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Analytical Pitfalls of Therapeutic Drug Monitoring of
Thiopurines in Patients With Inflammatory Bowel Disease
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Abstract: The use of thiopurines in the treatment of inflammatory
bowel disease (IBD) can be optimized by the application of therapeutic
drug monitoring. In this procedure, 6-thioguanine nucleotides (6-TGN)
and 6-methylmercaptopurine (6-MMP) metabolites are monitored
and related to therapeutic response and adverse events, respectively.
Therapeutic drug monitoring of thiopurines, however, is hampered by
several analytical limitations resulting in an impaired translation of
metabolite levels to clinical outcome in IBD. Thiopurine metabolism
is cell specific and requires nucleated cells and particular enzymes
for 6-TGN formation. In the current therapeutic drug monitoring,
metabolite levels are assessed in erythrocytes, whereas leukocytes are
considered the main target cells of these drugs. Furthermore, currently
used methods do not distinguish between active nucleotides and their
unwanted residual products. Last, there is a lack of a standardized
laboratorial procedure for metabolite assessment regarding the sub-
stantial instability of erythrocyte 6-TGN. To improve thiopurine therapy
in patients with IBD, it is necessary to understand these limitations and
recognize the general misconceptions in this procedure.
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INTRODUCTION
Thiopurines, available as the derivatives azathioprine

(AZA), mercaptopurine (MP), and thioguanine (TG), are
antimetabolite and immunosuppressive drugs, developed over
65 years ago, initially for the treatment of acute lymphoblastic
leukemia.1 Subsequently, thiopurines were slowly adapted for
the prevention of organ transplant rejection and the manage-
ment of chronic inflammatory diseases, including rheumatoid
arthritis and inflammatory bowel disease (IBD).2–4 Currently,
AZA and MP have proven to be effective as a monotherapy in
maintaining steroid-free remission in both Crohn disease
and ulcerative colitis.5,6 Thiopurines may also be used in
combination with anti–tumor necrosis factor agents in IBD
to optimize therapeutic efficacy and reduce secondary loss of
response.7,8 Moreover, TG, a nonconventional thiopurine
derivative, is considered as an escape drug for patients with
IBD who failed AZA or MP because of inefficacy, intoler-
ance, or toxicity.9,10

Strategies to optimize thiopurine therapy have demon-
strated to be valuable in the management of IBD.11 Currently,
therapeutic drug monitoring (TDM) of thiopurine metabolites
may be used to increase clinical efficacy and reduce drug-
associated toxicity.12–15 In this procedure, 6-thioguanine nu-
cleotides (6-TGN) and 6-methylmercaptopurine (6-MMP)
metabolites are measured and related to therapeutic response
and adverse events, respectively. There remains a controversy
on the additional value of TDM of thiopurines in optimizing
IBD treatment because several studies addressed conflicting
results on the association between thiopurine metabolite lev-
els and clinical outcome in IBD.15–20 Nevertheless, the use of
TDM of thiopurines in patients with IBD, either as a routine
or in specific therapy-associated circumstances, is increas-
ingly being applied in the daily clinical practice. When
TDM is applied, the interpretation of measured metabolite
levels and translation into clinical outcome should be done
carefully, partially as a result of several analytical obstacles in
this procedure.16,21 These limitations could create general
misconceptions regarding TDM of thiopurines and impair
its utilization. This review is intended to describe the analyt-
ical pitfalls of TDM of thiopurines and to provide suggestions
to improve TDM utilization in daily practice to optimize thi-
opurine therapy in IBD.
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DRUG METABOLISM
Thiopurines interact in cell processes involved in inflam-

mation and proliferation and require bioactivation through an
extensive metabolism with involvement of multiple enzymes.22

Thiopurine metabolism occurs intracellularly and is determined
by cell-specific characteristics and activity of genetically influ-
enced enzymes. Hence, thiopurines operate effectively in target
cells, such as leukocytes, but their drug metabolism is interindi-
vidually highly variable. Thioguanine, AZA, and MP are all
converted into pharmacologically active 6-TGN, which consist
of 6-thioguanine monophosphate (6-TGMP), 6-thioguanine
diphosphate (6-TGDP), and 6-thioguanine triphosphate (6-
TGTP) (Fig. 1).15 In early studies, performed in patients with
leukemia treated with high-dosage of thiopurines, the mecha-
nism of action was ascribed to the incorporation of fraudulent
6-TGN into DNA, inhibiting cell proliferation.23 In this study, it
is assumed that the 6-TGTP nucleotides, in particular, contribute
to immunosuppressive effects in the treatment of IBD by bind-
ing Ras-related C3 botulinum toxin substrate 1 (Rac1) and sub-
sequently inducing T-cell apoptosis.24,25

Azathioprine is directly converted into 6-MP, which is
metabolized into different metabolites depending on the type
of pathway. For 6-MP, 6-TGN are formed by the purine
salvage pathway, requiring the enzymatic activity of
hypoxanthine–guanine phosphoribosyl transferase, inosine
monophosphate dehydrogenase (IMPDH), and guanosine
monophosphate synthetase, respectively. Furthermore, 6-MP
may also be converted into 6-thiouric acid (6-TUA) by xan-
thine oxidase or into potentially toxic 6-MMP metabolites
and 6-methylmercaptopurine ribonucleotides (6-MMPR) by
thiopurine S-methyltransferase (TPMT). Thioguanine is con-
verted into 6-TGN, through the purine salvage pathway in 1
step and without the formation of the toxic 6-MMP or 6-
MMPR metabolites.26 Thioguanine may also be metabolized
into 6-TUA or 6-methylthioguanine (6-MTG) through com-
peting pathways.

TDM OF THIOPURINES IN IBD
The definite role of routine measurements of 6-TGN and

6-MMP levels in the management of IBD has not been well
established yet. Current data on this issue are derived from
(mostly) small-sized and poorly conducted studies as addressed
in 2 meta-analyses.27,28 In both studies, a positive correlation
between clinical remission and high 6-TGN levels was demon-
strated, and diversity in the assays applied for TDM and the
instruments used to determine the disease activity were reported
as possible explanations for the conflicting results among the
studies.27,28 Using multilevel analysis, Nguyen et al also
observed positive correlations between weight-based AZA dos-
ages and 6-TGN levels, and 6-MMP levels and the 6MMP/6-
TGN ratio, in pediatric patients with IBD treated with AZA.29

Reference values for therapeutic response and toxicity
of thiopurine metabolites are method specific and constituted
by the association of clinical outcome with measured levels in
a disease with a varying activity course by nature. Numerous
high-performance liquid chromatography methods to deter-
mine thiopurine metabolites are described, of which the
methods by Lennard (1987) and Dervieux (1998) are the
most commonly used methods.30–33 Both were originally
developed for patients with leukemia treated with high dos-
ages of thiopurines as chemotherapeutic agents. Because suc-
cessful thiopurine treatment led to the disappearance of
leukocytes in patients with leukemia, 6-TGN and 6-MMP
levels were consequently measured in erythrocytes.1 In the
method developed by Dervieux, erythrocyte 6-TGN concen-
tration is 2.6-fold higher compared with the Lennard method
because of a higher hydrolysis of TG phosphate groups.34

Therefore, it is important to take note of the applied method.
In both methods, 6-MMP levels are similar. Both 6-TGN and
6-MMP concentrations are expressed as pmol/8 · 108 red
blood cells (RBCs).

In AZA or MP therapy, it is considered that erythrocyte
6-TGN levels between 230 and 450 pmol/8 · 108 RBC are

FIGURE 1. Simplified metabolic
pathway of thiopurines. Bold lines
represent the purine salvage path-
way in which the pharmacologically
active metabolites [6-thioguanine
nucleotides (6-TGN)] are formed,
whereas dotted lines represent the
competing pathways. Azathioprine
(AZA) is converted into mercapto-
purine (MP) by separating the imid-
azole group. Mercaptopurine is
subsequently metabolized into 6-
TGN through a multistep pathway,
by the enzymes hypoxanthine–
guanine phosphoribosyl transferase
(HGPRT), inosine monophosphate
dehydrogenase (IMPDH), and guanosine monophosphate synthetase (GMPS). Through competing pathways, MP is converted by
xanthine oxidase (XO) into 6-thiouric acid (6-TUA) or by TPMT into 6-methylmercaptopurine (6-MMP) and 6-methyl-
mercaptopurine ribonucleotides (6-MMPR). Thioguanine (TG) is converted into 6-TGN in 1 step through the purine salvage
pathway for which only HGPRT is necessary. Thioguanine may also be transformed into 6-methylthioguanine (6-MTG) by TPMT
or into 6-TUA by guanine deaminase (GD) and XO. 6-TGN consists of 6-thioguanine monophosphate (6-TGMP), 6-thioguanine
diphosphate (6-TGDP), and 6-thioguanine triphosphate (6-TGTP). The 6-TGTP nucleotides target Rac1 and finally induce T-cell
apoptosis.
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associated with a higher probability of therapeutic response
(Fig. 2).12–14,28 On the contrary, 6-TGN levels below 230 and
above 450 pmol/8 · 108 RBC are related to ineffectiveness
and myelotoxicity, respectively.12,15,21,22,26 Furthermore, 6-
MMP levels above 5700 pmol/8 · 108 RBC increase the risk
of hepatotoxicity and myelotoxicity, probably due to the inhi-
bition of de novo purine synthesis.35 If both 6-TGN and 6-
MMP levels are (nearly) undetectable, noncompliance should
be considered.36 In TG therapy, erythrocyte 6-TGN levels are
generally much higher, whereas leukocyte 6-TGN levels are
similar to or even lower than in AZA and MP therapy.37 In
studies on TG therapy in patients with IBD, 6-TGN levels
were not related to the therapeutic response or toxicity.38,39 In
addition, even TG in low dose was converted into relatively
high 6-TGN levels, without inducing myelotoxicity or affect-
ing hematological parameters.38

PITFALLS OF TDM OF THIOPURINES IN IBD
In daily clinical practice, measuring thiopurine metab-

olites might be relevant after initiating therapy, to monitor
compliance with therapy, after dose adjustments and at the
time of adverse events or clinical relapse.40 Interpretation of
these metabolite levels and their association with therapeutic
response or toxicity is challenging, partially as a consequence
of analytical limitations of these assays. Knowledge of these
limitations is essential for the optimal utilization of thiopurine
drug monitoring in IBD.

Biochemical Limitations
The metabolism of thiopurines requires nucleated cells,

such as leukocytes, which are assumed to be the main target

cells of these drugs.15 In TDM, however, thiopurine metabo-
lites are determined in erythrocytes and are used as a surrogate
for intracellular metabolite levels in target cells. This method
derives from the original indication of thiopurines in patients
with leukemia, in whom leukocytes were not available during
a successful induction cancer treatment. Interestingly, erythro-
cytes and leukocytes have different (cell-specific) characteris-
tics and therefore an incomparable thiopurine metabolism. The
most important difference is that leukocytes are nucleated cells,
whereas (mature) erythrocytes have no nucleus and a smaller
cell volume. In addition, erythrocytes lack functional IMPDH,
an important key enzyme, essential in the purine salvage path-
way of AZA and MP to convert into 6-TGN.16 Therefore, the
measured 6-TGN in erythrocytes must have been absorbed
from tissues that are able to convert thiopurines into 6-TGN.
Consequently, surrogate erythrocyte 6-TGN reflect exposure in
other (mainly hepatic) tissues more than in the target cells.16

Hence, erythrocyte 6-TGN do not directly reflect the pharma-
codynamics of thiopurines, whereas the assessment of 6-TGN
in leukocytes seems more appropriate. In several studies, most
of which were performed in children with acute lymphoblastic
leukemia, erythrocytary 6-TGN levels appeared to be corre-
lated to leukocytary 6-TGN levels.12,37,41–43

Interestingly, TG does not need IMPDH for conversion
into 6-TGN, which may be one of the underlying reasons for
the substantially higher erythrocyte 6-TGN levels during TG
therapy (Fig. 1).38 In leukocytes, however, MP and TG admin-
istered in standard dosages led to comparable 6-TGN levels.37

Furthermore, other factors, such as the inconsistent
bioavailability of thiopurines and concomitant drug use (eg,
allopurinol and 5-aminosalicylic acid [5-ASA]) may influence
drug metabolism and consequently the drug monitoring of
thiopurines as well.21

Methodological Limitations
Currently, methodological assays used for determining

thiopurine metabolite levels have several limitations, resulting
in an impaired validity of these tests. A weakness of these
methods derives from the indirect assessment of 6-TGN as
hydrolysis products, without distinguishing between nucleotides
and unwanted residual products (ie, ribosides and deoxynucleo-
tides).44 Moreover, these methods fail to identify separate
monophosphate, diphospahte, and triphosphate nucleotides.44

Another pitfall of TDM of thiopurines is the limited
stability of erythrocyte 6-TGN levels, which depends on the
time and storage conditions.45 Blood for thiopurine metabo-
lite measurements may be stored for 48 hours at room temper-
atures and for up to 3–4 days at 4–88C.30,33,45 A minimal
volume of 0.5 mL of blood should be drawn in EDTA or
heparin-sprayed tubes to prevent clotting. A generalized and
standardized laboratory practice regarding sample collection,
storage, and shipment conditions in thiopurine metabolite
assessment is usually absent.16 Therefore, it must be taken
into account that analyzed 6-TGN levels differ between dif-
ferent laboratories. This is essential when thiopurine metab-
olite analyses are not performed in the own laboratory and
blood samples have to be transferred elsewhere. As a conse-
quence of the erythrocyte 6-TGN instability over time, mea-
sured metabolites may be lower in such cases.

FIGURE 2. Therapeutic and toxicity reference ranges in ther-
apeutic drug monitoring of thiopurines in IBD. The association
of erythrocyte 6-thioguanine nucleotides (x-axis) and eryth-
rocyte 6-methylmercaptopurine (y-axis) metabolites with
therapeutic response and toxicity to azathioprine and mer-
captopurine treatment in IBD. Reference values are depicted in
the method by Lennard.33 RBC, red blood cell.
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Novel Targets
Because current TDM of thiopurines is hampered by

biochemical and methodological limitations, improved assays
and specific markers are warranted. Regarding the specific
immunosuppressive effects of Rac1 binding of 6-TGTP,
multiple methods have been developed to measure 6-TGMP,
6-TGDP, and 6-TGTP levels separately.44,46,47 Early data sug-
gested that high levels of 6-TGTP together with low levels of
6-TGDP were related to therapeutic response.46,47 Further-
more, Rac1 itself was proposed as a potential early marker
of clinical outcome, in which decreased expression of Rac1
expression was associated with drug efficacy.48 In addition,
several hematologic parameters, including leukocyte count,
platelet count, and the change of mean corpuscular volume,
were assessed in multiple studies with conflicting results.49–51

Currently, these methods are not yet applicable in routine clin-
ical practice and require further research.

CONCLUSION
Monitoring metabolite levels may be useful for guiding

thiopurine treatment in patients with IBD. However, a definite
place for TDM of thiopurines in the management of IBD is
challenging, partially as a consequence of analytical hurdles in
this procedure. The metabolism of thiopurines is complex and
varies extensively between individuals, mainly due to the
involvement of various activities of enzymes, which is at least
partially due to genetic variation. Likewise, thiopurine metab-
olism is cell specific and requires particular enzymes and
nucleated cells for 6-TGN formation. In the current TDM,
metabolite levels are assessed in erythrocytes, whereas leuko-
cytes are considered as the main target cells of these drugs.
Differences in these cells may impair the reliability of translating
metabolite levels to clinical outcome in TDM. Furthermore,
currently used methods do not distinguish between nucleotides
and their unwanted residual products during hydrolysis nor
among individual monophosphate, diphosphate, and triphos-
phate nucleotides. Monitoring of individual 6-TGTP nucleo-
tides, preferably in nonstimulated target cells, and definition of
a standardized analytical procedure regarding the measurement
of erythrocyte TGN and storage of samples could be a major
advance in TDM of thiopurines in patients with IBD.
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