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Abstract: In agriculture, information about the spatial distribution of plant growth is valuable for
applications. Quantitative study of the characteristics of plants plays an important role in the plants’
growth and development research, and non-destructive measurement of the height of plants based on
machine vision technology is one of the difficulties. We propose a methodology for three-dimensional
reconstruction under growing plants by Kinect v2.0 and explored the measure growth parameters
based on three-dimensional (3D) point cloud in this paper. The strategy includes three steps—firstly,
preprocessing 3D point cloud data, completing the 3D plant registration through point cloud outlier
filtering and surface smooth method; secondly, using the locally convex connected patches method to
segment the leaves and stem from the plant model; extracting the feature boundary points from the
leaf point cloud, and using the contour extraction algorithm to get the feature boundary lines; finally,
calculating the length, width of the leaf by Euclidean distance, and the area of the leaf by surface
integral method, measuring the height of plant using the vertical distance technology. The results
show that the automatic extraction scheme of plant information is effective and the measurement
accuracy meets the need of measurement standard. The established 3D plant model is the key to
study the whole plant information, which reduces the inaccuracy of occlusion to the description of
leaf shape and conducive to the study of the real plant growth status.

Keywords: point cloud processing; plant model; leaf feature point; 3D reconstruction;
phenotype measurement

1. Introduction

With the development of protected vegetable production, vegetable seedlings are increasingly
recognized by producers, which has become an important pillar of vegetable industry development.
In agriculture, information about the spatial distribution of crop growth is valuable for applications
such as biomass and yield estimation or increasing field work efficiency in terms of fertilizing, applying
pesticides and irrigation [1,2]. Many researchers have carried out experiments on plant growth
detection based on computer vision technology, mainly covering three aspects: the detection of
external growth parameters, fruit maturity, and the detection of nutritional components [3].

Plant height is an important phenotypic morphology parameters that can be used not only as an
indicator of overall plant growth vigor, but a parameter to estimate traits [4,5]. The key technology
to obtain plant height is to present the highest and the lowest points on the image (or point cloud),
and obtain the height by distance formula [6–8]. Using the Euclidean distance [9,10] to present the plant
height is commonly used on 2D images, extracting the plant skeleton on the region of interest (ROI) and
detecting the lowest and highest points of the skeleton. The accuracy of pixel extraction in the interest
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domain of two-dimensional images is an influencing factor of plant height measurement accuracy.
Image processing is used to segment the skeleton, such as color space calibration, or morphological
method to present the skeleton. Then the height of the plant can be obtained according to the marker
points or mapping the color space mapped to the depth space. Calcuation the plant height by vertical
distance [11–15] is a method on 3D point clouds, calculating the difference of lowest and highest
point of the height-axis on the ROI. In the study of 3D model, some researchers computed the mesh
distance [16,17] of every rasterized plant point to the ground. In the process of three-dimensional
plant height, the focus is the accuracy of modeling, especially in the field experiment, the spacing
between plants, noise points of the soil and weeds are the key factors affecting the measurement
accuracy. When measuring the plant’s height indoors, the sensors are often placed horizontally with
the object, so the height’s coordinate system is the y-axis; when measuring the plant’s height outdoors,
the sensors are placed vertically to the ground, so the height coordinate system is the z-axis.

Leaf is an important organ of vegetation, it determines the primary production of photosynthesis,
plant evaporation and characterization of plant growth [18]. In a study of automatic measurements for
plant leaves, the method of segmenting leaf based on two-dimensional images processing is widely
used, for example, tobacco [19], leafy vegetables [20], pest-damaged leaf [21]. Further, the stereo vision
method can also be used for leaf segmentation and measurement [18,22,23]. With the development of
three-dimensional vision, more researchers segment the main organs of the plant after reconstruction
the whole plant, extract the leaves, and study morphological features of leaves. For the point cloud
organ segmentation method, the currently commonly used methods are segmentation of the whole
plant by region growing algorithm [24–26], segmentation of the plant by locally convex connected
patches (LCCP) segmentation [27,28], segmentation of the plant by Histogram clustering algorithm [29],
segmentation starting finding the stem in a 3D point cloud and clustering the leaves by geometrical
constraint [30,31].

Some researchers have also developed measurement systems to reconstruct 3D point cloud for
plant of growth information [32–36], for example, Andújar et al. [37] explored the possibilities of using
Kinect Fusion algorithms to reconstruct 3D point clouds of weed-infested maize crops under real
field conditions. Yamamoto et al. [38] measured growth information of strawberry in greenhouse
through the color and depth images by Kinect. Li et al. [39] developed a technique system for the
measurement, reconstruction, and trait extraction of rice canopy architectures. The method of using
Kinect and turntable to perform phenotypic information for indoor plants is necessary to rotate the
turntable multiple times interval at a fixed angle [40–43], and then use the point cloud registering
algorithm for 3D reconstruction.

In this paper, a new method of the reconstruction point cloud method for the greenhouse
plant’s morphological parameters based on Kinect v2.0 and turntable is explored. The processed
3D plant model contains spatial information, and then the key growth parameters, leaf’s length, width,
surface area and plant height are extracted. The specific flow of this article is shown in Figure 1, firstly,
obtaining the point clouds of the plant by rotating the turntable 8 times intervals, and reconstruction
of the 3D plant model by the registering method; secondly, segmenting the leaves of the 3D model
and determining the edge points of leaves, presenting the phenotypic parameters of leaves; finally,
calculating the plant’s height by vertical distance.

Figure 1. Flowchart of this paper for obtaining a plant’s morphological parameters.
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2. Preprocessing of a Three-Dimensional Plant Model

In this experiment, a Kinect camera and an electric turntable were used to build a 3D plant model
according to the following instructions. Fix the camera position and put the plant on the turntable,
the height h of Kinect is set to 0.7 m, and the distance d between Kinect and plant is 1.0 m. Figure 2
shows the experiment devices which are placed at fixed positions, and marks the world coordinate
system of the point cloud.

Figure 2. Measurement system of plant phenotypic parameters.

Place the plant on the turntable and record the initial point cloud of the plant. Turn the turntable
clockwise 45◦, then stop the turntable and record the data as a piece of point cloud. Stop running until
the turntable rotates 360◦ and 8 piece of point clouds are obtained. The original point cloud contains
invalid data, so in this experiment the outlier points should be removed by statistical outlier filter [44],
the distance di from the query point to all the neighboring points is calculated, and the threshold
standard deviation ε is set to judge whether the point is an outlier. Eight pieces of point clouds are
registered by iterative closest point (ICP) [45] algorithm to obtain the initial three-dimensional point
cloud model. In Figure 3, eight pieces of point clouds are obtained from different directions, related to
the rotation angle of the turntable, angle0 means the turntable rotates 0◦, angle1 means rotating 45◦,
angle2 means rotating 90◦, angle3 means rotating 135◦, angle4 means rotating 180◦, angle5 means
rotating 225◦, angle6 means rotating 270◦, angle7 means rotating 315◦, anglen is recorded every 45◦

(n ∈ [0, 7]) [46]. The point cloud of the turntable and the surrounding scene is marked as pb, the point
cloud of ROI from each angle can be obtained by subtracting pb. Figure 3 shows the plant’s point
clouds obtained after rotating the turntable 8 times interval, and the three-dimensional points of ROI
are color-rendered according to x-axis for displaying clearly. The reason for selecting eight directions
to collect experimental data is that the two adjacent point clouds can fill the holes at the edge of the
point cloud after registering, so the three-dimensional point cloud can reduce the influence of holes
on accuracy.

Plant reconstruction is divided into two parts in this research. The first part is to register angle0

with 7, 1, 2 and angle4 with 3, 5, 6 separately. The former result is called Pos0 and the latter result
is called Pos1. The second part is to stitch the Pos0 and Pos1 point clouds to get a complete 360◦

reconstruction model. Here, the commonly used stitching method is the ICP algorithm, and this
method has many advantages. Not only the registration between point set is considered, but also the
registration from point set to model and model to model is also considered in the ICP algorithm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Color render plant’s point clouds of angle0−7 according to x-axis direction. (a) point cloud of
angle0; (b) point cloud of angle1; (c) point cloud of angle2; (d) point cloud of angle3; (e) point cloud of
angle4; (f) point cloud of angle5; (g) point cloud of angle6; (h) point cloud of angle7.

The basic principle of the ICP algorithm is—in the target point cloud P(i) and the source point
cloud Q(i), find the nearest neighbor point (pi, qi) according to certain constraints, and then calculate
the optimal matching parameters R and t to make the error function minimum. The error function is
E(R, t) in Equation (1) [45],

E(R, t) =
1
n

n

∑
i=1
‖qi − (Rpi + t)‖2 (1)

where n is the number of nearest neighbor pairs, pi is the point in the target point cloud P, qi is
the nearest point of the source point cloud Q, R is the rotation matrix, t is the translation vector.
The traditional ICP algorithm can be summarized in two steps—(1) compute correspondences between
the two point clouds. (2) calculate the transformation that minimizes the distance between the
corresponding points. The disadvantages [47] of this method are as follows—noise or abnormal data
may cause the algorithm to fail to converge; the selection of the initial value has an important impact
on the final registration results. The algorithm focuses on the similarity between the target and the
source, and takes the minimum error as the evaluation standard, ignores whether there is a location
relationship between the target point cloud and the source point cloud.

The improved ICP algorithm in this paper is more suitable for registering point clouds from
different directions using a turntable. This stitching method first uses a rotation matrix and a translation
vector to process the relationship between adjacent point clouds, then uses the ICP algorithm to
iteratively obtain R, t. Obviously, the point clouds in eight directions obtained in this paper have
positional relations. The point clouds in our experiment are formed by multiple rotations from the same
plant, plant leaves from different directions are similar in shape, which can cause the ICP algorithm
falling into local optimality, so this algorithm is improved. According to the position relationship
of adjacent patch point clouds, firstly, rotate the source point cloud at angle θ1, then perform ICP
registration of each point cloud, the following formula is in Equation (2),
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ω1 =

 cosθ1 0 sinθ1

0 1 0
−sinθ1 0 cosθ1

,σ1 = (xt − xs, yt − ys, zt − zs)

E(R1, t1) =
1
n

n

∑
i=1
‖qi − (R1(ω1 pi + σ1) + t1)‖2

(2)

where (xt, yt, zt) is the centroid of the target point cloud, (xs, ys, zs) is the centroid of the source point
cloud, ω1 is the rotation matrix around the y-axis for angle θ1, and the value of ω1 is based on the
rotation relationship of target point cloud and source point cloud. After obtaining the centroid point
three-dimensional vector of 8 pieces of point clouds, calculate the distance σ1 between target point
cloud and source point cloud, take target point cloud as the registration center, move source point
cloud to the centriod coordinate point according to the distance σ1.

In this experiment, take angle0 as the target point, rotate angle7,1,2 to register the two point clouds
respectively; take angle4 as the target point, rotate angle3,5,6 to register the two point clouds respectively.
For example, take angle1 as the source point cloud, and angle0 as the target point cloud in Figure 4a,
color green represents angle0, red represents angle1, the relationship between them is rotating angle1

of 45◦ anticlockwise along the angle0, so θ1 is 45◦. The iterations number of matching target and source
point cloud n is 1000 times. The traditional ICP algorithm cannot judge the relationship between
source point cloud and target point cloud as in Figure 4b, it shows that the stem and leaves do not
match correctly and the position relationships of point clouds are neglected in the matching process,
so the stitching error is large. The location relationship between the source and target point cloud
should be determined in this research, that is, applying the ICP algorithm after rotation θ1, and the
results are shown in Figure 4c by our method, after 1000 iterations, the leaves and stem match well.
According to the rotation direction and angle of the turntable, the problem of ignoring the relationship
between target point cloud and original point cloud in ICP registration can be solved by calculating
the rotation angle in advance when registering the adjacent point clouds.

(a) (b) (c)

Figure 4. Comparison registering point cloud of angle0 and angle1 by traditional ICP algorithm with
our algorithm. (a) Point cloud of angle0 and angle1. (b) Registering point cloud of angle0 and angle1

by traditional algorithm. (c) Registering point cloud of angle0 and angle1 by our algorithm.

Finally, the result of the point cloud should be merged. The merged point cloud based on angle0

is Pos0, and the merged point cloud based on angle4 is Pos1. Point cloud Pos0 are processed by using
Equation (2), rotate angle1 counterclockwise 45◦ and match with angle0; rotate angle2 counterclockwise
90◦ and match with angle0; rotate angle7 clockwise 45◦ and match with label 0. Then, merge the results
as Pos0. Similarly, point cloud Pos1 are processed in the same way, rotate label 5 counterclockwise
45◦ and match with label 4; rotate label 6 counterclockwise 90◦ and match with angle4; rotate angle3

clockwise 45◦ and match with angle4. Finally, merge the results as Pos1.
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Similarly, after obtaining Pos0 and Pos1 point cloud, the ICP method cannot be used to match
them directly, because Pos0 and Pos1 are in the different 3D coordinate systems, it should rotate Pos1

by 180◦ and keep it in the same coordinate system with Pos0.
For the Pos0 and Pos1 point clouds in Figure 5a, color red represents Pos0, green represents Pos1,

half of the 360◦ model has been registered separately, so the correct registering of them directly affected
the accuracy of the whole model. Because of the randomness in the growth of leaves, the centroids
of Pos0 and Pos1 could not overlap. If ICP registration is directly used for registering, it will fall
into local optimal and mismatching, as shown in the Figure 5b, which cannot reflect the relationship
between Pos0 and Pos1 point cloud correctly. For this situation, our approach is to extract the difference
between Pos0 and Pos1 centroid, move the target point cloud to the source point cloud, that is the local
movement between these two centroid vectors and then using the ICP method to obtain a complete
plant point cloud model as shown in Figure 5c. The algorithm cannot fall into the local optimum,
and the registration effect of Pos0 and Pos1 is better. Here, σ2 is the difference between Pos0 and Pos1’s
centroid vector, as in Equation (3):

ω2 =

 cosθ2 0 sinθ2

0 1 0
−sinθ2 0 cosθ2

,σ2 = (xpos0 − xpos1, ypos0 − ypos1, zpos0 − zpos1)

E(R2, t2) =
1
n

n

∑
i=1
‖qi − (R2(ω2 pi + σ2) + t2)‖2

(3)

where (xpos0, ypos0, zpos0) is the centroid of Pos0, (xpos1, ypos1, zpos1) is the centroid of Pos1, ω2 is
the rotation matrix around the y-axis for angle θ2, and θ2 is 180◦. After obtaining the centroid
point three-dimensional vector of Pos0 and Pos1, calculate the distance σ2 of them, take Pos0 as the
registration center, move Pos1 to the centriod coordinate point with Pos0 according to the distance σ2.
At this time, the registration and establishment of the 3D model is completed.

(a) (b) (c)

Figure 5. Comparison registering Pos0 and Pos1 point cloud by traditional ICP algorithm with our
algorithm. (a) Pos0 and Pos1 point cloud. (b) Registering Pos0 and Pos1 point cloud by traditional ICP
algorithm. (c) Registering Pos0 and Pos1 point cloud by our ICP algorithm.

To create complete models, glossy surfaces and occlusions in the point cloud must be accounted
for. A solution is to use a resampling algorithm, which attempts to recreate the missing parts of the
surface through high-order polynomial interpolation between surrounding data points. By performing
the resampling process, small errors can be corrected, and the double-wall artifacts generated by
registering 8 angles point cloud data together can be smoothed. Moving least squares (MLS) surface
reconstruction [48] method can estimate normal vector based on polynomial reconstruction, and can
also smooth and resample noisy data. In order to achieve the smoothness of the surface, the K
nearest-neighbor radius [49] of the fitting is set as 0.5 mm, and the whole 360◦ point cloud is smoothed.
As shown in Figure 6, a leaf is extracted from the whole point cloud registering by Pos0 and Pos1 point
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cloud, and the smooth point cloud obtained by MLS processing on it. MLS can smooth the surface and
filter noise points.

(a) (b)

Figure 6. Comparison the original point cloud and moving least squares (MLS) processed point cloud.
(a) Picking a leaf’s point cloud from the whole point cloud. (b) Smoothing these point clouds with
MLS method.

Through the above steps, a whole point cloud model with less data, accurate normal and curvature
variance is obtained, which is beneficial to the following operations such as feature point extraction
and feature boundary line collection.

3. Measurement the Phenotypic Parameters of a Plant

3.1. Extraction of Boundary Points on a Plant Leaf

In this section, we discuss how to segment leaves and stems on a complete plant model, extract the
contour of each leaf, and calculate the phenotype of the leaf according to the three-dimensional points of
the contour. In this paper, kdtree is used to organize the data of leaf point cloud and realize fast nearest
neighbor retrieval based on fast library for approximate nearest neighbors (FLANN) [50]. The spatial
topological relationship between data points is established to facilitate k-nearest neighbor search.

The pepper plants are used as the research objects to generate three-dimensional models by eight
pieces of point cloud. On the basis of the 3D model, the stem and leaves should be divided into different
parts, so the phenotypic characteristics of each leaf can be calculated. The leaves for measurement
are extracted from pepper plants by the locally convex connected patches method (LCCP) [51].
The principle of LCCP method is, for the plant model, firstly to calculate the convexity-concavity
relationship of adjacent patches. The relationship is judged by extended connectivity criterion and
sanity criterion. Extended connectivity criterion uses the angle between the center line vector ~x1, ~x2

and the normal vector ~n1, ~n2 of the adjacent patches. The vector from ~n1 to ~n2 is set to~t, the angle
between~t and ~n1 is a1, and the angle between~t and ~n2 is a2. Obviously, if a1 > a2, the relationship of
the two patches ~pi, ~pj is concave, otherwise is convex. ~d is the difference between the vector ~x1, ~x2,~s is
the cross product between the vector ~n1, ~n2. If the relationship of the two patches is convex , it should
be further judged by sanity criterion. When the angle between ~d and~s is greater than the threshold δ,
it can be sure that the relationship between them is convex, otherwise is concave.

After marking the concavity-convexity relationship of each adjacent small region, the region
growth algorithm is used to cluster the small regions in Figure 7a into larger objects in Figure 7b,
representing by small blocks of different colors. This algorithm restricted by the convexity of small
regions can clearly distinguish the boundary of stem and leaves as shown in Figure 7b, that red line
represents concavity and blue line represents convexity between adjacent patches. There is obvious
concavity and convexity change at the junction of fruit stem and leaves, which meets the criteria of
LCCP segmentation.

The convexity-concavity relationship of the plant point cloud is obtained by LCCP algorithm,
which displays in different colors. From the effect of segmentation, the closer the leaves are to the
bottom of the plant, as shown in Figure 7b, the relationship between leaves and stem are more obvious;
while the closer the leaves are to the top of the plant, for example, the relationship between leaf 3
and leaf 4 is not obvious, so they could not be segmented correctly by the LCCP method. Because the
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leaves at the top of the plant are closer towards the stem, they are treated as a whole, so it is necessary
to manually segment the leaves.

(a) (b)

Figure 7. Segementation leaves and stem with locally convex connected patches method (LCCP)
algorithm. (a) Segementation plant’s point cloud into small regions. (b) Small regions into larger
objects by convexity-concavity relationship.

For each divided leaf, the boundary condition [52] is used to determine whether the
three-dimensional point of the leaf is an internal point or external contour point. For any point
p, a tangent plane is established according to the point and its k neighborhood points, and project
each point on this plane; then, judge whether the point p is a boundary feature point, repeat the above
operations until all points are judged, and the boundary feature point set is obtained. When the target
point is a boundary point, only a few or no points will appear in its upper region. According to this
phenomenon, the discrimination mechanism of boundary feature points can be established. As shown
in Figure 8, the upper part of point P is divided into two areas I and II by the vertical line and the
horizontal line passing through point p. p is a boundary feature point can be distinguished according to
whether there are data points in these two areas. Specifically, according to the boundary determination
method, the edge point is the key to get the phenotype of leaf, taking k = 10 as an example, it can
be divided into three situations: (1) there are no points in the either areas, p is the boundary point;
(2) there are no points in one area, p is the boundary point; (3) there are points in both areas, find out
the vector closest to the vertical line of these two areas, and the angle between them. If it is greater than
the set threshold ε, p is the boundary point, threshold is π

2 in this paper. In all three cases, the points
are boundary points and need to be preserved. According to this method, edge extraction is performed
on the segmented 3D leaves to extract points.

(a) (b) (c)

Figure 8. Three judgment conditions for obtaining the boundary points from the three-dimensional
point cloud. (a) both areas have no points; (b) either one of the areas has no points; (c) the angle is
smaller than ε.

The boundary points of the divided leaf are the basis of calculating the length and width of each
leaf. Taking the green pepper plant at seeding stage as the research object, the LCCP algorithm is
used to segment the leaves and stem, the boundary point judgment method is used to get the internal
point and the external point, and then the edge points of each leaf are obtained, the leaves and stem



Plants 2020, 9, 571 9 of 16

are displayed in different colors. There are five leaves, and the edge points are displayed in black in
Figure 9, which are the key points to obtain the leaf’s phenotypic parameters.

Figure 9. Extraction edge points of leaves by boundary conditions method.

3.2. Calculation the Length, Width and Surface Area of Leaf

Calculate the length and width according to the contour of each leaf. On the three-dimensional
points of the boundary, manually select ptop at the top of the tip and pbottom at the bottom of the leaf
to calculate the Euclidean distance between them as the length of the leaf; and select the maximum
distance perpendicular to leaf length on the edge point as pside1 and pside2 respectively to calculate the
Euclidean distance between them as the width of the leaf in Equation (4),

llea f =
√
(xt − xb)2 + (yt − yb)2 + (zt − zb)2

wlea f =
√
(x1 − x2)2 + (x1 − x2)2 + (x1 − x2)2,

(4)

where (xt, yt, zt) is the coordinate of ptop, (xb, yb, zb) is the coordinate of pbottom, (x1, y1, z1) is the
coordinate of pside1, and (x2, y2, z2) is the coordinate of pside2. llea f is the length of leaf, wlea f is the
width of leaf. In Figure 10, the blue three-dimensional points are the leaf contour obtained by boundary
conditions, it is shown that the length and width of leaf can be obtained by using the Euclidean distance
method, where length refers to the three-dimensional distance between the top and the bottom of the
leaf, and width refers to the three-dimensional distance between the midpoint on both sides of the leaf.

Figure 10. Fitting length and width of leaf with Euclidean distance algorithm.

In the 3D plant model, (x, y) of the point cloud coordinates (x, y, z) can be regarded as a coordinate
pair obtained by sampling the coordinates on the xOy plane. For grid sample points, it should generate
two matrices of the same size with the vector x as the rows and the vector y as the columns, where the
rows of x start from the minimum value xmin to the maximum value xmax of the model, and generate
data every 0.1 mm, which integrate as Matrix XI; Similarly, the columns of y start from the minimum
value ymin to the maximum value ymax, and generate data every 0.1 mm, which integrate as matrix
YI. XI and YI form a uniform grid. XI is a row vector that determines a matrix with a fixed number
of columns, YI is a column vector that determines a matrix with a fixed number of rows. Fit the
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surface (XI, YI, ZI) formed by z = f (x, y) to the scattered data in the vector (x, y, z). Perform cubic
interpolation of data on the surface at the query point specified by (XI, YI) and return the interpolated
value ZI to generate a smooth surface. The surface passes through the data points defined by (x, y) to
form a complete mesh surface.

The leaf area is calculated according to the three-dimensional points. For the reconstructed leaf
surface, the area is calculated by surface integral algorithm, and the area of the small rectangular block
is added to get the surface area. When calculating the gradient, the step size needs to correspond to
the small rectangular block’s length dx and width dy. dx and dy in the Equation (5) are the slopes of
rectangular blocks in x-axis and y-axis direction respectively. The area obtained from the integration of
surface s on region Dxy is:

A =
∫∫

Dxy

√
1 +

(
∂z
∂x

)2
+

(
∂z
∂y

)2
dx dy. (5)

The fitted surface of leaf is as shown in Figure 11, the leaf is a closed surface, and the value of dx

and dy are set at 0.0001, that means, the area of small square shall be obtained in every step of 0.1 mm.

Figure 11. Fitting surface of leaf with double integral algorithm.

3.3. Measurement the Height of a Plant

The height of the plant is obtained by vertical distance along y direction, by comparing all points’
three-dimensional coordinates, the maximum value yimax and minimum value yimin value along the
y-directions are calculated in Equation (6). The height of the plant H is presented with flowerpot, H1 is
the vertical distance of the whole point cloud. Because the height of the flowerpot H2 is included in
the height H1, in order to get the true height of the plant, the actual height of the flowerpot should
be subtracted here. In Equation (7), the height of the cuboid H1 is the sum of the plant H and the
flowerpot H2, and the height of the flowerpot has been subtracted in this experiment.

yimin ≤ y ≤ yimax , (1 ≤ i ≤ n)

H1 = ymax − ymin,
(6)

H2 = ymaxpot − yminpot

H = H1 − H2 .
(7)

The height of the flowerpot H2 can be obtained in Figure 7b after the result of LCCP segmentation.
The concavity-convexity relationship between the flowerpot and the stem of the plant separate the
two into different spaces. Therefore, the maximum value ymaxpot and the minimum value yminpot of
flowerpot in the y-axis direction can be used as the vertical distance of the flowerpot.

In Figure 12, the red arrow represents the x-direction, the blue arrow represents the y-direction,
and the green arrow represents the z-direction, the external minimum cuboid is drawn by the main
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direction coordinate system. Then, for the y-axis of interest in this paper, the actual height difference
between the cuboid’s vertical distance and the flowerpot is obtained to get the height of the plant.

Figure 12. Calculation the plant’s height by vertical distance method based on y-axis.

4. Experiment

The experimental results are analyzed by comparing the measured values with actual values.
Plant height, leaf length, width and surface area are the main analysis indexes. According to the
experiment in this paper, the absolute error (AE) of plant height, the mean absolute error (MAE),
root mean square error (RMSE) of leaf length, leaf width and surface area of each plant are calculated.
Ten seedling plants of pepper are selected as the test objects, denoted as plantn, (n ∈ [1, 10]).

Based on Kinect V2, the 3D model of green pepper was constructed and the plant’s phenotypic
parameters including plant’s height, leaf’s length, width and area were measured. The AE of plant
height is the difference between the actual value and the measured value, and the MAE of plant height
is the average value of 10 plants’ AE. The minimum actual value of plant height of 10 green peppers is
11.12 cm, and the maximum actual value is 21.09 cm. In Figure 13, the maximum AE of plant height is
0.66 cm, the minimum AE is 0.15 cm, and the MAE of plant height is 0.392 cm.

Figure 13. Values of absolute error (AE) for plant’s height.

The leaf phenotype is an important growth parameter for pepper seedling plants. In this paper,
pepper plants’ point clouds were segmented by the LCCP method, four leaves of each green pepper
were selected as a whole for measurement, and recorded these as measured values. The average
length, width, area errors of four leaves for each green pepper are denoted by MAEl , MAEw and
MAEa. The maximum actual value of MAEl is 0.365 cm, and the minimum actual value of MAEl
is 0.1825 cm; the maximum actual value of MAEw is 0.305 cm, and the minimum actual value of
MAEw is 0.2175 cm; the maximum actual value of MAEa is 1.1125 cm2, and the minimum actual
value of MAEa is 0.821 cm2. The MAE of the leaf’s length, width and area of these 10 peppers
are denoted as MAElea f ′s length, MAElea f ′s width and MAElea f ′s area. In Figure 14, MAElea f ′s length is
0.2537 cm, MAElea f ′s width is 0.2676 cm and MAElea f ′s area is 0.956 cm2. MAEl and MAEw are directly
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proportional to MAEa, because the leaf’s area is related to the value of length and width, with the
increase of MAEl and MAEw, the MAEa become larger.

Figure 14. Values of mean absolute error (MAE) for leaves’ phenotypic characteristics.

In Table 1 the measurement accuracy in this paper was compared with other references. In these
methods, Reference [24,25] use binocular vision to obtain the point cloud, Reference [28] uses the
3D laser scanner to obtain the point cloud, and References [3,15] use Kinect to obtain point cloud
of regions of interest (ROIs). In Reference [25], VisualSFM was used to register the point cloud of
eggplant, pepper and cucumber, segmented these plants by region growing method, and measured
the leave’s parameters of these plants. In Reference [24] 3DSOM was used to register the point cloud
of Gossypium hirsutum, segmented the plant by region growing and mesh method, and measured
the leaves’ parameters of the plant. In Reference [28], target ball extraction algorithm [44] was used to
register the point cloud of apple tree branches, segmented the plant by LCCP and Kmeans clustering
algorithm, and measure the leaves’ parameters of the plant. In Reference [3], higher solution RGB
images was used to register the point cloud of pepper, measured the leaves’ parameters and plant’s
height. In Reference [15] segmented the cucumber plants using the Euclidean clustering method,
and using the vertical instance method to obtain the height of the plants. Compared with other
methods, MAE and RMSE of our method have lower comprehensive errors, and our method has
advantages of leaf’s surface area measurement. The measurement errors of plant height, leaf length
and width are also at the same level with other measurement methods.

Table 1. MAE, RMSE between this paper and other papers in the terms of plant height, leaf length,
leaf width and leaf area.

Expriment Object Index Length (cm) Width (cm) Area (cm2) Plant Height (cm)

This Paper Pepper

RMSE

0.2639 0.2735 0.964 0.417

Fang [25]

Cucumber 0.28 0.32 4.34 -

Eggplant 0.16 0.23 3.89 -

Pepper 0.33 0.15 1.33 -

Paproki [24] Gossypium hirsutum 0.97 0.728 - 1.9

Liu [28] apple tree 0.59 0.538 - -

This Paper Pepper

MAE

0.2537 0.2676 0.957 0.392

Kaiyan [3] Pepper 0.183 0.124 - 0.344

Yang [15] Cucumber - - - 0.23

Liu [28] apple tree 0.55 0.51 - -

5. Conclusions

The research objects of this paper are the plants in the early growing period. Taking green pepper
plants as an example, each leaf plays an important role in the growth of plants. The information of
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the sum of single leaf on the whole plant is useful for assessing the growth state. The established
three-dimensional model is the key to study the whole plant information. Using depth camera
and turntable to complete point cloud acquisition and registration is the basic operation for plant
segmentation, height measurement and a leaf’s phenotypic features extraction. This paper processes
the point clouds according to the characteristics of rotation by equal intervals, which can avoid the
process of registration falling into the local optimal solution and ignoring the overall information.
The plant model obtained by rotation and registration can reduce the inaccuracy of leaf shape
description due to different shooting angles.

The use of the LCCP algorithm to segment the plant point cloud model is a popular
three-dimensional point segmentation method. This method avoids the process of selecting initial
points of region growing algorithm. The LCCP algorithm uses concave-convex features to segment
points, while there is a natural convexity-concavity relationship between leaves and stems. This is
another reason why we choose this segmentation algorithm to segment the plant’s point cloud but the
convexity-concavity relationship of the adjacent leaves’ point clouds is not obvious, sometimes the
young leaves on the top of the plant need to be selected manually. For plants in the growing period,
the Leaf Area Index has a greater influence on the growth state of the plant. At this time, the leaves of
the plant are dense and the shape of each leaf is larger. Obtaining each leaf individually is impossible,
because there is often occlusion between dense leaves, which cannot be reduced by changing the
shooting angle. Therefore, it is necessary to find new phenotypic features that can represent plant
growth instead of leaves’ parameters.

Our experiment was done indoors, and the shooting camera and the object were placed
horizontally, so the three-dimensional points of y-axis coordinate system was used to determine
the plant height. At present we have not reproduced the experiment outdoors. Because the outdoor
scene is complicated as the plants are generally in the ground, it is difficult to complete the 3D modeling
of plants according to the proposed rotation method. However, this paper proposed a general method,
which can be extended to the related fields of 3D model building indoors.
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Abbreviations

The following abbreviations are used in this manuscript:

3D Three-dimensional
RGB-D Red, Green, Blue, and Depth
TOF Time of Flight
ROI Region of Interest
v2.0 Version 2.0
ICP Iterative Closet Point
MLS Moving Least Squares
Pos Position
FLANN Fast Library for Approximate Nearest Neighbors



Plants 2020, 9, 571 14 of 16

LCCP Locally Convex Connected Patches
min minimum
max maximum
AE Absolute Error
RMSE Root Mean Squared Error
MAE Mean Absolute Error
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