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Monocytes influence multiple aspects of tumor progression, including antitumor

immunity, angiogenesis, and metastasis, primarily by infiltrating tumors, and

differentiating into tumor-associated macrophages. Emerging evidence suggests that

the tumor-induced systemic environment influences the development and phenotype of

monocytes before their arrival to the tumor site. As a result, circulating monocytes show

functional alterations in cancer, such as the acquisition of immunosuppressive activity

and reduced responsiveness to inflammatory stimuli. In this review, we summarize

available evidence about cancer-induced changes in monopoiesis and its impact on

the abundance and function of monocytes in the periphery. In addition, we describe

the phenotypical alterations observed in tumor-educated peripheral blood monocytes

and highlight crucial gaps in our knowledge about additional cellular functions that may

be affected based on transcriptomic studies. We also highlight emerging therapeutic

strategies that aim to reverse cancer-induced changes in monopoiesis and peripheral

monocytes to inhibit tumor progression and improve therapy responses. Overall, we

suggest that an in-depth understanding of systemic monocyte reprogramming will have

implications for cancer immunotherapy and the development of clinical biomarkers.

Keywords: classical monocyte, cancer, tumor, monocyte reprogramming, tumor-educated monocytes,

hematopoiesis, monopoiesis, peripheral blood

INTRODUCTION

Monocytes are the third most abundant immune cell population in the peripheral blood
after neutrophils and lymphocytes, representing ∼4–11% of leukocytes in the circulation in
humans and 1–5% in mice (1, 2). Based on the expression of surface markers, size, morphology,
location in the blood vessel, and functionality, two major monocyte subsets can be distinguished
both in human and mouse. Classical monocytes (CD14+CD16−CCR2+CX3CR1lowHLA-
DR+ in human, Ly6ChighCCR2+CD43−CX3CR1lowMHC-II− in mouse, after exclusion
of lymphoid cells and granulocytes) are large (10–14µm diameter in mouse) granular
cells whose primary function is to extravasate and differentiate into macrophages upon
tissue injury and, in certain tissues, replenish tissue-resident macrophages in homeostasis.
Non-classical monocytes (CD14−CD16+CCR2−CX3CR1highHLA-DR+ in human,
Ly6ClowCCR2−CD43+CX3CR1highMHC-II− in mouse) are smaller (8–12µm diameter in
mouse) less granular cells which crawl along vessels and scavenge the luminal surface to maintain
endothelial integrity (3–7). Non-classical monocytes differentiate from classical monocytes in
the circulation that is triggered by signals from the vascular endothelium (8, 9). Accordingly,
a continuum of intermediate cell states between the two subsets exists which was revealed by
single-cell RNA sequencing (scRNAseq) in both human andmouse (9, 10). Themajority of classical
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monocytes leave the circulation within 1 day and extravasate into
tissues to replenish macrophages while only a small fraction of
them differentiates into non-classical monocytes to remain in the
circulation for several days (11, 12).

Classical monocytes, classical monocyte-derived tumor-
associated macrophages, and non-classical monocytes have
been extensively described to influence tumor progression
through regulating cancer cell survival, antitumor immunity,
angiogenesis, and metastasis. The mechanistic details of these
activities have been reviewed elsewhere (13–18). Much less
is known about whether tumors remotely induce alterations
in monopoiesis and circulating monocytes. In this review we
summarize evidence for altered classical monocyte abundance
and phenotype in cancer and we discuss the potential
implications of this phenomenon for tumor progression. Due to
their shared ontogeny, the phenotype of non-classical monocytes
is likely to be affected by cancer as well, however, evidence for this
remains scarce.

MONOPOIESIS IN CANCER

Elevated peripheral blood monocyte counts in cancer have been
described in both humans and mice (19–21). Patients with
higher blood monocyte counts reportedly have a worse disease
prognosis in several cancer types (20, 22–26). Consistent with
the notion that classical monocytes can give rise to tumor-
associated macrophages, blood monocyte counts correlate with
the abundance of macrophages infiltrating prostate tumors,
however, more studies are needed to establish whether such
correlation is a general phenomenon (23). Elevated monocyte
levels can be caused either by enhanced mobilization from the
bone marrow or increased monopoiesis, both of which have been
observed in cancer. CCL2, the central regulator of monocyte
mobilization from the bone marrow, often shows higher serum
levels in both mouse and human cancer (27–31). Accordingly,
elevated peripheral blood monocyte levels in pancreatic cancer
patients were associated with reduced monocyte abundance in
the bone marrow, suggesting their enhanced egress (20).

Emerging evidence indicates that tumors also remotely
influence hematopoiesis. In the steady-state, monocytes are
produced in the bone marrow by hematopoietic stem cells
(HSCs) which give rise to progenitors with progressively
restricted lineage potential ultimately resulting in the generation
of monocyte-committed progenitors (Figure 1). HSCs self-renew
and generate multipotent progenitors (MPPs), which further
differentiate into common myeloid progenitors (CMPs), and
common lymphoid progenitors (CLPs). CMPs have the capacity
to differentiate into megakaryocyte and erythrocyte progenitors
(MEPs) and granulocyte and macrophage progenitors, also
known as granulocyte-monocyte progenitors (GMPs). Within
the GMP population, monocyte-dendritic cell progenitors
(MDPs) emerge which can only give rise to conventional
dendritic cell progenitors (CDPs) and common monocyte
progenitors (cMoPs), the latter giving rise to classical monocytes
(7, 32). Notably, recent research shows that MDPs can develop
directly from CMPs (33). GMPs can also generate classical

monocytes through a monocyte progenitor (MP) and these
monocytes retain a transcriptional profile distinct from their
MDP-derived counterparts, characterized by the expression of
several neutrophil-associated genes (33, 34). These “neutrophil-
like” monocytes have been detected via scRNAseq in the blood
and tumors of humans and mice with non-small cell lung
cancer, however, it remains unknown whether their distinct
transcriptional profile endows them with unique functional
characteristics (35).

Gradual commitment to the monocyte lineage is determined
by the relative activity of key transcription factors in
hematopoietic progenitors [reviewed in (32, 36)]. Monocyte
and macrophage development are critically dependent on PU.1,
whose expression increases from the CMP stage and acts as
a pioneer transcription factor to bind closed chromatin and
cooperate with other myeloid transcription factors in order to
activate a myeloid lineage specific transcriptional program. A
key growth factor in monocyte and macrophage development is
M-CSF (also known as CSF-1) which not only promotes survival
and proliferation of myeloid progenitors, but also instructs
the commitment of GMPs toward monocytic cells rather than
granulocytes (37, 38). In addition, M-CSF can directly induce
PU.1 in HSCs, instructing early commitment toward the myeloid
lineage (39). According to the current model, PU.1 induces IRF8
expression inMDPs which further promotes monocyte/dendritic
cell over granulocyte differentiation potential in progenitors
(36, 40). IRF8 forms a heterodimer with PU.1 and induces
the expression of the transcription factor KLF4, which is
indispensable for the acquisition of a transcriptional program
endowing mature monocyte identity (41–43). The C/EBP
transcription factors also play key roles in both monocyte and
granulocyte development. C/EBPα is essential for steady-state
granulopoiesis and the relative activity of PU.1 and C/EBPα in
GMPs is a critical determinant of monocyte/macrophage vs.
neutrophil cell fate (44, 45). C/EBPβ is not only required for
emergency granulopoiesis in response to cytokines, but also
supports the survival of monocytes in the periphery (46, 47).

With the emergence of single-cell resolution transcriptomics
and fate-mapping technologies, the hierarchical lineage tree
model of hematopoiesis is being replaced by a lineage continuum
model in which the progenitor populations defined above
are rather snapshots of a continuum and encompass a
transcriptionally diverse mixture of cells with different degrees
of fate commitment (48). In fact, lineage-committed precursors
have been found in progenitor populations which have been
previously defined as multipotent (48). Nevertheless, progenitor
populations defined by well-established surface markers provide
a useful framework to understand hematopoiesis and evaluate its
quantitative and qualitative alterations in disease.

Cancer is often accompanied by elevated serum levels
of cytokines that are involved in controlling hematopoiesis,
including KITLG, G-CSF, GM-CSF, and M-CSF (49–54).
Enhanced production of these cytokines can be a result of
malignant transformation of cells and can therefore be dictated
by the genetic alterations that occur during tumor progression
(55–59). Altered production of these factors together with the
low-grade systemic inflammation often associated with tumor
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FIGURE 1 | Cancer-induced reprogramming of monopoiesis and circulating monocytes. Arrows indicate changes in the abundance of progenitor populations in

cancer. Functional alterations that have not been characterized extensively are indicated with question marks. ANGII, angiotensin II; ARG1, arginase 1; cDC,

conventional dendritic cell; CDP, common dendritic cell progenitor; CLP, common lymphoid progenitor; cMoP, common monocyte progenitor; CMP, common myeloid

progenitor; EVs, extracellular vesicles; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; GMP,

granulocyte-monocyte progenitor; HLA-DR, human leukocyte antigen DR; HSC, hematopoietic stem cell; IL-6/10, interleukin-6/10; MDP, monocyte-dendritic cell

progenitor; MEP, megakaryocyte-erythrocyte progenitor; MIF, macrophage migration inhibitory factor; MP, monocyte progenitor; MPP, multipotent progenitor; NK cells,

natural killer cells; OPN, osteopontin; pDC, plasmacytoid dendritic cell; PGE2, prostaglandin E2; pSTAT3, phosphorylated signal transducer and activator of

transcription 3; TGFβ, transforming growth factor β.

development leads to remote reprogramming of myelopoiesis
(60). This is characterized by the expansion of HSC, myeloid-
skewedMPP, CMP, and GMP, but not CLP andMEP populations,
indicating a tumor-induced myeloid bias in hematopoiesis
(61–64) (Figure 1). Myeloid expansion in the bone marrow
was driven by G-CSF in the MMTV-PyMT mouse model of
breast carcinoma, while it was found to be TNFα-dependent
in Lewis lung carcinoma and MC57 fibrosarcoma (61, 62).
Similarly, the frequency of HSC, MPP, and GMP populations
are elevated in the peripheral blood of patients with various
types of solid tumors (52). Conversely, the abundance of
the CDP population decreases in both breast and pancreatic
cancer patients while the MDP population remains largely
unaffected due to the inhibitory effect of G-CSF on the
differentiation potential of MDP toward CDP (51) (Figure 1).
G-CSF and GM-CSF suppress IRF8 expression via STAT3
and STAT5, respectively, thereby skewing myelopoiesis toward
granulocyte progenitors (65–67). Due to elevated systemic levels
of G-CSF and GM-CSF, this can occur in cancer. Accordingly,
MDPs from breast tumor-bearing mice showed higher levels
of phosphorylated STAT3 and lower IRF8 expression (51).
Expansion of GMPs in response to G-CSF in cancer may not
only drive the production of granulocytes, but also monocytes,
as the tumor-induced expansion of circulating monocytes is
completely abrogated in G-CSF receptor-deficient mice (68).
Similarly, GM-CSF treatment in mice increased the abundance
of both monocytes and neutrophils in the bone marrow (54).
Analogously, administration of an antitumor vaccine containing
GM-CSF led to the expansion of immunosuppressive monocytes

in melanoma patients (69). Indeed, GM-CSF treatment of human
HSCs in vitro results in the generation of CD14+HLA-DR−PD-
L1+ monocyte-like cells which are highly immunosuppressive
and this effect was augmented by the addition of IL-6 or TGFβ
(52, 54, 70, 71). Combination of G-CSF+GM-CSF or G-CSF+IL-
6 treatment of HSCs generates similar immunosuppressive
cells, however, these also upregulate arginase-1, an enzyme
that catabolizes L-arginine, an amino acid essential for T-cell
proliferation (52, 70, 72).

Cancer not only reprograms hematopoiesis in the bone
marrow but also supports expansion of myelopoiesis in
extramedullary sites, primarily in the spleen. HSC, CMP,
GMP, and MDP populations greatly expand in the splenic
red pulp of tumor-bearing mice and cancer patients due
to recruitment of progenitors from the circulation followed
by local proliferation (21, 73–75). In homeostasis, tissue-
migratory hematopoietic progenitors eventually return to the
circulation through the lymphatic system, which is driven
by sphingosine-1 phosphate (S1P) gradients (76). However,
in murine lung cancer this process is perturbed as tumor
cell-derived angiotensin II released to the circulation causes
downregulation of S1P receptor 1 on hematopoietic progenitors,
leading to their retention, and accumulation in the spleen (77).
In addition, increased CCL2 production by splenic myeloid
cells and stromal cells in cancer appears to contribute to the
accumulation of myeloid progenitors, which upregulate their
CCR2 expression in the spleen (73, 75). Proliferation of splenic
myeloid progenitors is also supported by tumor cell-derived
osteopontin (78).
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In some mouse tumor models, monocytes isolated from the
spleen have been shown to suppress T-cell activation via nitric
oxide production, which mainly interferes with IL-2 receptor
signaling (72, 79). For this reason, these cells were termed
monocytic myeloid-derived suppressor cells (Mo-MDSC), a term
still used to denote immunosuppressive monocytes, albeit the
surface marker expression of these cells in many cases closely
resembles classical monocytes (79). Accordingly, bone marrow
HSC transferred into spleens gave rise to T-cell suppressive
myeloid cells in tumor-bearing mice but not in healthy mice
(73). These results suggest that the cancer-conditioned splenic
tissue niche can skew monopoiesis toward the generation of
immunosuppressive monocytes. Consistent with the notion
that splenic monocytes undergo extensive reprogramming in
cancer, scRNAseq analysis of splenic monocytes revealed tumor-
induced expansion of a distinct monocyte state in mouse breast
cancer (80). Splenic monocytes from breast tumor-bearing mice
showed more than 200 differentially expressed genes compared
to healthy mice, including the upregulation of genes involved in
the promotion of inflammation (Il1b, Saa3, Junb), angiogenesis
(Prok2), chemotaxis (Ccr1, Cxcr2), and antiviral response (Ifitm1)
(80). Two key factors driving the reprogramming of progenitors
in the spleen appear to be GM-CSF and IL-6. Splenic stromal
cells upregulate IL-6 in mice with hepatocellular carcinoma,
which drives autocrine GM-CSF production by splenic HSCs
and this interaction appears to be critical for the generation of
immunosuppressive progeny (73). In line with these findings,
GM-CSF treatment in mice increased the abundance of Ly6Chigh

monocytes in the spleen (54). Similarly, low levels of GM-CSF are
sufficient to induce nitric oxide synthase in bonemarrow-derived
Ly6Chigh murine monocytes and render them strongly T-cell
suppressive (54). Notably, the impact of GM-CSF on monocytes
is likely to be dependent on their developmental stage at the time
of exposure as well as the tissue context (81). GM-CSF secreted by
activated T-cells has been shown to induce a pro-inflammatory
monocyte phenotype in experimental autoimmune encephalitis
(82). Some studies suggest that GM-CSF-dependent monocyte
activation during chimeric antigen receptor T-cell therapy can
contribute to the development of potentially fatal treatment-
related toxicities, including cytokine release syndrome and
neuroinflammation (83, 84). The immunostimulatory activity of
GM-CSF provided a basis for its use as an adjuvant in anticancer
vaccines (81, 85–87). However, GM-CSF-containing vaccine
formulations may not only promote antitumor immunity, but
in some cases also cause the emergence of immunosuppressive
monocytes in the circulation, as mentioned above (69).

CANCER-INDUCED PHENOTYPICAL
ALTERATIONS IN CIRCULATING
MONOCYTES

The distant tumor not only skews the differentiation path of
myeloid progenitors in hematopoietic tissues but also influences
the phenotype of circulating monocytes (Figure 1). The most
widely reported cancer-induced phenotypical alteration in
human peripheral blood monocytes is the acquisition of

immunosuppressive activity (19, 69). This generally coincides
with the downregulation of the MHC class II surface protein
HLA-DR, a key mediator of antigen presentation which is
highly expressed onmonocytes in healthy individuals. Additional
surface marker changes have also been reported, including the
downregulation of CD86 (88–90) and upregulation of IL4Rα

(91, 92) and TIE2 (93). On the basis of their immunosuppressive
activity, CD14+HLA-DRlow monocytes are often referred to as
M(o)-MDSCs, analogous to T-cell suppressive mouse monocytes
isolated from the spleen of tumor-bearing mice. Interestingly,
a similar HLA-DRlow monocyte phenotype has been observed
in patients with sepsis and the transcriptional signatures of
monocytes in sepsis and metastatic cancer show remarkable
similarity (88, 94, 95).

One of the major mechanisms responsible for the
immunosuppressive activity of monocytes in cancer patients
appears to be their elevated arginase-1 expression and activity
which restricts the amount of L-arginine available for T-cells
(19, 96–98). Accordingly, inhibition of arginase-1 or increasing
the amount of available L-arginine decreases their T-cell
suppressive effect in vitro (91, 97–99). Other mechanisms that
may be responsible for the immunosuppressive activity include
upregulation of PD-L1 or GPNMB and production of TGFβ or
reactive oxygen species (69, 91, 100–102).

The frequency of CD14+HLA-DRlow monocytes has been
shown to increase with tumor stage and correlate with poor
survival in many different solid tumor types [reviewed in
(103, 104)]. In accordance with their immunosuppressive effect,
high levels of CD14+HLA-DRlow monocytes are associated
with significantly lower levels of tumor-specific T-cells in the
circulation of cancer patients (105). In addition, patients with
low pretreatment levels of CD14+HLA-DRlow monocytes are
more likely to respond to immune checkpoint blockade therapy,
providing a rationale to use pretreatment HLA-DRlow monocyte
frequency as a predictive biomarker for therapy response (106–
109). Intriguingly, patients who responded to anti-CTLA4
immune checkpoint blockade showed a progressive reduction
in the frequency of CD14+HLA-DRlow monocytes following
treatment, in contrast to non-responders (110, 111).

While the emergence of immunosuppressive activity in
cancer-educatedmonocytes has beenwidely observed, alterations
in their cytokine secretion appear to be more variable across
different cancer types. CD14+HLA-DRlow monocytes from
melanoma patients showed increased secretion of TGFβ (69,
102), however, this was not observed in other studies in
melanoma and breast cancer (88, 91). Monocytes from breast
cancer patients secreted lower levels of IL-1β, IL-6, and TNF
(88), while monocytes from renal cell carcinoma patients showed
elevated production of these cytokines along with IL-10, CCL3,
IL-8, and VEGFα (112). In the latter study, these changes led
to an enhanced ability to promote angiogenesis and cancer cell
invasion in vitro that was dependent on the secretion of VEGFα
and matrix metalloproteinases, respectively, (112). In contrast,
VEGFA expression was downregulated in monocytes of breast
cancer and melanoma patients (113, 114).

Classical monocytes isolated from breast cancer patients
also exhibit altered response to inflammatory stimuli, as
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indicated by their impaired secretion of TNFα and IL-
1β in response to bacterial lipopolysaccharide (88, 115). In
addition, classical monocytes from lymphoma and breast
cancer patients showed reduced responsiveness to IFNγ as
indicated by the lower levels of STAT1 phosphorylation
following stimulation (98, 116). Remarkably, breast cancer
patients with a low monocyte IFNγ response were significantly
more likely to relapse (116). Hence, the level of IFNγ-
induced STAT1 phosphorylation in peripheral blood monocytes
at diagnosis could be used as a prognostic biomarker for
relapse-free survival independent of other clinicopathologic
characteristics (116).

Transcriptomic analyses in peripheral blood monocytes from
cancer patients vs. healthy donors revealed extensive cancer-
induced transcriptional changes and provided several important
lessons about monocyte reprogramming in cancer (Table 1).

Firstly, by utilizing classification algorithms, the cancer-
induced gene signature in blood monocytes can be used
as a diagnostic biomarker. The first proof-of-concept studies
testing cancer detection based on transcriptional alterations in
peripheral blood monocytes demonstrated 93–100% sensitivity
(i.e., the proportion of cancer patients that are correctly identified
as such), albeit somewhat more limited 69–93% specificity (i.e.,
the proportion of healthy patients that are correctly identified as
such) (113, 117).

Secondly, the gene expression changes in monocytes induced
by distinct cancer types show remarkably little overlap. Gastric
cancer and pancreatic cancer failed to induce the gene expression
signature which was identified in colon cancer (117). Similarly,

the transcriptomic changes induced by endometrial and breast
cancer assessed in the same study showed <50% overlap (113).

Furthermore, the cancer-induced transcriptional profiles
show considerable interpatient heterogeneity within a given
cancer type, uncovering patient subsets with differential
reprogramming (19, 115). Specifically, greatly differing
monocyte reprogramming (>1,000 differentially expressed
genes) could be observed between pancreatic cancer patients
in which immunosuppressive monocytes emerged and patients
whose monocytes remained non-suppressive (19). Among breast
cancer patients, differential responsiveness of monocytes to
IFNγ+GM-CSF stimulation was associated with distinct gene
expression profiles, including differential expression of genes
linked to the IFN response (115).

Finally, transcriptional profiling of monocytes from colorectal
cancer patients revealed that monocyte reprogramming not only
occurs after systemic dissemination of cancer, but also in patients
with localized early stage tumors (117).

Transcriptomic analyses provided indications that monocytes
may exhibit additional phenotypical alterations. Several studies
have shown changes in the expression of genes involved in
cell adhesion, migration, and chemotaxis, such as elevated
CCR2 and CX3CR1 expression (112–115). Accordingly, classical
monocytes from non-small cell lung cancer patients showed
enhanced migration toward cancer cells, however, the underlying
mechanisms remain to be determined (96). Intriguingly, multiple
studies from breast cancer patients showed the downregulation
of HIF1A expression in monocytes, suggesting that cancer may
impair their response to hypoxia (88, 113, 115).

TABLE 1 | Summary of studies comparing the transcriptome of peripheral blood monocytes from cancer patients and healthy individuals.

Cancer type Number of patients Markers used for

monocyte isolation

Method Publication Accession number

Breast cancer (metastatic) Healthy: 3

Cancer: 4

CD14+CD16− (MACS) Microarray (88) GSE65517

Breast cancer Healthy: 8

Cancer: 8

CD14+HLA-DR+

(FACS)

Microarray (115) NA

Breast and endometrial cancer Healthy: 45

Cancer: 32 (breast),

3 (endometrial)

Lin−CD45+CD11b+CD14+

(FACS)

RNA-seq (113) GSE117970

Colorectal carcinoma Healthy: 38

Cancer: 55

CD14+ (MACS) Microarray (117) GSE47756

Colorectal carcinoma (metastatic) Healthy: 20

Cancer: 3

CD14+ (MACS) RNA-seq (95) GSE133822

Glioblastoma Healthy: 4

Cancer: 4

CD14+ (MACS) Microarray (118) GSE77043

Melanoma Healthy: 4

Cancer: 4

Lin−CD14+CD16−HLA-

DR+ (FACS)

RNA-seq (114) E-MTAB-6214

Pancreatic ductal adenocarcinoma Healthy: 3

Cancer: 5

CD14+CD16− (FACS) Microarray NA GSE60601

Pancreatic ductal adenocarcinoma Healthy: 9 (from public

datasets)

Cancer: 7

CD14+ (MACS) Microarray (19) NA

Renal cell carcinoma Healthy: 4

Cancer: 4

CD14+ (MACS) Microarray (112) GSE38424

MACS, magnetic cell separation; FACS, fluorescence-activated cell sorting.
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Monocytes also exhibited cancer-induced changes in the
expression of numerous metabolic genes in several tumor
types (19, 114, 115). Namely, immunosuppressive monocytes in
pancreatic cancer showed upregulation of genes involved in fatty
acid and lipoprotein metabolism (CD36, LYPLA1, CERS5) ATP
metabolism (ATP5F1C, ATP5MC2, SDHB), glucose metabolism
(PDK4, GXYLT1), and amino acid metabolism (ERICH1,
GLS, CTSC, ARG1, NAT2, UST, OXR1) when compared to
non-immunosuppressive monocytes (19). Similarly, monocytes
from breast cancer and glioblastoma patients showed altered
expression of genes involved in oxidative phosphorylation and
fatty acid metabolism (115, 118). Monocytes from melanoma
patients showed downregulation of several nutrient transporters,
including the glucose transporter SLC2A3 and the amino acid
transporters SLC7A5, SLC7A11, SLC3A2 (114). It remains to be
elucidated whether these gene expression changes have an impact
on cellular metabolism.

Tumor-induced reprogramming may also impair the ability
of monocytes to initiate a physiological differentiation program
upon tissue infiltration. Monocytes from breast cancer patients
showed reduced expression of ID2 and MAFB, transcriptional
regulators playing key roles in dendritic cell and macrophage
differentiation, respectively (113, 115, 119, 120). In line with
these data, dendritic cells differentiated frommonocytes of breast
cancer patients in vitro showed a reduced capacity to stimulate
T-cell proliferation and induced a higher number of regulatory
T-cells compared to healthy controls (121).

It is difficult to determine whether phenotypical changes
observed in circulating monocytes stem from alterations in
hematopoietic progenitors or they are mainly acquired in
the circulation. Certainly, elevated secretion of cytokines,
such as G-CSF, GM-CSF, and IL-6 in cancer can favor the
development of monocytes with an altered phenotype in the
bonemarrow and spleen, as described above. However, monocyte
reprogramming has been observed in patients in the absence
of emergency myelopoiesis, indicating that reprogramming of
mature monocytes in the circulation probably also occurs (88,
117). Indeed, co-culture with cancer cells or treatment with
cancer cell supernatants can induce transcriptional changes and
phenotypical alterations in mature monocytes from healthy
individuals, including the induction of immunosuppressive,
proinvasive, and proangiogenic phenotypes (68, 112, 117, 122,
123). Extracellular vesicles (EVs) released from cancer cells may
be important in relaying reprogramming signals as they were
found to be sufficient to induce immunosuppressive activity
in healthy monocytes in vitro (102, 124–128). One of the
mechanisms responsible for this appears to be the activation
of Toll-like receptors (TLR) on monocytes by heat-shock
proteins (HSP) expressed on the surface of EVs, such as
HSP72 and HSP86, activating TLR2 and TLR4, respectively
(126, 127). Additional factors that have demonstrated a
reprogramming effect on healthy monocytes include IL-10, MIF,
and prostaglandin E2 (PGE2), which may also be produced by
non-malignant cells (122, 123, 129–132).

Transcriptional reprogramming of monocytes is likely to
be driven by the activation of a distinct set of transcription
factors dictated by the tumor/patient-specific systemic

environment. The most studied example is the acquisition
of immunosuppressive activity, which, in many cases,
is driven by the transcription factor STAT3. Co-culture
of healthy monocytes with cancer cells or treatment with
cancer cell-derived EVs induces STAT3 activation (68, 126).
Correspondingly, suppressive monocytes from cancer patients
show elevated levels of phosphorylated STAT3, and inhibition
of STAT3 reverses the arginase-dependent immunosuppressive
activity (19, 91, 99).

It is currently unclear whether tumor removal leads to
the complete reversal of monocyte phenotype to a healthy
state. Diminished HLA-DR expression on monocytes from
glioblastoma patients returned to normal levels 8 days after
tumor removal (133). Similarly, surgical removal of colorectal
tumors led to the reversal of a previously upregulated gene set
to levels comparable to healthy individuals (117). In contrast,
the frequency of HLA-DRlow classical monocytes in prostate and
colorectal cancer patients did not return to healthy levels 1month
after surgery, suggesting that, in some cases, alterations may
persist after curative treatment (134).

THERAPEUTIC IMPLICATIONS

Understanding how monocytes respond to cancer will pave
the way toward targeted treatments that can interfere with
the cellular pathways mediating tumor-induced functional
alterations. The best characterized example of such therapeutic
strategy is the prevention of cancer-induced monocytosis via
inhibiting the CCL2-CCR2 chemokine axis (17). A small-
molecule CCR2 inhibitor has been already tested in a phase
I clinical trial and proved effective in reducing peripheral
monocyte numbers, thereby decreasing the abundance of
tumor-associated macrophages in pancreatic cancer (135). This
was associated with increased T-cell infiltration and elevated
expression of immunostimulatory factors in tumors, indicating
a better antitumor immune response, and warranting further
clinical studies (135). Identification of angiotensin II as a crucial
regulator of cancer-induced extramedullary hematopoiesis
raised the question whether angiotensin-converting enzyme
(ACE) inhibitors, widely used to treat hypertension, could
suppress heightened extramedullary monocyte production
and subsequent macrophage accumulation in tumors (77).
Indeed, the ACE inhibitor enalapril was able to suppress
splenic monopoiesis, reduce the number of tumor-associated
macrophages and provided a survival benefit to mice with lung
tumors (77). In a mouse model of hepatocellular carcinoma, the
multikinase inhibitor sorafenib has been reported to similarly
reduce splenic hematopoiesis presumably by inhibiting c-Kit
(73). Although sorafenib alone did not prolong survival, it
enhanced the therapeutic efficacy of anti-PD-L1 immune
checkpoint blockade (73). As mentioned above, GM-CSF
promotes monocyte production both in the bone marrow and
in the spleen. Accordingly, GM-CSF blockade in mice inhibited
tumor-induced mobilization of CD11b+Gr1+ myeloid cells,
resulting in enhanced antitumor T-cell responses (136, 137). The
CD11b+Gr1+ cell subset comprises a heterogenous mixture of
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monocytes and granulocytes, therefore determining the impact
of GM-CSF neutralization specifically on monocytes will require
further investigation.

Among the factors mediating tumor-induced reprogramming
of monocytes, PGE2 appears to be a promising candidate for
therapeutic targeting. A PGE2 receptor 2 (EP2) antagonist
(AH6809) prevented PGE2-induced NF-κB activation and
subsequent Nos2 expression in splenic and tumor-infiltrating
monocytes, reducing their immunosuppressive activity and
leading to an enhanced antitumor T-cell response in mouse
models (132).

Tumor-induced alterations of kinase activity in monocytes are
also an area of emerging interest and a promising therapeutic
avenue considering the wide range of small-molecule kinase
inhibitors available. In a mouse model of melanoma, splenic
monocytes have been shown to upregulate the TAM receptor
tyrosine kinases Axl, Mertk, and Tyro3, while circulating
monocytes upregulated Mertk and Tyro3 (138). Targeting these
kinases via the administration of a pan-TAM kinase inhibitor
(UNC4241) was able to reduce the immunosuppressive activity
of monocytes and enhance antitumor immunity (138). TAM
kinases were suggested to promote serine phosphorylation
of STAT3, leading to the activation of genes involved in
immunosuppression, like Nos2 and Arg1 (138).

Besides TAM kinases, several additional reprogramming
stimuli, such as IL-6, IL-10, and G-CSF, converge to STAT3
activation, making it another attractive therapeutic target.
STAT3 inhibition via small-molecule inhibitors (e.g., CPA-7,
JSI-124) has proved effective in eliciting antitumor immunity
in mice, however, its effects on monocytes have not been
characterized (139, 140). To avoid unwanted side-effects due to
its pleiotropic role, therapeutic inhibition of STAT3 may require
cell-specific targeting strategies. A potential approach to achieve
this has been developed by linking a STAT3-targeting small
interfering RNA or antisense oligonucleotide to a TLR9 agonistic
CpG oligonucleotide which reportedly reduces Stat3 expression
specifically in TLR9-expressing myeloid cells while exerting an
immunostimulatory effect via TLR9 activation (141, 142). This
strategy has proved effective in boosting the antitumor immune
response in several mouse models, however, it remains to be
determined whether it efficiently targets monocytes and could
reverse tumor-induced reprogramming (141–143).

In addition, inhibition of arginase-1 to alleviate
monocyte/macrophage-mediated arginine-depletion and
consequential immunosuppression may represent a potential
therapeutic approach. To this end, a small-molecule arginase
inhibitor (CB-1158) has been developed which elevated plasma
and tumor arginine levels and enhanced antitumor T-cell and
natural killer cell responses in mouse models (144). Remarkably,
arginase inhibition also improved response to immune
checkpoint blockade and adoptive T-cell therapy in several
tumor models which are resistant to these treatments (144).

Therapies inducing systemic immune activation may
also be able to reprogram monocytes before their arrival to
tumors that is likely to influence their activity upon tumor
infiltration. Administration of an agonistic anti-CD40 antibody
led to systemic release of IFNγ, resulting in enhanced STAT1

activation in circulating monocytes (145). Recruitment of these
pre-activated Ly6Chigh monocytes was critically required for
the anti-fibrotic activity of anti-CD40 therapy in pancreatic
cancer (145). The elevated matrix metalloproteinase activity
of recruited monocytes following treatment degraded the
dense extracellular matrix of chemoresistant pancreatic tumors,
rendering them responsive to gemcitabine therapy (145). It
remains to be further characterized whether CD40 agonists
or other immunostimulatory agents (e.g., TLR and STING
agonists) are able to reprogram the transcriptome and phenotype
of extratumoral monocytes either directly or indirectly, and
how this impacts their activity and differentiation trajectory
following extravasation.

CONCLUSIONS AND PERSPECTIVES

Recent studies have revealed that phenotypical alterations in
peripheral blood monocytes can serve as diagnostic (113,
117), predictive (108), and prognostic (116) biomarkers. As
monocytes can be easily obtained via blood sampling, these
findings offer promising new tools for clinical oncology. The
emergence of immunosuppressive monocytes in the circulation
of cancer patients and their widely documented association with
poor prognosis strongly suggest that cancer-induced monocyte
reprogramming has an important role in tumor progression.
Nevertheless, our understanding about the driving mechanisms
of this phenomenon are far from complete. Transcriptomic
analyses of circulating monocytes revealed that different cancer
types induce distinct gene signatures and these transcriptional
changes extend beyond the induction of an immunosuppressive
phenotype. These studies showed that cancer also alters the
expression of genes involved in a number of additional cellular
functions, such as chemotaxis, metabolism, and differentiation,
among others. Further studies are needed to confirm whether
these transcriptional changes lead to functional reprogramming
that may influence monocyte behavior.

Ultimately, the majority of circulating classical monocytes
extravasate to replenish macrophages in tissues. This raises
the question whether some of the cancer-induced changes in
monocytes persist during the differentiation process and leave a
mark on their progeny, thus causing a ripple effect on systemic
immunity through altering the function of tissue macrophages.
Accordingly, therapies which can pre-activate circulating
monocytes may have the potential to skew their differentiation
toward cytotoxic and/or T-cell stimulatory macrophages upon
extravasation in the tumor. Identifying therapies capable of “re-
educating” circulating monocytes will likely represent a useful
strategy to prevent metastasis as rapid monocyte recruitment
and differentiation into metastasis-supporting macrophages
is increasingly appreciated as an important determinant of
metastatic colonization (146–148).

The potential short- and long-term detrimental effects of
different cancer treatments on monopoiesis and peripheral
monocytes represents another important gap in our knowledge.
Indeed, some reports suggest that surgery induces the
mobilization and immunosuppressive reprogramming of
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circulating monocytes that may contribute to early metastatic
relapse after tumor resection (149, 150). Thus, therapy-induced
changes in monocytes and their role in therapy resistance as
well as disease progression will be another relevant area of
investigation in the future.

Overall, a deeper understanding of systemic monocyte
reprogramming in cancer could not only lead to better clinical
biomarkers but could also lead to novel therapeutic approaches
with the potential to establish long-term antitumor immunity
and prevent disease progression.
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