality
and long reads provide long-range genome connectedness. Several
algorithms have attempted to make better use of the superiorities
of these two techniques. metaSPAdes [43] considers error-prone
long reads as ‘‘untrusted contigs” and applies them to thread the
complex structure of the assembly graph from short reads.
DBG2OLC [56] aligns the contigs from short-read assemblies to
error-prone long reads and applies the OLC strategy to concatenate
the long reads into contigs. OPERA-MS [57] uses long reads with
shallow coverage to link the contigs from short reads into a scaf-
fold graph and then groups them into species-specific clusters. It
uses a novel Bayesian clustering algorithm to produce strain-
resolved assemblies using contig read depth and connected infor-
mation from long reads. Unicycler [58] was initially designed to
assemble a single bacterial genome, but it was later applied to
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metagenome assembly [59]. It only uses long reads to choose the
paths for ambiguous contigs in the assembly graph and uses mul-
tiple sequence alignment (MSA) to correct the sequencing errors of
long reads.

2.3. Tools for assembly QC

As shown in Table 3, there are many tools available to evaluate
the accuracy and continuity of the contigs and scaffolds generated
by metagenome assemblers. MetaQUAST [60] rapidly calculates
the basic statistics for the contigs and scaffolds, such as assembly
length, N50 values and contig length distribution. It also supports
a reference-based assessment in the ‘‘meta” mode that aligns the
sequences against the given reference genomes or the SILVA 16S
rRNA database [61] to calculate reference-based statistics, such
as genome coverage, NA50 and NGA50 values. REAPR [62] pre-
cisely identifies errors in genome assemblies without relying on
a reference sequence. It offers a quantitative comparison across
multiple assemblies using the inherent information within the
sequencing reads. VALET [63] performs metagenome binning
before QC to reduce the number of false positives and false nega-
tives due to uneven read depth. Recently, DeepMAsED [64] has
been developed to detect misassembled contigs, without the need
for reference genomes, using a deep learning model.

2.4. Tools for metagenome binning

Most of the current assemblers do not represent complete
microbial genomes with single scaffolds. Many metagenome bin-
ning tools have been developed to group the scaffolds into clusters
to represent the whole genome of an organism (Table 4). The exist-
ing tools for short reads rely mainly on TNFs, k-mer frequencies
and read depth. GroopM [65] uses Hough partitioning and a two-
way clustering method to group scaffolds with similar read depths
and TNFs. MaxBin2 [66] jointly considers TNFs and read depths to
estimate the distances between scaffolds and then uses an
expectation–maximization algorithm to group the scaffolds co-
assembled from multiple metagenomic samples. CONCOCT [67]
combines TNFs and read depths to cluster the scaffolds using Gaus-
sian mixture models. MetaBAT2 [68] also uses TNFs and read
depths to compute scaffold similarities and constructs a graph by
representing their similarities as the weights of the edges. This
graph is further partitioned into subgraphs or bins based on a mod-
ified label propagation algorithm (LPA). Besides TNFs and read
depths, some additional information may also be taken into con-
sideration to link scaffolds. MyCC [16] implements an affinity
propagation algorithm to use complementary marker genes
between scaffolds. SolidBin [17] performs spectral clustering on
taxonomic alignments to connect scaffolds, and BMC3C [18] uses
ensemble clustering on codon usage inferred from the scaffolds.
Mallawaarachchi et al. found that short scaffolds were commonly
neglected by previous metagenome binning tools, and therefore,
they developed GraphBin [69], which rescues the short scaffolds
using an LPA on the assembly graph. METAMVGL [70] integrates
the assembly and paired-end graphs and applies a multi-view

http://bioinf.spbau.ru/metaquast
https://www.sanger.ac.uk/tool/reapr/
https://github.com/marbl/VALET
https://github.com/leylabmpi/DeepMAsED
https://github.com/Ecogenomics/CheckM


Table 4
Tools for metagenome binning. For each tool, the adopted technologies (column 2), the original publications (column 3), summaries of the core algorithms (column 4), and the
websites to download these tools (column 5) are illustrated. The metagenome binning tools and related descriptions are presented in Section 2.4.

Tools Technologies Publications Core algorithms Websites

GroopM short reads Imelfort et al. PeerJ.2014 [65] Two-way clustering and Hough
partitioning

http://ecogenomics.github.io/GroopM/

MaxBin2 short reads Wu et al. 2016 [66] Expectation-maximization http://sourceforge.net/projects/maxbin/
CONCOCT short reads Alneberg et al. 2014 [67] Gaussian Mixture Models https://github.com/BinPro/CONCOCT
MetaBAT2 short reads Kang et al. 2019 [68] Label propagation https://bitbucket.org/berkeleylab/metabat
MyCC short reads Lin et al. 2016 [16] Affinity propagation http://sourceforge.net/projects/sb2nhri/files/MyCC/
SolidBin short reads Wang et al. 2019 [17] Spectral clustering https://github.com/sufforest/SolidBin
BMC3C short reads Yu G et al. 2018 [18] Ensemble clustering http://mlda.swu.edu.cn/codes.php?name=BMC3C
GraphBin short reads Mallawaarachchi et al. 2020 [69] Label propagation https://github.com/Vini2/GraphBin
METAMVGL short reads Zhang et al. 2021 [70] Label propagation https://github.com/ZhangZhenmiao/METAMVGL
VAMB short reads Nissen et al. 2021 [71] Variational Autoencoders https://github.com/RasmussenLab/vamb
MAGO short reads Murovec et al.2020 [73] Ensemble learning http://mago.fe.uni-lj.si/
MetaWRAP short reads Uritskiy et al. 2018 [74] Ensemble learning https://github.com/bxlab/metaWRAP
DAS Tool short reads Sieber et al. 2018 [75] Ensemble learning https://github.com/cmks/DAS_Tool
ProxiMeta Hi-C Press et al. 2017 [76] Graph-based clustering https://github.com/phasegenomics/proxiphage_paper
bin3C Hi-C DeMaere et al. 2019 [77] Network clustering https://github.com/cerebis/bin3C
HiCBin Hi-C Du et al. 2021 [79] Leiden algorithm https://github.com/dyxstat/HiCBin

Table 5
Tools for gene prediction. For each tool, the method types (column 2), the original publications (column 3), summaries of the core algorithms (column 4) and the websites to
download these tools (column 5) are illustrated. The gene prediction tools and related descriptions are presented in Section 3.1.

Tools Types Publications Core algorithms Websites

MetaGeneMark model based Zhu et al. 2010 [84] Hidden Markov Model http://exon.gatech.edu/meta_gmhmmp.cgi
Glimmer-MG model based Kelley et al. 2012 [85] Interpolated Markov Model https://github.com/davek44/Glimmer-MG
FragGeneScan model based Delcher et al. 2007 [86] Hidden Markov Model https://omics.informatics.indiana.edu/FragGeneScan/
Prodigal model based Hyatt et al. 2010 [87] Dynamic Programming https://github.com/hyattpd/Prodigal
MetaGene model based Noguchi et al. 2006 [88] Dynamic Programming http://metagene.nig.ac.jp/metagene/metagene.html
MetaGeneAnnotator model based Noguchi et al. 2008 [89] Dynamic Programming http://metagene.nig.ac.jp/
Meta-MFDL machine learning Biomed Res et al. 2017 [90] Deep Neural Network https://github.com/nwpu903/Meta-MFDL
CNN-MGP machine learning Al-Ajlan et al. 2019 [91] Convolutional Neural Network https://github.com/rachidelfermi/cnn-mgp
Balrog machine learning Sommer et al. 2021 [92] Convolutional Neural Network https://github.com/salzberg-lab/Balrog
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LPA to connect dead ends to the main assembly graph. VAMB [71]
embeds the scaffolds in low dimensions using a variational autoen-
coder [72]. Despite many tools that have been developed for meta-
genome binning, there is no single best choice, and the ensemble-
based tools, such as the binning module in Metagenome Assem-
bled Genomes Orchestra (MAGO) [73], MetaWRAP [74] and DAS
Tool [75], provide a promising way to integrate the binning results
from different tools.

Hi-C is another sequencing technology that has been used for
metagenome binning by introducing genome-wide spatial proxim-
ity. ProxiMeta [76] can devolve plasmid genomes and generate
high-quality bins without relying on prior information. bin3C
[77] has an effective pipeline for contact map generation, bias
removal and interaction strength normalization, and it uses the
Louvain algorithm [78] for scaffold community detection. HiCBin
[79] uses HiCzin [80] to normalize the interaction map and applies
the Leiden community detection algorithm to group scaffolds. It
also includes a module to detect spurious contacts.
2.5. Quality evaluation of MAGs

The designation of metagenome bins as MAGs relies on several
parameters, such as the completeness of marker genes and the
contamination of single-copy genes. CheckM [81] is commonly
used to determine the quality of each bin. Only the bins with rela-
tively high quality are then selected as the MAGs for subsequent
annotation. The bins are commonly classified as finished, high-
quality, medium-quality or low-quality drafts based on their com-
pleteness, level of contamination and rRNA/tRNA prediction [82].
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Due to known issues in assembling rRNA/tRNA sequences
[61,83], it is well accepted to select high-quality (complete-
ness greater than 90% and contamination < 5%) and medium-
quality (completeness greater than 50%, contamination < 10% and
completeness � [5 � contamination] greater than 50) bins as
MAGs [21].
3. Tools for downstream analyses to annotate MAGs

3.1. Gene prediction tools

Gene identification and annotation are the next critical steps
after carefully selecting MAGs from the metagenome assembly.
In this section, we discuss the approaches used to identify and pre-
dict genes by recognizing potential coding sequences within MAGs
(Table 5).
3.1.1. Model-based gene prediction tools
Hidden Markov Model (HMM)-based tools are the most com-

monly used tools for model-based gene prediction. There are sev-
eral tools available under this category, such as MetaGeneMark
[84], Glimmer-MG [85] and FragGeneScan [86]. MetaGeneMark
extracts oligonucleotide frequencies and their compositions from
the genomes of known prokaryotic species to train the HMM.
Glimmer-MG clusters the input sequences that are most likely to
share the same origin and trains the interpolated Markov model
within each cluster to optimize the probabilistic inference.
FragGeneScan incorporates the sequencing error models into six-

http://ecogenomics.github.io/GroopM/
http://sourceforge.net/projects/maxbin/
https://github.com/BinPro/CONCOCT
https://bitbucket.org/berkeleylab/metabat
http://sourceforge.net/projects/sb2nhri/files/MyCC/
https://github.com/sufforest/SolidBin
http://mlda.swu.edu.cn/codes.php?name=BMC3C
https://github.com/Vini2/GraphBin
https://github.com/ZhangZhenmiao/METAMVGL
https://github.com/RasmussenLab/vamb
http://mago.fe.uni-lj.si/
https://github.com/bxlab/metaWRAP
https://github.com/cmks/DAS_Tool
https://github.com/phasegenomics/proxiphage_paper
https://github.com/cerebis/bin3C
https://github.com/dyxstat/HiCBin
http://exon.gatech.edu/meta_gmhmmp.cgi
https://github.com/davek44/Glimmer-MG
https://omics.informatics.indiana.edu/FragGeneScan/
https://github.com/hyattpd/Prodigal
http://metagene.nig.ac.jp/metagene/metagene.html
http://metagene.nig.ac.jp/
https://github.com/nwpu903/Meta-MFDL
https://github.com/rachidelfermi/cnn-mgp
https://github.com/salzberg-lab/Balrog


Table 6
Tools for gene annotation. For each tool, the method types (column 2), the original publications (column 3), summaries of the core algorithms/programs (column4) and the
websites to download these tools (column 5) are illustrated. The gene annotation tools and related descriptions are presented in Section 3.2.

Tools Types Publications Core algorithms Websites

eggNOG-mapper Homology-based Huerta-Cepas et al. 2017 [94] Hidden Markov Model http://eggnog-mapper.embl.de
GhostKOALA Homology-based Kanehisa et al. 2016 [95] GHOSTX (seed search method) http://www.kegg.jp/blastkoala/
MG-RAST Homology-based Keegan et al. 2016 [96] Parallelized BLAT http://api.metagenomics.anl.gov/api.html
PANNZER2 Homology-based Törönen et al. 2018 [97] Sansparallel (suffix array

neighborhood search)
http://ekhidna2.biocenter.helsinki.fi/sanspanz/

InterProScan Motif-based Quevillon et al. 2005 [107] Phobius (Hidden Markov Model) http://www.ebi.ac.uk/InterProScan/
GeConT Gene context based Ciria et al. 2004 [110] Blastp http://www.ibt.unam.mx/biocomputo/gecont.

html
FunGeCo Gene context based Anand et al. 2020 [112] Hidden Markov Model https://web.rniapps.net/fungeco
FlaGs Gene context based Saha et al. 2021 [114] Jackhmmer (Hidden Markov Model) https://github.com/GCA-VH-lab/FlaGs
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periodic inhomogeneous Markov models, enabling the identifica-
tion of genes with frameshifts.

There are also several gene prediction tools for bacterial and
archaeal genomes using dynamic programming. For example,
Prodigal [87] uses dynamic programming based on frame bias
scores to train gene prediction models in the preliminary phase.
In the final phase, the same algorithm is used in Prodigal to process
hexamer coding scores for each gene to predict their potential
protein-encoding abilities. MetaGene [88] calculates two types of
scores for all possible open reading frames (ORFs) to measure their
intrinsic (including base composition and length) and extrinsic
(including orientations and distance of neighboring genes) charac-
teristics. These scores are further combined and serve as inputs for
the dynamic programming to further estimate the optimal paths of
ORFs. MetaGeneAnnotator [89] improves the prediction of lateral
gene transfers and translation start sites of genes by adopting the
prophage gene and ribosome binding site models, respectively.

3.1.2. Deep learning-based gene prediction tools
Recently, various deep learning tools have gained considerable

attention for gene prediction. Meta-MFDL [90] is a commonly used
tool that constructs a representative vector by fusing multiple fea-
tures, such as monocodon usage, mono-amino acid usage, ORF
length coverage and Z-curve features and then trains a deep stack-
ing network to distinguish between coding and noncoding ORFs.
CNN-MGP [91] uses a CNN model to automatically learn the char-
acteristics of ORFs in training datasets and predict the probability
of ORFs in MAGs. Balrog et al. [92] used a temporal CNN for gene
prediction based on a large and diverse set of microbial genomes.

3.2. Gene functional annotation tools

Metagenomic sequencing enables the evaluation of the func-
tional characteristics of microbial communities. Gene functional
annotation tools can be classified into two categories: 1) tools with
broad scopes to evaluate full functional potential and 2) tools with
narrow scopes focusing on one or a few specific biological pro-
cesses. This review focuses only on the tools designed to provide
a full functional overview (Table 6).

3.2.1. Homology-based tools
Homology-based tools usually rely on different variants of

BLAST [93] to compare the sequences of predicted genes with
those of known genes. They are often very slow to process the large
number of genes predicted from MAGs. However, modern meth-
ods, such as eggNOG-mapper [94], GhostKOALA [95], MG-RAST
[96] and PANNZER2 [97], employ optimized alignment strategies
that enable 100- to 1,000-fold faster alignment of gene sequences
to databases. eggNOG-mapper performs ultra-fast alignments
against orthologies based on pre-computed sequence clusters
and phylogenic information from eggNOG [98]. It uses HMM to
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search the most closely matching reference sequences to each
query protein. eggNOG-mapper is much faster than traditional
BLAST-based approaches. GhostKOALA [95] is an automatic anno-
tation pipeline relying on GHOSTX [99] and also assigns Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthologies and path-
ways to each gene [100]. MG-RAST [96] provides an online metage-
nomic analysis interface that includes data uploading, QC and
alignment with M5nr reference databases [101]. PANNZER2 [97]
incorporates SANSparallel [102], a message passing interface
implementation of a suffix array neighborhood searching
approach, to enable rapid homology searches of Gene Ontology
[103] annotations.
3.2.2. Motif-based tools
Protein sequences are sometimes partially assembled from

metagenomic sequencing data, and this may adversely influence
homology-based annotation mainly due to incomplete and misas-
sembled scaffolds in MAGs. In such cases, despite poor alignment
homologies, the predicted proteins tend to perform analogous
functions to those sharing common sequences, patterns or specific
motifs. Databases such as InterPro [104], PROSITE [105] and
PRINTS [106] have collected such patterns or motifs based on sta-
tistical inference. Given an input sequence, InterProScan [107] per-
forms a systematic search of the InterPro database using Phobius
[108] and predicts protein domains, active sites and potential func-
tional annotations. However, as MAGs inherently contain novel
sequences, it is always recommended to perform both motif-
based analysis and other homology-based approaches for better
functional annotations.
3.2.3. Gene context-based tools
Metagenomic sequencing enables the recognition of a large

number of novel genes that may share no homology with known
genes and thus are not suitable to be annotated using the afore-
mentioned approaches. To address such limitations, gene
context-based tools have been introduced. Harrington et al. com-
bined homology-based approaches and tailored gene neighbor-
hood methods to perform gene annotation for complex
metagenomic datasets [109]. Their tool infers the specific functions
of 76% and non-specific functions of 83% of the predicted genes and
outperforms standard BLAST-based methods. Ciria et al. developed
GeConT [110] to visualize the genomic context of target genes and
extract their orthologs from the COG database [111] for gene func-
tion prediction. FunGeCo [112] uses HMM to align the predicted
genes to the Pfam database [113] and record their genomic loca-
tions. Based on this information, FunGeCo infers the significant
enrichment of domains in the gene context and visualizes them
on a web server. FlaGs [114] extracts upstream and downstream
genes for a given gene of interest and annotates and further clus-
ters the flanking genes using a sensitive HMM-based method. A

http://eggnog-mapper.embl.de
http://www.kegg.jp/blastkoala/
http://api.metagenomics.anl.gov/api.html
http://ekhidna2.biocenter.helsinki.fi/sanspanz/
http://www.ebi.ac.uk/InterProScan/
http://www.ibt.unam.mx/biocomputo/gecont.html
http://www.ibt.unam.mx/biocomputo/gecont.html
https://web.rniapps.net/fungeco
https://github.com/GCA-VH-lab/FlaGs


Table 7
Tools for MAG taxonomic classification. For each tool, the method types (column 2), the original publications (column 3), summaries of the core algorithms (column 4) and the
websites to download these tools (column 5) are illustrated. The detailed description is presented in Section 3.3.

Tools Types Publications Core algorithms Websites

GTDB-Tk concatenated protein Chaumeil et al. 2019 [115] Likelihood-based phylogenetic
inference

https://github.com/Ecogenomics/GTDBTk

ezTree concatenated protein Wu et al. 2018 [119] Maximum likelihood https://github.com/yuwwu/ezTree
PhyloPhlAn3 concatenated protein Asnicar et al. 2020 [121] Maximum likelihood https://huttenhower.sph.harvard.edu/phylophlan/
MiGA genome-based relatedness Rodriguez-R et al. 2018 [122] Markov clustering http://microbial-genomes.org/

Table 8
Tools for profiling MAG abundance. For each tool, the method types (column 2), the original publications (column 3), summaries of the core algorithms (column 4) and the
websites to download these tools (column 5) are illustrated. The gene prediction tools and related descriptions are presented in Section 3.4.

Tools Types Publications Core algorithms Websites

Kaiju translated protein based Menzel P et al. 2016 [123] Backwards search http://kaiju.binf.ku.dk
Kraken k-mer based Wood DE et al. 2014 [126] Classification tree https://ccb.jhu.edu/software/kraken/
Kraken2 k-mer based Wood DE et al. 2019 [127] Spaced seed https://ccb.jhu.edu/software/kraken2/
Bracken k-mer based Jennifer Lu et al. 2017 [128] Bayesian probability algorithm https://ccb.jhu.edu/software/bracken/
CLARK k-mer based Ounit R et al. 2015 [129] Spectral decomposition http://clark.cs.ucr.edu/
k-SLAM k-mer based Ainsworth D et al. 2017 [130] Pseudo-assembly https://github.com/aindj/k-SLAM
MetaPhlAn3 marker gene based Beghini F et al. 2021. [131] Comprehensive pipeline https://huttenhower.sph.harvard.edu/metaphlan/
PanPhlAn3 marker gene based Beghini F et al. 2021. [131] Comprehensive pipeline http://segatalab.cibio.unitn.it/tools/panphlan/
IGGsearch marker gene-based Nayfach S et al. 2019 [10] Comprehensive pipeline https://github.com/snayfach/IGGsearch
ConStrain SNP based Luo C et al. 2015 [132] SNP-flow algorithm https://bitbucket.org/luo-chengwei/constrains
StrainFinder SNP based Smillie CS et al. 2018 [133] Expectation-maximization https://github.com/cssmillie/StrainFinder
StrainEst SNP based Albanese D et al. 2017 [134] Penalized optimization https://github.com/compmetagen/strainest
StrainPhlAn3 SNP based Beghini F et al. 2021. [131] Comprehensive pipeline http://segatalab.cibio.unitn.it/tools/strainphlan/
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phylogenetic tree is then constructed for those flanking genes to
examine their conservation.
3.3. Tools for MAG taxonomic classification

Another critical task when annotating MAGs is to determine
their taxonomic classifications. Traditional methods based on 16S
rRNA small subunit genes have been successfully established to
understand the diversity of MAGs in prokaryotic communities,
but these methods offer limited resolution and 16S rRNAs are
poorly represented in MAGs [20,61]. In contrast, methods using
single-copy marker genes have gained popularity due to their
improved resolution (Table 7). GTDB-Tk [115] uses HMMER [116]
to identify marker genes in the reference genomes from the Gen-
ome Taxonomy Database (GTDB) [117]. These marker genes are
concatenated for MSA and then used to construct a reference tree
using a likelihood-based phylogenetic inference algorithm [118].
GTDB-Tk performs taxonomic classification for a queried MAG
based on its position in the reference tree, relative evolutionary
divergence and average nucleotide identity to the reference
genome. ezTree [119] is designed to automatically search for
single-copy marker genes in a pre-defined database and build a
phylogenetic tree based on maximum-likelihood [120]. To improve
the classification of closely related MAGs, Asnicar et al. developed
PhyloPhlAn 3.0 [121], which has been used to extract species-
specific marker genes from the integration of more than 150,000
MAGs and 80,000 reference genomes. PhyloPhlAn 3.0 uses a novel
strategy to place the queried MAGs in the phylogenetic tree. The
steps include identifying the marker genes from the MAGs,
performing MSA for the marker genes, concatenating the MSAs
into a unique MSA and reconstructing the phylogeny using a
maximum-likelihood approach. In addition, the Microbial
Genomes Atlas [122] uses a unique method to evaluate the similar-
ities between the queried MAGs and sequences from a reference
database, which are calculated based on genome-aggregated aver-
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age nucleotide and amino acid identities. The reference genome
with the highest matching score is then selected using the Markov
cluster algorithm.

3.4. Tools for profiling MAG abundance

There are several available tools to estimate the abundance of
MAGs in metagenomic sequencing data. These tools have been
divided into four categories: 1) protein-based tools, 2) k-mer-
based tools, 3) marker gene-based tools and 4) single nucleotide
polymorphism (SNP)-based tools. All of these four methods esti-
mate MAG abundance, but they tend to perform distinctly and
have different resolutions. For example, k-mer-based tools calcu-
late the abundance of specific sequences of MAGs, whereas marker
gene-based tools report their taxonomic abundance. Here, we dis-
cuss these tools and their potential roles in MAG profiling (Table 8).

3.4.1. Protein-based tools
Kaiju is one of the most commonly used protein-based MAG

abundance profilers [123]. It is a protein-level classification tool
developed for the taxonomic classification of a large number of
reads from metagenomic or metatranscriptomic sequencing data.
It first compacts the protein sequences predicted from MAGs by
Burrows-Wheeler transformation [124] and indexes each sequence
by FM-index [125] to reduce the computational time and the mem-
ory requirement. Kaiju then translates the query nucleotide
sequence into an amino acid sequence, which it aligns against an
established database of proteins derived from MAGs and sorts
the resulting alignments. Once Kaiju detects sequence homology
in the protein database, it outputs the taxonomic identifier of the
best match. Sometimes, it also determines the lowest common
ancestor (LCA) after recognizing substantial matches among the
different taxa. As Kaiju uses protein-level classifications, it has
greater sensitivity than methods relying on nucleotide sequences.
It can extend its search capacity to fungi and some microbial

https://github.com/Ecogenomics/GTDBTk
https://github.com/yuwwu/ezTree
https://huttenhower.sph.harvard.edu/phylophlan/
http://microbial-genomes.org/
http://kaiju.binf.ku.dk
https://ccb.jhu.edu/software/kraken/
https://ccb.jhu.edu/software/kraken2/
https://ccb.jhu.edu/software/bracken/
http://clark.cs.ucr.edu/
https://github.com/aindj/k-SLAM
https://huttenhower.sph.harvard.edu/metaphlan/
http://segatalab.cibio.unitn.it/tools/panphlan/
https://github.com/snayfach/IGGsearch
https://bitbucket.org/luo-chengwei/constrains
https://github.com/cssmillie/StrainFinder
https://github.com/compmetagen/strainest
http://segatalab.cibio.unitn.it/tools/strainphlan/
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eukaryotes depending on the context. Within Kaiju, the reads are
translated into amino acid sequences and then searched against a
database to recognize the maximum number of exact matches.

3.4.2. k-mer-based tools
Kraken, the most commonly used k-mer based tool, replaces

sequence alignment with efficient searching of a simple k-mer
lookup table [126]. In Kraken, the k-mers from the sequence data-
base are saved in a compressed lookup table that can be promptly
queried for exact matches to k-mers found in the reads. For each
query read, a tree is constructed using the k-mers from the read
and the ancestors of the associated taxa, and the tree is then used
to determine the final classification with the maximal root-to-leaf
path. Kraken2 [127] maintains the accuracy of Kraken but reduces
the memory and computational requirements, enabling the inclu-
sion of more reference genomes in the database. Bracken [128], an
extension of Kraken, uses a Bayesian probability model to estimate
the abundance of MAGs. Another tool, CLARK [129], uses discrim-
inative k-mers to perform a supervised sequence classification
and then reports the assignments with confidence scores. k-
SLAM [130] uses local sequence alignments and pseudo-assembly
strategies to generate contigs, leading to more specific assignments
of taxonomic classifications. Taxonomic inference is then per-
formed using the LCA technique.

3.4.3. Marker gene-based tools
MetaPhlAn3 [131] is an extensively used marker gene-based

tool for MAG profiling. It aligns reads to a marker gene database
and normalizes the counts for each gene for a given sample. From
such genome-scale information, the abundance of each MAG is
estimated. In contrast, PanPhlAn3 [131] maps the reads against
the pangenome of a species and offers gene presence or absence
information. IGGsearch [10] uses a similar approach to MetaPh-
lAn3, but it is the first tool that has attempted to extract pools of
marker genes from MAGs from 3,810 fecal metagenomes [10]. It
stretches the boundary of the metagenomics field to further
explore the phylogenetic diversity of different bacteria and other
prokaryotes. However, IGGsearch is currently limited to being
exclusively used for the analysis of the human gut microbiota.

3.4.4. SNP-based tools
Compared to the other tools, SNP-based tools consider different

strains of MAGs and calculate their abundance separately. ConS-
train [132] is an effective SNP-based tool at identifying strain-
level genotypes. It mainly uses a SNP-flow algorithm to identify
all possible SNP types and select the best groups of SNP types to
define the mixture of strains. The relative abundance of each strain
is further measured using the Metropolis-Hastings Markov Chain
Monte-Carlo approach. StrainFinder [133] assumes a multinomial
distribution of observed SNPs at a given position to identify multi-
ple strains within a species. It then uses an expectation–maximiza
tion algorithm to maximize the likelihood of measuring the fre-
quencies of strains and their genotypes. In contrast, StrainEst
[134] uses a penalized optimization procedure to detect all strains
within a species of interest. Based on the definition of the
dominant strain per species, StrainPhlAn3 [135] uses the SNPs in
the marker genes from MetaPhlAn3 to construct a species-
specific consensus sequence to infer the strain-level genotypes
and abundance.
4. Performance comparison and computational requisites

Constructing MAGs from large metagenomic sequencing data-
sets is a complex procedure that requires tremendously expensive
computational capabilities and manpower. It also demands the
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careful selection of different tools and a high level of technical
expertise (Supplementary Table 1). This is challenging and tedious
for many biologists and bioinformaticians. Some platforms, such as
bioBakery3, MAGO and SqueezeMeta, have integrated an array of
commonly used state-of-the-art tools to offer convenient, unified
and reproducible methods to construct and annotate MAGs
[73,131,135]. Moreover, several container technologies, such as
Docker and Singularity, enable the encapsulation of the entire
computing environment, including software dependencies,
libraries, packages, code and reference data, together to offer a fast
and secure option for scalable and reproducible scientific computa-
tion [136]. Our comprehensive investigation may prompt further
development in this field.

The computational requirements to construct MAGs are very
high. For example, a moose rumen microbiome dataset with
280 GB of raw reads from six samples was analyzed using a 120
central processing unit (CPU) and 1.2 TB of random-access memory
(RAM). Completing the task using MAGO costs 16,128 CPU hours
[73]. In another study, a human pregnancy microbiome dataset
with 120 GB of raw reads from 101 samples was analyzed using
a 20–28 CPU and 300–480 GB of RAM. Completing this task using
MAGO cost 2,880 CPU hours [73]. The computational requirements
to construct MAGs also varies among different stages of the pro-
cess. In the pre-processing stage, fastp [24] is much faster than
the other available tools, such as Trimmomatic and FastQC. It can
process approximately 100,000 paired reads per second. Genome
assembly is the most computationally demanding step. For meta-
genome assembly from short-reads, MEGAHIT and metaSPAdes
have demonstrated excellent performance, with MEGAHIT requir-
ing less time and memory. MEGAHIT uses approximately 5 GB of
memory to assemble � 4.2 GB of raw reads from Illumina short-
read sequencing in 7 h, while metaSPAdes uses 43 GB of memory
and 14 h to assemble the same dataset [137]. Of the long-read
assemblers, Canu requires much more computational resources
to achieve a comparable performance to metaFlye when processing
data from the ONT platform [138]. For linked-read sequencing,
Athena-meta and cloudSPAdes have shown similar performance,
although cloudSPAdes requires less computing time [47]. For the
metagenome binning step, the existing tools exhibit variable per-
formance across different datasets. To attain a consensus interpre-
tation, a highly complex and realistic benchmark dataset, the
Critical Assessment of Metagenome Interpretation I (CAMI I) data-
set, was introduced in 2017 [139]. MetaBAT2 has been reported to
demonstrate better performance than other binners, such as
BMC3C, CONCOCT and MyCC, when using the CAMI I dataset
[140]. However, despite having the quickest running time and low-
est memory requirement, the performance of MetaBAT2 is worse
than that of MaxBin2 and CONCOCT when using the CAMI II mar-
ine datasets, as indicated by a lower F1 score [141]. Notably, some
ensemble strategy-based tools, such as MetaWRAP and DAS Tool,
show excellent overall performance and generate high-quality
scaffold clusters.

In the downstream processes, especially the gene prediction
and annotation steps, the computational requirements largely
depend on the number of sequences to be processed. Of the differ-
ent gene prediction tools, Prodigal and MetaGeneMark show high
processing speeds [84,92]. Most gene prediction tools provide
high-quality prediction of genes. A study by Nicholas et al. offers
a comparative insight into the difference between the efficiency
of joint prediction by integrating Prodigal, MetaGeneAnnotator
and MetaGeneMark and that of using the best tool for each specific
organism [142]. Compared with the best tool, the joint prediction
model was shown to offer a negligible increase (�0.47%) in the
number of genes predicted. Hence, a single gene prediction tool
may be sufficient for organism-specific analyses. Gene function
annotation is 2.5 � faster with eggNOG-Mapper than with Inter-
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proscan [94]. The taxonomic profilers take less processing time
than the assembly and binning tools. Kraken and Bracken are k-
mer-based tools that rapidly and accurately estimate taxonomic
abundance [143]. However, they require a large amount of mem-
ory to load the database. The marker gene-based tools, such as
MetaPhlAn3, have significantly reduced memory usage compared
with the k-mer-based tools, while offering similar accuracy.
5. Outlook, potential challenges and strategies to address them

Genome assembly is an essential step in producing high-quality
MAGs. Several state-of-the-art assemblers have been developed (as
discussed in Section 2.2) to analyze data from different sequencing
technologies. Several studies [10,19] have reported that the quality
of the constructed MAGs is high and is similar to the quality of gen-
omes assembled from isolates. However, a recent study [144]
showed that some of the MAGs were not as expected. A thorough
investigation of a MAG named ‘‘HMP_2012_SRS023938_bin.39”
[19], which was annotated as the phylum, Saccharibacteria, showed
that 53.5 kbp of sequence from 11 contigs were contaminated, and
the genes represented by these sequences had the best match with
Selenomonas genes rather than Saccharibacteria genes. As a result of
these findings, the authors proposed a practical workflow to facil-
itate the curation of MAGs. Some tools have also been developed to
remove contaminating scaffolds from chimeric MAGs. MAGpurify
[10] removes scaffolds that are far from those from the same
MAG by considering information from multiple sources, such as
phylogenetic marker genes, clade-specific markers and GC content.
GUNC [145] calculates the clade separation and reference repre-
sentation scores to quantify genomic chimerism. The construction
of MAGs should ideally be performed for all of the high-, medium-
and low-abundance microbes. However, the existing tools mostly
fail to distinguish between reads from low-abundance microbes
and contamination from library preparation and sequencing.
Although these tools can generate the contigs and scaffolds for
low-abundance species, the contiguity is relatively poor and the
sequences only represent partial genomes. Advanced long-read
sequencing technologies may be promising to produce complete
genomes and detect low-abundance microbes [146]. A previous
study showed that selective nanopore sequencing technology
enriches specific DNA molecules and enables researchers to focus
on DNA fragments of interest [147]. Recently, Kovaka et al. devel-
oped UNCALLED to be used while running metagenomic sequenc-
ing. This tool enables the depletion of high-abundance species and
the enrichment of the remaining low-abundance species [148].
These technologies facilitate the assembly of low-abundance spe-
cies from complex microbial communities. However, concerns
regarding the assembly of long-read sequencing data remain, as
they tend to contain a higher rate of sequencing errors and the cir-
cularization process to represent the complete microbial genome is
often a challenge. This demands the development of efficient algo-
rithms, especially for high base quality assembly. In addition,
metatranscriptomic data may provide a new paradigm to detect
live microorganisms within a complex environment [149].
Although several metatranscriptome assembly tools, such as
IDBA-MTP [150] and Transcript Assembly Graph [151] have been
developed, the number of such tools remains limited.

Metagenome binning is another critical step in generating high-
quality MAGs. Most of the available binning tools require the scaf-
folds to be sufficiently long (at least 1 kb) to estimate the stable
TNF and read depth. In our previous study [70], we found that most
scaffolds were below the required threshold and thus cannot be
clustered using most of the existing tools. Graph-based tools have
recently been designed to solve this issue by considering the con-
nectedness of scaffolds based on sequence overlap and paired-end
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constraints [70,152]. These tools have improved the binning per-
formance, but more investigations are required in this area, espe-
cially when introducing assembly graphs from error-prone long
reads. Some unbinned scaffolds may be derived from interspecies
repeats or horizontal gene transfer. They should be carefully
assigned into bins, but most existing tools simply assign them to
the most likely bins or keep them unbinned. Recently, GraphBin2
[153] was proposed to allow scaffolds belonging to multiple bins
by solving subset sum problems with their abundance [153]. The
feature space for scaffold binning is usually high due to a large
number of tetranucleotides, and most clustering algorithms fail
to achieve good performance with high-dimensional data. A recent
study proposed a deep learning model, VAMB [71], to use varia-
tional autoencoders to embed the scaffolds in low dimensions, thus
significantly reducing the hidden noise and increasing the accuracy
of the clustering. In the near future, more sophisticated deep learn-
ing models are expected to emerge in this field.

One of the major advantages of MAGs is that they allow the dis-
covery of metagenomic dark matter in complex ecosystems. For
instance, Sberro et al. identified thousands of small novel genes
from metagenome assemblies from the Human Microbiome Pro-
ject [154]. These genes were missed by some of the gene finder
tools as they usually contain a default minimum ORF length. How-
ever, mounting evidence suggests that short genes are widespread
and play significant biological roles [155]. Emerging deep learning-
based gene predictors without manual feature selection promise to
improve prediction efficiency and quality for genes with irregular
features [92,142]. According to Almeida et al. [20], approximately
40% of the proteins predicted in MAGs do not have similar
sequences in the current databases, such as eggNOG, InterPro,
COG and KEGG. Thus, there is a strong demand for new approaches
besides gene context-based methods to characterize functional
capacities. In the future, the well-annotated protein database will
substantially enhance the development of pathway analysis tools,
such as HUManN3 [131], to elucidate the impact and underlying
mechanisms of human health and diseases associated with micro-
biota. On the other hand, substantially unexplored genomes have
been discovered while constructing MAGs from large-scale
metagenomic sequencing data [19,21]. Concatenated protein-
based approaches, such as the GTDB [117], are extensively used
to characterize those previously unexplored genomes. Compared
with conventional 16S rRNA-based approaches, the GTDB provides
better consistency and higher resolution of phylogenetic taxo-
nomic annotation for MAGs. In the UHGG Project [20], it is esti-
mated that GTDB-Tk successfully annotated approximately 30%
of the constructed MAGs, while more than 60% of the MAGs were
not annotated to existing species in the GTDB. Although the num-
ber of prokaryotic genomes present in the GTDB has increased to
258,406 [156], the comprehensive annotation of MAGs has
remained unsolved. To perform metagenomic profiling, some stud-
ies have modified suitable approaches from reference genome-
based tools, such as Kraken2 and MetaPhlAn3. For example,
IGGsearch optimizes the marker gene-based approach in MetaPh-
lAn3 to quantify the MAG taxonomic abundance at the species
level [10]. However, it is difficult to obtain complete and accurate
strain-level profiling using MAGs. Most of the currently available
strain-level classification tools, such as StrainFinder, StrainEst
and ConStrain, distinguish different strains based on genomic vari-
ations, such as SNPs. However, genomic variation across closely
related strains is eliminated during the assembly process, which
decreases the resolution of strain-level classification. To address
this challenge, STRONG has been proposed by using initial assem-
bly graphs prior to variant simplification and extracting additional
features for subsequent Bayesian inference [157]. It is expected
that strain-level resolution will be further refined with the
enhanced phasing ability of long-read sequencing technologies.
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A recently published study by Kayani et al. [158] also summa-
rized recent advances and introduced commonly used tools and
available pipelines to identify microbial genomes from metage-
nomic sequencing data. They also offered a comparative landscape
of these tools. Our review presents more holistic information for
both upstream and downstream analysis tools. We have discussed
state-of-the-art tools for genome assembly, metagenome binning
and QC for a diverse range of sequencing technologies. We have
also discussed a variety of options for downstream analyses, such
as gene prediction, gene annotation and taxonomic classification.
In addition, we have presented the practical aspects of using these
tools, such as platform information, computational requirements
and specifications, advantages and limitations to guide the readers
toward the most effective selection of tools and/or software appli-
cations according to their study objectives. This systematic review
may serve as a consolidated community resource to accelerate the
research and development of related software, tools and pipelines
for use in the field of metagenomics. By leveraging the power of
metagenomics, the unprecedented power of the microbiome to
influence human health and disease may be decoded from charac-
terization to mechanistic insights.
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