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A B S T R A C T

Objective: The coronavirus disease 2019 (COVID-19) pandemic has caused an exponential rise in death
rates and hospitalizations. The aim of this study was to characterize the D614G substitution in the severe
acute respiratory syndome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S protein), which may affect
viral infectivity.
Methods: The effect of D614G substitution on the structure and thermodynamic stability of the S protein
was analyzed with use of DynaMut and SCooP. HDOCK and PRODIGY were used to model furin protease
binding to the S protein RRAR cleavage site and calculate binding affinities. Molecular dynamics
simulations were used to predict the S protein apo structure, the S protein–furin complex structure, and
the free binding energy of the complex.
Results: The D614G substitution in the G clade of SARS-CoV-2 strains introduced structural mobility and
decreased the thermal stability of the S protein (DDG = �0.086 kcal mol�1). The substitution resulted in
stronger binding affinity (Kd = 1.6 � 10�8) for furin, which may enhance S protein cleavage. The results
were corroborated by molecular dynamics simulations demonstrating higher binding energy of furin and
the S protein D614G mutant (�61.9 kcal mol�1 compared with �56.78 kcal mol�1 for wild-type S
protein).
Conclusions: The D614G substitution in the G clade induced flexibility of the S protein, resulting in
increased furin binding, which may enhance S protein cleavage and infiltration of host cells. Therefore,
the SARS-CoV-2 D614G substitution may result in a more virulent strain.
© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

Introduction

Severe acute respiratory syndome coronavirus 2 (SARS-CoV-2),
which was first detected in Wuhan (Hubei Province, China) in late
2019, causes upper respiratory tract infection resulting in severe
pneumonia and bronchiolitis (Wang et al., 2020a; Zhu et al., 2020).
The rapid rate of SARS-CoV-2 human-to-human transmission
resulted in the virus spreading worldwide within months.
Subsequently, the World Health Organization declared a

coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2
belongs to the lineage B family of betacoronaviruses (Chan
et al., 2020) with a continuous nonsegmented 30-kb positive-
sense linear single-stranded RNA genome (Vijgen et al., 2005). The
SARS-CoV-2 genome encodes four structural proteins: glycosy-
lated spike (S), envelope (E) (required to infiltrate host cells), M
(membrane), and N (nucleocapsid) proteins. These structural
proteins have 96% sequence homology with bat coronavirus
RaTG13 (Coutard et al., 2020; Zhou et al., 2020).

The S protein of SARS-CoV-2 expressed by the ORF1b gene is
trimeric in structure, where each monomer is 180 kDa in size and
has two main subunits, S1 and S2 (Ou et al., 2020). SARS-CoV-2
utilizes the S protein to facilitate attachment to host cell surface
membranes, whereby the S protein undergoes a significant
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ngiotensin-converting enzyme 2 (ACE2) (Wan et al., 2020),
onsequently destabilizing the trimeric structure of the S protein
o create a transition structure in which the S2 subunit is in a stable
onformation. For the fusion process to occur, the S protein of
oronaviruses must be cleaved by proteases, such as transmem-
rane protease serine 2 (TMPRSS2) or furin protease (Bertram et al.,
011). Unlike SARS-CoV and Middle East respiratory syndrome
oronavirus, the SARS-CoV-2 S protein has a unique polybasic
RRAR” furin recognition site (Coutard et al., 2020). Furin is a
onvertase enzyme that cycles between the trans-Golgi network
nd the cell surface, where it recognizes the cleavage motif on
rotein precursors and converts them to functional proteins
hrough cleavage (Braun and Sauter, 2019). Furin proteolysis occurs
t a specific multibasic sequence (R-[X]-(R/K)-R), with arginine (R)
eing the most commonly favored residue at position 1 (Tian et al.,
011). The furin recognition site within the SARS-CoV-2 S protein is
ery similar to that of the highly virulent avian and human
nfluenza viruses (Andersen et al., 2020).

Genome sequences of SARS-CoV-2 from various countries have
een deposited in the GISAID database (Shu and McCauley, 2017).
he sequencing of SARS-CoV-2 has shown amino acid substitution
rising in various continents, called super clades (G, S, V, D, and I).
nitially, the 23403A > G mutation (D614G) found in the G clade S
rotein was found in the European population. (Phan, 2020).
ecently, Korber et al. (2020) showed that patients infected with
ARS-CoV-2 D614G mutant had higher levels of viral RNA.
urthermore, D614G substitution demonstrated higher titers in
seudoviruses from in vitro assays, thus indicating that the D614G
utant is more infective than the wild type (WT). In addition, a
tructural analysis showed that the replacement of aspartate (D) by
lycine (G) might alter the structure of the S protein, making it easy
o cleave (Eaaswarkhanth et al., 2020). Thus, increasing S protein
xposure to cleavage by furin may increase the virulence of
ARS-CoV-2.

In this study, we further analyze the structure of the WT S
protein (D614) and a mutant (D614G) to understand the stability of
both states using an array of bioinformatics tools and molecular
dynamics (MD) simulations. Also, we model the binding of furin to
the S protein, where we measured the binding affinities of furin for
the S protein (WT and mutant) to understand further the high
virulence associated with the D614G substitution.

Results and discussion

S protein D614G substitution

Genome sequences of SARS-CoV2 deposited in the GISAID
database showed a D614G substitution on the S protein, which is
the point of entry of the virus to the host cell, to be the most
common in Europe and the world (Korber et al., 2020; Phan,
2020; Wang et al., 2020b). Therefore, understanding the
structural changes in the mutated S protein is critical to
understand its function and potential effects on the infectivity of
SARS-CoV-2. Recently, Wrapp et al. (2020) solved a 3.5-Å-
resolution cryogenic electron microscopy structure of the SARS-
CoV-2 S protein (Protein Data Bank [PDB] ID 6VSB) (Figure 1A).
The missing loop regions of the S protein including the “RARR”
furin cleavage site were modeled with a root-mean-square
deviation (RMSD) of 0.25 Å between modeled and 6VSB
structures. The D614G substitution is a change from a negatively
charged aspartate (D) to glycine (G) in the S1 domain loop region
of the S protein. As charged amino acids are important in
stabilizing proteins through electrostatic interactions or hydro-
gen bonds (Zhou and Pang, 2018), this change may render the
loop more flexible, resulting in the S protein “RARR” site being
more accessible for furin cleavage.
igure 1. (A) Trimeric structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-S) spike glycoprotein (S protein) (Protein Data Bank ID 6VSB). (B) D614G
utant S protein monomer. The red region of the protein depicts the more flexible region of the protein due to the D614G substitution with decreased stability of
DG = �0.086 kcal mol�1 and an increase in vibrational entropy (DDSVib) of 0.137 kcal mol �1 K�1. NTD, NTD, N-terminal domain; RBD, receptor-binding domain.
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Thermodynamic analysis of the D614G substitution

S protein stability analysis using the DynaMut webserver
showed that the D614G substitution in the loop region resulted in
a slightly more dynamic structure with DDG of �0.086 kcal mol�1

and vibrational entropy (DDSVib) of 0.137 kcal mol�1 K�1

(Figure 1B). Protein loop regions possess greater motion dynamics
(Yang et al., 2014), ranging from femtoseconds to seconds due to
limited covalent interactions (Kamerzell and Middaugh, 2008).
The increased entropy in the system resulting from substitutions
exposes the region to surrounding moieties (Schrank et al., 2009),
causing local unfolding, and so cleavage sites are readily attacked
by proteases, such as furin. In addition, we compared temperature-
dependent stability prediction curves for D614 S protein and G614
S protein. The folding free energy DG(T) was similar at
3.1 kcal mol�1 for both D614 S protein and G614 S protein, which
indicates that the substitution did not affect the overall thermal
stability of the protein (Aydin et al., 2014). Furthermore, there was
no significant difference in melting temperature between the two
structures (74.3 �C for D614 S protein and 74.2 �C for G614 S
protein). However, the standard folding heat capacity was lower
for D614 S protein (1.52 kcal mol�1 K�1) than for G614 S protein
(1.56 kcal mol�1 K�1). A stable melting temperature was previously
observed in the mutant S protein of SARS-CoV, where the
difference in melting temperature between the WT and the
mutant was small (Aydin et al., 2014). However, the substitutions
in the study were in the S2 subunit of the S protein and not near
the furin cleavage site. The standard folding enthalpy measured at
the melting temperature was higher for G614 S protein at
62.6 kcal/mol compared with 60.9 kcal/mol for D614 S protein,
indicating that G614 S protein is less stable at 25 �C (Spuergin et al.,
1995). Substitutions can have either a stabilizing or a destabilizing
effect on WT protein folding, whereby folding free energy

measurements on RNA viral proteins with high substitution rates
have demonstrated less stable protein structures (Wylie and
Shakhnovich, 2011).

Interatomic interactions in D614G mutant S protein

Substitutions can alter macromolecular interactions, such as
hydrophobic and electrostatic interactions, van der Waals forces,
and hydrogen-bonding networks (Jubb et al., 2017). Interatomic
bonding analysis of the SARS-CoV-2 S protein revealed that D614 is
close to T859 of the S2 domain of the adjacent monomer (chain B),
whereby their side chains can form a short, 2.7-Å hydrogen bond
(Figure 2A). This hydrogen bond is lost in the D614G mutant since
glycine lacks a hydrogen-bond donor or acceptor side chain (Figure
2B). Meanwhile, the hydrogen-bond strength is dependent on the
distance and dihedral angle (Grzesiek et al., 2001); the 2.7-Å
hydrogen bond between the donor (D614) and the acceptor (T859)
is predicted to be important for the stability of the overall
structure. Therefore, the loss of the hydrogen bond in the D614G
mutant may have two consequences: (1) loss of hinging of the S2
subunit, which increases its flexibility in the transition state when
interacting with the host cell receptor; and (2) increased flexibility,
resulting in a more accessible furin cleavage site concomitant with
increased infectivity of the D614G mutant.

Furin binding to D614 and G614 S proteins

As a result of thermodynamic analysis indicating that the S
protein D614G substitution is less stable, we modeled the binding
of furin (PDB ID 4Z2A) (Pearce et al., 2019) to the RRAR cleavage site
of D614 S protein and G614 S protein (Figure 2C). To calculate the
binding affinities of both structures, model 1 was chosen
(Dudenhoeffer et al., 2019) from HDOCK analysis (Yan et al.,
Figure 2. (A) Suggested hydrogen bonds (dashed red lines) of D614 (S1 domain chain A) with T859 (S2 domain chain B) and D614 and A646 of S1 domain chain A. (B) This
hydrogen bond can be disrupted with the D614G substitution, altering the activity of the protein. (C) Modeled furin bound to the S protein RARR site. Furin bound to WT D614 S
protein is depicted in green and bound to the D614G mutant is depicted in purple. (D) The dissociation constant Kd for furin bound to D614 S protein (blue) and G614 S protein
(red).
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020, 2017) of furin bound to D614 S protein (green) and G614 S
rotein (purple). Other proteases, such as TMPRSS2, elastase, and
ysosomal cathepsins, bind to the S protein of coronaviruses
Matsuyama et al., 2010). However, arginine at position 1 (P1) and
asic residues at P2 and P4 in the SARS-CoV-2 furin cleavage site
re identical to the H5N1 hemagglutinin cleavage site, which may
ave contributed to the highly virulent virus outbreak of 1997 in
ong Kong (Claas et al., 1998).
Since the D614G substitution correlates with higher infectivity,

e calculated the binding affinities (Kd) of the furin bound to D614
 protein and G614 S protein structures at different temperatures
sing the PRODIGY server (Xue et al., 2016) (Figure 2D). Both D614

 protein and G614 S protein displayed a similar pattern in Kd

cores. There was an obvious shift in Kd as the temperature
ncreased from euthermic temperatures (�36 �C) to hyperthermic
emperatures (�37 �C), whereby furin appeared to have stronger
inding affinity for G614 S protein (Kd = 1.4 � 10�8M at 38 �C) in
omparison with D614 S protein (Kd = 1.6 � 10�8M at 38 �C). It is
xpected that the loss of hydrogen bonds affects the stability of the
 protein because such loss has been shown to substantially
ontribute to protein stability with an average of 1 kcal mol�1 for
ach hydrogen bond (Pace et al., 2014). This, in turn, increased the
urface accessibility of the RARR cleavage site, inducing stronger
inding affinity of the S protein variant at hyperthermic temper-
tures, which may explain the infectivity of the D614G mutant.

D. simulations of D614 S protein and G614 S protein bound to furin

MD simulation is a technique for obtaining dynamic protein
ata at atomic spatial resolution. Therefore, to further characterize
he structural stability and dynamic features of WT D614 apo-S
rotein and G614 apo-S protein and D614 S protein–furin and G614

 protein–furin complexes, we ran 100-ns simulations using the
ROMACS package. The dynamic behavior of each system was
onitored by our observing the RMSD and root-mean-square
uctuation (RMSF) trajectories of the Cα atoms. To further confirm
he impact of the D614G substitution on the binding of furin, the
otal binding free energy was determined by the MMGBSA method

(molecular mechanics, generalized Born model and solvent
accessibility model).

The RMSD of WT D614 apo-S protein and G614 apo-S protein
(Figure 3A) presented a stable structure with an average RMSD of
2.5 Å for most of the 100-ns simulation. The structure converged
during the first 30 ns of the D614 S protein simulation with an
RMSD increase from 1.25 to 2 Å. From 40 ns onward, the system
reached equilibrium at 2.5 Å and this was maintained until the end
of the simulation. The RMSD of the G614 apo-S protein structure
increased from 1.5 to 3.5 Å in the initial 15 ns of the simulation.
Subsequently, the RMSD of the G614 S protein structure decreased
to 2.5 Å at 20 ns and remained uniform until the end of the
simulation. This high convergence at the start of the simulation
may have been the result of instability in the structure caused by
the D614G substitution, resulting in a more flexible loop region. A
more dynamic conformation may be a factor that contributed to
the destabilization of the protein, making the region near the RARR
furin cleavage site more accessible.

The RMSDs demonstrate the stability and dynamics of WT D614
S protein–furin and G614 S protein–furin complexes, as shown in
Figure 3B. The D614 S protein–furin complex demonstrated
convergence from 1.25 to 2.5 Å in the initial 20 ns. Subsequently,
the system did not show any convergence, and the average RMSD
remained stable at 2.5 Å for the remainder of the simulation. The
G614 S protein–furin complex demonstrated dynamic behavior,
with an average RMSD that was higher than that of the WT D614 S
protein–furin complex. The system exhibited a significant conver-
gence from 0 to 15 ns as the RMSD increased from 1.5 to 3.5 Å. The
complex continued to fluctuate between 3.5 and 4.5 Å until the end
of the 100-ns simulation. RMSD results for the G614 S protein–
furin complex signify a dynamic complex due to the effect of the
substitution on the stability of the S protein and its binding to furin.
The dynamic structure was probably due to the D614G substitution
in the loop region, causing changes in conformational dynamics
and ultimately affecting the interaction with furin.

The RMSF values from the 100-ns simulations of the WT D614
apo-S protein and G614 apo-S protein structures are depicted in
Figure 3C and D. WT D614 S protein demonstrated relatively low
igure 3. Molecular dynamics simulations. Root-mean-square deviation (RMSD) plots for 100-ns simulations of D614 S protein and G614 S protein (A) and D614 S protein–
rin and G614 S protein–furin complexes (B). Root-mean-square fluctuation (RMSF) plots of D614 S protein and G614 S protein (C) and D614 S protein–furin and G614 S
rotein–furin complexes (D).

614



A. Mohammad, E. Alshawaf, S.K. Marafie et al. International Journal of Infectious Diseases 103 (2021) 611–616
residual flexibility in comparison with the G614 S protein
structure. The G614 S protein mutant exhibited higher fluctuations,
specifically in the loop region between residues 600 and 620. The
D614G substitution can affect the internal dynamics of the protein,
resulting in higher fluctuation than in the WT D614 S protein (Aier
et al., 2016). Loop regions located far from or near the cleavage site
play critical roles in dynamic and structural changes in enzyme–
protein interactions. As a consequence, any conformational
changes near the binding site can influence the enzyme cleavage
process (Yang et al., 2014). Therefore, the higher RMSF demon-
strated by the D614G mutant caused greater conformational
mobility, which may expose the RARR cleavage site and result in a
more favorable S protein–furin binding interaction through
conformational selection or an induced-fit mechanism (Tsai
et al., 2001; Yang et al., 2014).

Similarly, the G614 S protein–furin complex showed greater
flexibility than the WT D614 S protein–furin complex (Figure 3D).
The greater mobility observed close to the loop region between
residues 600 and 620 could be the result of higher binding affinity
of furin for the D614G mutant. The binding affinity of furin for G614
S protein was further corroborated by the binding free energy
of �61.9 kcal mol�1 compared with �56.78 kcal mol�1 for furin
bound to WT D614 S protein (Table 1). Furthermore, the WT D614 S
protein–furin complex presented a van der Waals interaction
of �105.34 kcal mol�1, whereas the G614 S protein–furin complex
showed a van der Waals interaction of 103.67 kcal mol�1. These
results indicate that furin favors binding to the G614 S protein
RARR cleavage site over that of the WT D614 S protein. Therefore,
the D614G mutant may result in more efficient cleavage of the
S protein and subsequent interaction with ACE2, which may result
in a more virulent strain.

Summary

Although the D614G substitution did not affect the overall
thermal stability of the S protein, the loop region of the D614G
mutant showed a more dynamic structure compared with WT
D614 S protein. Moreover, MD simulations of WT D614 S protein
showed a profile similar to that for the D614G mutant, showing
high convergence in the initial stages, which can be attributed to
the substitution in the loop region. A dynamic loop region resulted
from loss of the hydrogen bond between D614 (S1/chain A) and
T859 (S2/chain B), where the loop was hinged to the α-helix of the
corresponding residue. Such structural dynamics resulted in furin
showing a higher binding affinity for the D614G mutant, which
implies that increased infectivity may result from the D614G
substitution. Hence, substitution near the binding interface can
play a vital role in affecting the binding affinity of the SARS-CoV-2 S
protein.

Conclusions

Our analysis showed that the D614G substitution disturbed the
structural stability of the SARS-Cov-2 S protein, which conse-
quently increased the binding affinity of furin for the S protein. This
structural instability appears to be a more favorable state for furin
cleavage. As a result, the D614G substitution may enhance viral

entry to the host cell, causing higher infectivity. We used MD
simulations to elucidate the effect of the substitution on the
structure and stability of the S protein to formulate a hypothesis
about potential factors involved in effects of the D614G mutant of
the S protein. A larger-scale investigation will be critical for
building a reliable model of these protein–protein interactions and
their functional consequences.

Methods

Structural stability analysis

The structures of the S protein (PDB ID 6VSB) (Wrapp et al.,
2020) and furin (PDB ID 4Z2A) (Pearce et al., 2019) were used as
models for structural analysis. SWISS-MODEL (Waterhouse et al.,
2018) was used to simulate the missing amino acids that were not
visible in the cryogenic electron microscopy structure of the
S protein. The DynaMut (Rodrigues et al., 2018) webserver was
used to predict the effect of genetic variants on the stability and
flexibility of D614G mutant S protein. The folding free energy,
melting temperature, standard folding enthalpy measured at the
melting temperature, and standard folding heat capacity were
calculated by SCooP and online temperature-dependent stability
prediction algorithms (Pucci et al., 2017).

Protein–protein docking

Protein–protein docking of WT (D614) and mutant (D614G) S
protein (PDB ID 6VSB) with furin (PDB ID: 4Z2A) was done with the
HDOCK server (Yan et al., 2020, 2017), which is based on a hybrid
algorithm of template-based modeling and ab initio free docking.
Residues 682, 683, 684, and 685 of the RRAR site were defined as
binding site residues of chain A of the S protein structure (PDB ID
6VSB). Model 1, with the lowest docking energy score and the
highest ligand RMSD, was selected to analyze binding energy
scores (Kd) using the PRODIGY server (Xue et al., 2016).

MD. simulations

An all-atom MD simulation was performed for all systems to
estimate the dynamics of the apo and bound systems. For this
purpose, we used GROMACS 5.1.2 (Abraham et al., 2015; Van Der
Spoel et al., 2005) and the OPLS-AA force field (Kaminski et al.,
2001) with the simple point charge water model to solvate the
systems. The distance around the protein was kept at 20 Å because
of the large size of the protein. To neutralize the pH, we added
sodium counterions. Energy minimization of all systems was
performed with 50,000 iterations. When the maximum force of
1000 kJ mol�1 nm�1 was applied, the steepest descent energy
minimization was terminated. Following energy minimization, we
equilibrated the systems with a constant temperature of 300 K,
while the pressure was kept at 1 bar. For electrostatic contacts, we
used particle mesh Ewald. The Berendsen thermostat was used as a
temperature-coupling method (Bussi et al., 2007; Darden et al.,
1993; Toukmaji et al., 2000). Finally, all systems were simulated for
100 ns in MD simulations, and the coordinates were saved at
intervals of 2 ps.

Table 1

The binding free energy of WT D614 S protein and D614G mutant S protein in complex with furin.

Complex vdW(kcal mol�1) ELE (Å) SASA (Å) DG (kcal mol�1)

D614 S protein–furin �105.34 �559.47 �11.97 �56.78
G614 S protein–furin �103.67 �456.58 �11.65 �61.90

ELE, ; SASA, ; vdW, van der Waals.
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Trajectories were analyzed after completion of the MD
imulations to compare and observe the structural deviation
etween WT and mutant structures of the apo structures and
omplexes. The RMSD, which reflects the stability of the system,
MSF, which shows the flexibility of the protein, and the g_mmpbsa
MMGBSA) method for the binding free energy were used.
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