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Abstract

Background: Since spring 2013, periodic emergence of avian influenza A(H7N9) virus in China has heightened the
concern for a possible pandemic outbreak among humans, though it is believed that the virus is not yet human-to-
human transmittable. Till June 2017, A(H7N9) has resulted in 1533 laboratory-confirmed cases of human infections
causing 592 deaths. The aim of this paper is to present disease burden estimates (measured by infection attack rates
(IAR) and number of deaths) in the event of a possible pandemic outbreak caused by human-to-human transmission
capability acquired by A(H7N9) virus. Even though such a pandemic will likely spread worldwide, our focus in this
paper is to estimate the impact on the United States alone.

Method: The method first uses a data clustering technique to divide 50 states in the U.S. into a small number of clusters.
Thereafter, for a few selected states in each cluster, the method employs an agent-based (AB) model to simulate human
A(H7N9) influenza pandemic outbreaks. The model uses demographic and epidemiological data. A few selected
non-pharmaceutical intervention (NPI) measures are applied to mitigate the outbreaks. Disease burden for the US. is
estimated by combining results from the clusters applying a method used in stratified sampling.

Results: Two possible pandemic scenarios with Ry=1.5 and 1.8 are examined. Infection attack rates with 95% C.I.
(Confidence Interval) for Ry=1.5 and 1.8 are estimated to be 18.78% (17.3-20.27) and 25.05% (23.11-26.99), respectively.
The corresponding number of deaths (95% C..), per 100,000, are 7252.3 (659845-7907.33) and 9670.99 (8953.66—10,389.95).

Conclusions: The results reflect a possible worst-case scenario where the outbreak extends over all states of the U.S. and
antivirals and vaccines are not administered. Our disease burden estimations are also likely to be somewhat high due to
the fact that only dense urban regions covering approximately 3% of the geographic area and 81% of the population are
used for simulating sample outbreaks. Outcomes from these simulations are extrapolated over the remaining 19% of the
population spread sparsely over 97% of the area. Furthermore, the full extent of possible NPIs, if deployed, could also have
lowered the disease burden estimates.
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Background

A(H7N9) has infected humans in China in four waves,
spring 2013, winter — spring of 2013-14, 2014-15, and
2015-2016. The fifth wave is currently in progress. As of
June 2017, a total of 1533 laboratory-confirmed cases of
A(H7N9) infections have been recorded in China caus-
ing 592 deaths [1]. The fifth (ongoing) wave has by far
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been the most widespread covering 23 provinces com-
pared to 12 affected provinces till the fourth wave. It has
infected almost the same number of people as the total
of all four previous waves combined. Figure 1 depicts
the outbreak locations and the numbers of infected and
dead, for which information was collected from all ap-
plicable WHO reports on A(H7N9). We note that the
affected provinces are relatively densely populated re-
gions of China with over 84% of the population. The
map in Fig. 1 was generated using the mapdata library
from R software. Though most of the infections are
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# Infected 133 320 226 123
# Dead 48 127 100 38

Fig. 1 Extent and impact of waves of A(H7N9) outbreaks in China

# Province / Municipality % of Total Population
1 Beijing 1.46
2 Shandong 7.15
3 Henan 7.02
4 Anhui 4.44
5 Jiangsu 5.80
6 Shanghai 1.72
7 Hubei 4.27
8 Jiangxi 3.33
9 Hunan 4.90
10 Zhejiang 4.06
11 Guangdong 7.79
12 Fujian 2.75
13 Guangxi 3.50
14 Sichuan 6.00
15 Shaanxi 2.80
16 Gansu 1.90
17 Inner Mongolia 1.90
18 Shanxi 2.70
19 Hebei 5.40
20 Tianjin 1.00
731 -
21 Liaoning 3.30
279 22 Jilin 2.10
23 Tibet 0.20

known to be isolated cases, exceptions were noted where
human-to-human transmission may have occurred. For
example, there were at least 16 clusters of three infected
family members and one cluster of two infected family
members [2]. However, there is still lack of sustained
evidence of human-to-human transmission [1].

A similar situation existed during the years 2003—2009
when the experts believed that a potential pandemic out-
break could be triggered by the H5N1 strain of the influ-
enza virus. As during that period, H5N1 virus infected a
total of 468 people with 282 deaths in 15 countries [3].
These numbers were updated in 2015 to 844 infected
and 449 deaths [4]. Reports from critical examination of
the impact of potential H5N1 outbreaks were presented
to the literature in years 2005 [5] and 2006 [6]. Unex-
pectedly, however, instead of H5N1, the A(HIN1)pdm09
strain caused a worldwide influenza pandemic in 2009.
This produced 60.8 million infections and 12,469 deaths
in the U.S. alone [7].

Experts fear that A(H7N9) could become human-to-
human transmittable and cause a pandemic. Hence,
from a public health preparedness standpoint, it is es-
sential to be able to assess the possible impact (disease
burden) of a A(H7N9) pandemic. This paper addresses
this need by developing a general methodology and ap-
plying it on a specific case concerning a pandemic cov-
ering all 50 states of the U.S.

Study of the data gathered from A(H7N9) infections
reported in [8—14] present some of the characteristic
epidemiological parameters for the virus. We have used
these parameters in our disease burden estimation
model. We note though that since A(H7N9) is not yet
human-to-human transmittable, the actual parameters
in the event of a pandemic may be different. Conse-
quently, the true outcome of a pandemic may differ
from the results presented in our paper. However, our
AB simulation model and the estimation methodology
are not affected by this limitation. As the new parame-
ters are available for human transmittable scenarios,
the model can be rerun and burden estimates can de
refined. A comparison of A(H7N9) parameters with
those for H5N1, both obtained from animal-to-human
transmission cases, is shown in Table 1 [15]. A(H7N9)
has been found so far to cause mild to severe disease in
humans. In birds, generally, A(H7N9) has been low
pathogenic (i.e., it did not cause clinical disease). How-
ever, recent observations suggest that the A(H7N9)
virus has undergone some changes and it may increase
its pathogenicity [16].

In what follows, we explain our methodology for esti-
mating disease burden (measured by IAR and number of
deaths) on the U.S. assuming that A(H7N9) becomes
human-to-human transmittable and causes a pandemic.
Our method is founded on an agent-based simulation
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Table 1 "Comparative parameters for H5N1 and A(H7N9)

Characteristic H5N1 A(H7NO)
Incubation (days) 33+ 15 31+14
Latent Period (days) 215 <3

Fatality risk 70%(China) 32%(China)
“Admission to death 5.7 days 12 days
“Admission to discharge 18.7 days 41. 7 days
“Median Age 26 62
“Poultry exposure 71% 75%

#Presented for information only; not used in our model
The numbers are obtained from [15]

model that replicates the dynamics of the social and viral
behavior during a pandemic. The simulation model be-
ing computing intensive, we apply it selectively on a few
sample states in the U.S. for this purpose, all 50 states of
the U.S. were first subdivided into smaller sub-groups
using a clustering technique. Sample states for simula-
tion are then chosen from each sub-group. A statistical
method is used for calculating overall disease burden
from the sampled data.

Methods

Agent-based (AB) simulation is a useful tool to emulate
events that might occur in the future and thus support
policy makers to prepare measures to address such
events. Our AB simulation model incorporates four
basic components: demographic information, human be-
havior, epidemiological characteristics of the virus, and
non-pharmaceutical interventions (NPIs) to mitigate
pandemic impact.

The demographic information includes the household
composition (age, sex, work, and parental status),
schools, workplaces, and communities. The human be-
havior describes the contact process in the mixing
groups, compliance to quarantine, and isolation, and
travel behavior. The epidemiological characteristics in-
clude the disease natural history, parameters affecting
the force of infection, basic reproduction number (Ry),
and the fatality rate. Selection of R, values was guided
by similar studies (See “Model Validation” section). The
NPIs are explained in details in “Non-Pharmaceutical
Intervention” section.

Our AB simulation model is quite granular and uses a
large computer memory. In its present form, the model
is limited to run with up to five million people in an out-
break region. Given this limitation, in order to imple-
ment our methodology for a countrywide outbreak in
the U.S. with 307 million people, we used a sampling
approach. We divided the group of all 50 states of the
U.S. into smaller clusters (sub-groups) of states. The
clustering technique used to divide the states in smaller
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sub-groups considered urban population size and density
(pop/mile?) as attributes of the states. These attributes
are highly correlated to the spread of human influenza
virus. We applied the simulation model in a few selected
states from each sub-group of states. Results from sam-
ple states are used to obtain disease burden for the sub-
groups, which are then combined to estimate disease
burden for the whole country.

AB simulation model

We used a previous version of our AB simulation model
that was presented in [17-21]. We modified the model
by incorporating a more detailed method for estimating
the probability of infection for a susceptible using the
measure of force of infection as defined in [5]. The force
of infection measures the total daily viral load gathered
by a susceptible individual from the infected contacts in
the mixing groups. (More details for force of infection
are presented in “Infection Model” section).

The model mimics the contact process and tracks each
individual in an outbreak region using their scheduled
hourly movements within the mixing groups: households,
places (schools and workplaces), and community locations.

The model begins by generating the simulated individ-
uals according to the U.S. census and demographic data
[22] that gives population attributes including age, gen-
der, and occupational status (school/work). Thereafter,
we generate the households based on their composition
(characterized by the number of adults and children) in
the U.S. (see Tables 2 and 3). We randomly assign each
individual to a household while maintaining the average
household composition. We then generate the schools,
workplaces, and other community locations. We assign
each individual a daily (hour by hour) schedule, chosen
randomly from a set of alternative schedules based on
their attributes. The schedules also vary between week-
days and weekends. Simulation begins on the day when
one or more infected people are introduced to the

Table 2 U.S. Household composition per census 2014

Household Composition

# adults # children Proportion
1 0 28%

1 1 4%

2 0 31%

1 2 4%

2 1 13%

1 3 1%

2 2 13%

1 4 1%

2 3 6%
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Table 3 U.S. Age distribution per census 2014

Age distribution of household members

Children Adults

Age range Proportion Age range Proportion
[0-5] 24% [23-29] 16%
[6-9] 23% [30—-64] 67%
[10—-14] 25% [65+ 17%
[15-17] 13%

[18-22] 15%

region (referred to as day 1). Simulation model tracks
hourly movements of each individual (susceptible and
infected) throughout the day, and records for each sus-
ceptible the number of contacts with infected at each lo-
cation. At the end of each day, the model calculates for
each susceptible the total amount of viral load ingested
(force of infection) from all contacts during that day.
The severity of infection of the infected contacts and the
place of contact (household, schools, workplaces, and
community locations) play critical roles in determining
the force of infection. This is used in calculating the prob-
ability of infection. The model updates the infection status
of all individuals to account for new infections and disease
progressions of the already infected ones. The key compo-
nents of the AB model are described next.

Disease natural history

We adopted a similar disease natural history model was
used in previous studies for other influenza A virus
strains [5, 19]. Though an accurate disease natural his-
tory for human-to-human transmittable A(H7N9) virus
is not yet known, we were guided by the disease natural
history of other influenza viruses that have already
caused pandemic outbreaks.

Figure 2 presents a schematic for the disease natural
history. An infected individual simultaneously begins a
latency and an incubation period (based on parameters
given in Table 1). The individual displays symptoms
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(unless asymptomatic) at the end of the incubation
period, and becomes infectious after the latent period is
complete. Following the infectiousness period, an in-
fected either recovers or dies. The numerical values of
the parameters characterizing the various elements of
the disease natural history (e.g., length of incubation
period, death rate) are given in Tables 1 and 4. Those
who recover are considered to attain sterilizing immun-
ity to further infections [23]. We made this assumption
as we are not aware of the immune response to the
A(H7N9) virus. Also, as no estimate is available for the
proportion of asymptomatic cases for A(H7N9) infections,
we assumed it to be 50%. Same proportion of asymptom-
atic cases was considered in previous studies [5]. The dur-
ation of infectiousness for each case is considered to be
guided by a lognormal random distribution.

Infection model

An individual i is considered to accumulate force of in-
fection A; in his/her home, places, and community loca-
tions. It is calculated using the following expression as
given in [5].

IS x(t-1i)pe[1 + Cr(w-1)]

Ai= > e

+ ;:hilkﬂim(t—rk)/’k [1 +mC]:k (w%(t_rk)_l)}
B =, l

+ Zklkc(ai)ﬂck(t_rk)pkf(di,k) [1 + Ck((l)_l)]
>ouf (dix) '

(1)

The first component in (1) expresses the force experi-
enced by susceptible individual i at home from other in-
fected household members k. The second component
captures the force experienced at places (schools and
workplaces) when a susceptible i is in the same place as
infected k. The third component considers the force of
infection gathered from all infected members of the

Becomes Becomes
infected infectious
Period leading to
Latency Infectiousness health outcome
A A A
{ \[ |
\
Y
Incubation
Becomes Recovers or
symptomatic or not dies
Fig. 2 Schematic for the disease natural history
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Table 4 Parameter values used in the AB simulation model
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Table 5 Parameters used in calculating the force of infection

Parameter Values Parameter Description
5 47/day (for Ry = 1.8); 0.39/day (for Ry = 1. A if infected and 0 otherwise
B 0.47/day (for Ry = 1.8); 0.39/day (for Ry = 1.5) / 1 if infected and 0 otherwi
/ 94/day for schools and 0.47/day for workplaces " ousehold transmission parameter
A 0.94/day f hools and 0.47/day f kpl h hold
(for Ry = 1.8); 0.78/day for schools and 0.39/day for i .
workplaces (for Ro = 1.5) B, place transmission parameter
B, 0.075/day (for Ry =1.8); 0.06/day (for Ro= 15); Be community transmission parameter
K(t — 1) lognormal distribution with: §=-0.72 and y=1.8 K- infectiousness at time (f —7,) since infection
Wp(t=Tk) 0.2 (for schools) and 0.5 (for workplaces) only when ¥p(t=T) factor by Which Withinplace contact rates change
the elapsed time since the onset of infection is ﬂ?r symptomatic severe |nfect|on (reflecting
greater than the latent period 0.25 days; the value sickness-induced absenteeism)
of ¢, is 0 otherwise fid, k) a function of distance dj between individuals i
fd k) — 1 Zwitha =35 km and b = 65 and k
da) E(;)T: 100% if age €[20 — 651, 75% if age €[15 — 20] {a) relative travel-related contact rate of an individual
and [65 — 70}, 50% if age €[10— 15] and [70 - 75], of age g,
25% if age €[5—10] and [75—85], 0% if age €[0—5]  p, relative infectiousness of individual k
Ok 1 (@ 1 if infection is severe, O for mild (asymptomatic)
Cr 1 if individual k is a severe infection, O otherwise w 2, infectiousness of a severe infection relative to a
w 5 mild one
o obtained from the households generated by the nf number of people in the household of individual i
!
model a power that determines the scaling of household
a 08 transmission rates with household size
m, obtained from the population and places generated m number of people in the place type j
by the model
death rate 3861% threshold for the number of closed classrooms is used to
symptornatic 50% close a school. We used a threshold value of one for

community visited by susceptible i. The parameters of
(1) are defined in Table 5. A; is calculated at the end of
each day for all susceptible i and the probability of infec-
tion is obtained as 1-exp™. It is assumed that if not in-
fected by the end of a day, J; is reset to zero. That is, the
force of infection is assumed to not accumulate from 1
day to the next.

Non-pharmaceutical intervention

We considered isolation of symptomatic infected indi-
viduals at home for a specific duration with isolation
compliance of 53% for adult workers and 57.5% for non-
workers [19]. A compliant infected individual is assumed
to stay home all day. We consider an isolation threshold
of 1 day (that is, on average an individual diagnosed with
infection does not begin isolation until the day after)
and isolation duration of 7 days.

We also considered household quarantine that re-
stricts the movement of susceptible household members
when one or more members are infected. Household
quarantine parameters were considered same as for indi-
vidual isolation. Children were assumed to fully comply
with isolation. A partial school closure approach is con-
sidered. A classroom is closed when a threshold of newly
infected children in the classroom is reached. A

both the classroom closure and school closure, and
21 days for the length of school closure. Workplace clos-
ure strategy was similar to that of school closure, with
each department/group treated like a classroom. The
thresholds were: three cases to close a department, 30%
of the departments closed to close a workplace, and 7
days for closure duration.

Clustering technique

We adopted a commonly used hierarchical clustering
(grouping) technique [24]. The clustering technique
forms sub-groups of states such that the chosen attri-
butes of the states within a sub-group are similar to one
another and at the same time dissimilar from the attri-
butes in other sub-groups. Higher the level of similarity
within a sub-group and dissimilarity between sub-
groups, better is the sub-group formation. A clustering
method is hierarchical when it creates a set of nested
sub-groups that are organized as a tree. At the lowest
level of such a tree, each state is separate sub-group, and
at the highest level, all states belong to one sub-group
(see for example, Fig. 3). The user decides the number
of sub-groups (clusters) to consider based on a desired
level of similarity form the modeling application.

As stated earlier, we chose urban population size and
population density (per square mile) as the two attri-
butes of the states in the U.S. to be used by the cluster-
ing technique. We focused on urban population for two
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Mississippi
New Hampshire
Vermont
Arkansas
Maine

West Virginia
Georgia

North Carolina
Tennessee
Alabama
South Carolina
Nebraska
Rhode Island
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Kansas

South Dakota
Idaho

North Dakota

Cluster 1

Indiana
Kentucky
Connecticut
Louisiana
Montana
Wyoming
Alaska
Delaware
New Mexico
Oklahoma

Cluster 3

Florida
Texas :l

California :l—,
New York

Ohio
Pennsylvania
Massachusetts
Michigan
Minnesota
Missouri
Wisconsin
Virginia
Washington
Arizona
Maryland
lllinois

New Jersey

Cluster 2

J—
Hawaii
Nevada
Colorado
Oregon
Utah

\

Fig. 3 Dendrogram with the list of states contained within three clusters

reasons: 1) urban areas are more prone to pandemic
spread, and 2) states with large population exceeded our
simulation model capacity.

The attribute values were first normalized by subtracting
from each the corresponding mean and dividing by the
corresponding standard deviation. Such a normalization
is generally recommended when the numerical values
of one or more of the attributes vary significantly
within the set. For example, in the U.S., the urban
population sizes of the states vary between 1.62 and
36.8 millions, while the urban density ranges between
0.0019 and 0.0043 millions/sq. mile.

The clustering method begins by assigning each state to
a separate cluster resulting in 50 clusters at start. Then it
calculates the Euclidean distance between the attribute
vectors (size, density) of all cluster pairs. (Euclidean
distance is the length of the straight line joining two
points in the two dimensional space representing the
state pair.) The method then identifies the cluster pair
with the smallest distance and combines them into one
cluster. This reduces the number of original clusters by
one, and for the combined cluster, its attribute vector is
assigned as the centroid of the attribute vectors of the

constituent states. At the next step, the distances be-
tween the clusters are updated, and the process repeats
until all clusters are combined into one single cluster.
A line diagram (called dendrogram; see, for example,
Fig. 3) is then used in selecting an acceptable number
of clusters considering a desired level of similarity
within each cluster. We implemented the clustering
method by first using preprocess function within the
Caret package of R library to normalize the data.
Thereafter, we used the predict, dist, and hclust func-
tions within the stats package of R library for the
remaining steps of the hierarchical clustering method.

Disease burden calculation from estimates stratified by
cluster and age-groups

We first calculated the mean and C.I. of the infection
attack rates (IAR), for all three age-groups (indexed by
a) in all sampled states (indexed by i) within each cluster
(indexed by j), using replicated results of the AB simu-
lation model with different seeds for the random vari-
ables. The 100(1 - a)% C.I. for IAR was calculated as
ﬁ?jita/g‘n—l\/iz, where pj denotes the mean IAR, n
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represents the number of simulation replicates, and s
represents the standard deviation of the replicated IAR
estimates. Mean IAR values for the clusters were ob-
tained by combining the values of pj into pf using the
expression below [24].

. 1 s .
p? :,,T;lzz‘/:l nng7 (2)

where S; denotes the total number of selected states that
were simulated within cluster j, and #j represents the
size of the urban population in state i within cluster j for
age-group a. Note that n} = f’: 115 is the total urban
population for the selected states in cluster j for age-
group a. The 100(1 - a)%C.I. on the IAR estimate for
each age group within a cluster was obtained as 1?)]“
tte), u1 ﬁ . The pooled standard deviation s} was calcu-
lated from the estimates of standard deviation for each
selected state within a cluster as the square root of

(I’I—I)Sﬁz-F...-i-(l’l—l)S?]: /lk(n-1)] , where k is the
number of selected states’in cluster j, n is the number of
simulation replicates, and S is the standard deviation of
replicated IAR estimates for age-group a in state k
within cluster j. Hereafter, we combined the IAR esti-
mates from all clusters into one value for each age-
group using

~a 1 c ara
P =) NiBf (3)

where C denotes the number of clusters, N} denotes the
total population of all the states in cluster j in age-group
a, and N” denotes the total population in the country in
age-group a. It may be noted that the estimate p? has a
variance V¥ from two sources of variability: 1) due to
sampling: a sample population from each cluster is used
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to estimate p;, which is then assumed to hold good for
the whole cluster population, 2) due to simulation based
estimation: pf’s are obtained from pj;, which are esti-
mated from simulation model with inherent variability.
It can be argued that these two sources of variability are
independent. We obtained the variance due to sampling

V{ as follows [25],

Va _ 1 c Nﬂ 2 Nla_n]a
1 (Na)2 j=1 \" "/ N?

]

o (1-47)
nj’—l

(4)

The variance due to simulation V% was obtained as

the pooled variance from the variance estimates (s;’) of

the three clusters as v¢ = [((nfl)As’fz + (n-1)s¢ + (n-1)s¢")/[3(n-1)],
where 7 is number of simulation replicates per cluster. A
100(1 - 0)%C.I. was calculated as p* & te), p-1/V"/

where V¢ = V{ + V4. Finally, we obtained a single esti-
mate of IAR (p) for the whole U.S. across all age-groups
a €{1,2,...,L} using (3) and substituting in this equation
N,N% and p“ for N N7, and p7, respectively, and sum-
ming over a = 1 through L. The variance V on the overall
IAR estimate was obtained by pooling variance values V*
from the three age-groups. A 100(1 — @)% C.I. on IAR was
calculated as p £ t/, ;1 m . The number of deaths for
each age group and also for the whole U.S. were calculated
by applying the death rate on the corresponding numbers
for infected persons.

Model validation

We validated our model by using it to replicate a H5N1
outbreak study for Southeast Asia [5]. Our choice of this
validation approach was motivated by similarities

~N

& i

Not shown in the figure are Alaska (cluster 1) and Hawaii (cluster 2)

Fig. 4 Map of 48 states of U.S. designated to clusters 1(white), 2(gray), 3(black). States marked with lines were selected for outbreak simulation.
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Table 6 Urban and Rural population distributions in the States
selected for simulation

Region Total Urban  Urban Urban Urban density
pop (M) pop(%) pop (M) area(%) pop/sq. mile

California 38.80 94.95 36.8 528 4304

Colorado 536 86.15 4.62 147 2836

New Mexico  2.09 7743 1.62 0.68 1929

New York 19.75 87.87 1735 8.68 4161

Oregon 397 81.03 3.22 115 2804

between the H5N1 and A(H7N9) virus strains. Both of
these strains have still not acquired human-to-human
transmission capability, but experts fear that they may
mutate to that state. Also our modeling approach has
much in common with that used in [5], and hence it
provided an appropriate platform for validation. The
study considered a population size of 85 million. We
considered a subset of the population (5 M) and propor-
tionately adjusted down the number of households,
schools, workplaces, and community locations. As in [5],
we considered two different cases of R, (1.5 and 1.8)
values. We used ten replicates for each case, and did not
deploy any NPIs since these were not used in [5]. For R
= 1.5, the average IAR is 34.58% with a standard devi-
ation of 5.24, and 95% C.I. of [30.83-38.33]. The IAR re-
ported in [5] for Ry = 1.5 is 33%, which is within our C.I.
Our corresponding results for Ry=1.8 are 55.7%, 8.16,
and [49.86-61.54], respectively. The IAR reported in [5]

Table 7 Simulated population size and infection attack rates (IAR)

Urban Sample AR (bi? IAR (;3;?
population (M) size (M) (Ry="1.5 (Ry="1.8
<=19yrs
California 9.7 1.32 0.3272 04197
Colorado 1.19 1.19 02782 03797
New Mexico 043 043 0.2461 0.3299
New York 418 1.21 03172 04176
Oregon 0.77 0.77 02572 03777
20 — 64 yrs
California 224 3.04 0.1612 02113
Colorado 2.83 2.83 0.1431 0.1906
New Mexico 0.94 0.94 0.1385 0.1856
New York 10.62 3.06 0.1524 0.2007
Oregon 1.93 1.93 0.1419 0.1866
65 + yrs
California 4.74 0.64 0.1607 0.2291
Colorado 0.59 0.59 0.1447 0.1926
New Mexico 0.25 0.25 0.1248 0.1615
New York 2.55 0.73 0.1589 02144
Oregon 0.51 0.51 0.1386 0.1872
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IAR (<=19 yrs) Rp=15  ==mm-- Ry =1.8
Oregon ——A homm oA
A o-----A
New York * ® -
k---0---A
New Mexico
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Colorado
A-——lr---d
California
20% 25% 30% 35% 40% 45% 50%
Fig. 5 C.l. for infection attack rates for age group < 19 yrs.

is 50%. We note that in both cases of R, values, results
reported in [5] lie in the lower half of our C.Ls.

Results
The dendrogram in Fig. 3 shows the outcome of cluster-
ing of the 50 states of the U.S. into sub-groups using
population size and density as the characteristic features
(attributes). Based on the selection criteria of the den-
drogram, possible choices were either two or three clus-
ters. We chose the three cluster option, which provided
better similarity within the clusters; higher similarity was
manifested by lower standard deviation of the attribute
values within the clusters. We labelled the clusters with
numbers 1, 2, and 3, which are composed of states with
low, medium, and high values of the attributes, respect-
ively. Figure 4 is a map of U.S. that depicts the cluster
designation of all the states. For simulating sample out-
breaks, we selected New Mexico from cluster 1, Color-
ado and Oregon from cluster 2, and California and New
York from cluster 3. Selection of these five states was in-
fluenced by a recent paper [26] that presented disease
burden estimates for seasonal influenza outbreaks in the
U.S. However, choice of these particular states from the
three clusters does not present a limitation of our study.
For outbreaks in California and New York with urban
population sizes greater than five million, we selected a
number of contiguous urban counties within each state
with a cumulative population of up to five million. While
for Colorado, Oregon, and New Mexico we simulated
their total urban population, each being less than 5

IAR(20-64yrs) ——R =15 ------ R,=18
Oregon o P ——
New York A——i k-——-@-—--4
New Mexico A—a—i kA
Colorado S——— Ak-—-0---4
California A—a—a Y T ——y
10% 15% 0% .
Fig. 6 C.l. for infection attack rates for age group 20 - 64 yrs.
A\
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IAR (65 +yrs ) —— Ry=15 --—---- R,=18
Oregon ——d S
New York ——i k-—-0---
New Mexico —oa ko2
Colorado — Lo
——i k--0--A

California

10% 15% 20% 25% 30%

Fig. 7 C.l. for infection attack rates for age group 65 + yrs.

million. Our focus on urban population was guided by
the fact that approximately 81% of the population of the
selected states reside in dense urban regions constituting
on average 3.4% of the land area (see Table 6). We used
latest U.S. census data to extract information on house-
holds, workplaces, and schools. We implemented an ad-
hoc non-pharmaceutical intervention (NPI) strategy
comprising measures like isolation, quarantine, school
and workplace closures. Pharmaceutical interventions
(vaccines and antivirals) were not considered.

As shown in Table 7, the outbreak in the state of Col-
orado was simulated using the total urban population of
4.62 M as the sample size comprising 1.19 M for ages <
19, 2.83 M for ages 20-64, and 0.59 M for ages 65 and
above. This approach was also used for New Mexico and
Oregon. For California and New York, we adopted a
proportional sampling approach. For example, California
has 9.7 M people for age-group <19 years and 22.4 M
and 4.74 M for age-groups 20—64 years and > 65 years,
respectively. The AB model used the family composition
features from the U.S. census to randomly generate a
total of (9.7/36.8)x5M children, (22.4/36.8)x5M adults
up to age 64, and (4.74/36.8)x5M adults 65 and above.
Also using census data, our model generated a propor-
tional number of households in a region and then popu-
lated each household following the average proportion
of children and adults in various age-groups in U.S. fam-
ilies as presented in Tables 2 and 3. Thereafter, the
model generated the places (schools and workplaces)
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using census data in [25] and [27], and randomly
assigned each individual to a place based on the age-
group. Beyond households and places, the model also
considered movements of the individuals in the commu-
nity within the state for daily errands.

The AB model initiated each outbreak by introducing
six infected individuals. The parameter values used to
calculate the force of infection () using (1) are shown
in Table 4. To calculate the third component of 1, we
assumed, for simplicity, that each day an individual (sus-
ceptible or infected who are not compliant with isola-
tion) travel within or outside of their county of
residence for errand or leisure. Travel related parameters
used in our study were also used in [28].

The AB simulation model runs (with 10 replicates) in
the selected states yielded the mean IAR values ( fafj) as
displayed in Table 7. We used the estimated values of i)z
and 7} to estimate p; using (2), the IARs per age-group
within a cluster. These values were then combined to
obtain estimate of IAR for each age-group (p“) in the
whole U.S. Finally, IAR values for all age-groups were
combined to obtain the overall IAR estimate (p). Figures 5,
6 and 7 show the IARs and their C.I.s, which can be seem
to be generally higher for states/clusters with higher popu-
lation density.

Tables 8 and 9 show IARs and number of infected
cases per age-group within each cluster. IAR estimates
across all clusters within the age-groups (p” in (3)) and
across all age-groups (p), and the number of deaths are
shown in Table 10. It can be observed in Table 10 that
IAR for age-group <19 yrs. is approximately double that
of for other two age-groups. Though no age-dependent
virus characteristics were considered in the model, the
increased IAR among younger population is the result of
higher level of social interactions in schools. This can be
attributed to the relatively short duration of school clos-
ure (21 days) in our NPI strategy.

It is also observed from Table 10 that the IAR for the
two adult age-groups are similar. This is somewhat
counterintuitive, as it may be expected that members of
age-group 20-64 will have higher IAR resulting from
higher work related social interactions. We believe that

Table 8 Infection attack rates (IAR) per cluster and age-group with 95% C.

IAR (in % for Ry=1.5)

IAR (in % for Ry=1.8)

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3
<=19yrs 24.61 27.00 3241 3299 37.89 4191
(22.67-26.55) (25.17-28.83) (29.98-34.84) (30.63-35.35) (35.31-4047) (38.74-45.08)
20-64 yrs 13.85 14.26 15.84 18.56 18.89 20.79
(12.76-14.94) (13.29-15.23) (14.66-17.02) (17.23-19.89) (17.61-20.17) (19.24-22.34)
65+ yrs 1248 14.18 16.01 16.15 19.01 22.39
(11.5-13.46) (13.21-15.15) (14.8-17.22) (14.99-17.31) (17.72-20.3) (20.72-24.06)
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Table 9 Number of infected cases per cluster and age-group with 95% C.
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Number * (95% Cl) RO=1.5

Number * (95% Cl) R0O=1.8

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3
<=19yrs 5649 85.55 132.02 7573 120.05 170.72
(52.04-60.95) (79.75-91.35) (122.1-141.94) (70.31-81.15) (111.89-128.21) (157.79-183.65)
20-64 yrs 72.22 106.42 79.01 96.77 140.98 103.71
(66.55-77.88) (99.18-113.67) (73.12-84.9) (89.84-103.71) (131.41-150.55) (95.96-111.45)
65+ yrs 16.16 26.15 23.67 2091 35.06 33.10
(14.89-17.42) (24.37-27.93) (21.88-25.46) (19.41-2241) (32.68-37.44) (30.63-35.56)

*Numbers in 100,000

older people (65 +) are accumulating viral load (force of
infection) at a higher rate from age-group 20—64 by be-
ing at home with other infected family members.

The IAR estimates were compared with IAR estimates
for other viruses as shown in Table 11. Simulation-based
estimates of IAR for both H5N1 and A(H7N9) were
found to be much lower than the field estimate for
H1N1/2009. We conjecture that the lower IAR estimates
are due to lower estimates of the force of infection, for
which the parameters were estimated from only animal-
to-human transmittable cases of outbreaks.

Discussion

Our paper is the first to estimate disease burden from
A(H7N9) pandemic outbreak, hence we could not dir-
ectly compare our results with other studies on
A(H7N9). The disease parameter estimates used in our
model were adopted from the recent reports on epi-
demiological studies of A(H7N9) [8, 15, 29, 30]. Other
models (e.g., using differential equations) have been
used to analyze A(H7N9) [30-32]. These models do
not have the level of granularity offered by agent-based
simulation models. However, such granularity comes
with the cost of computation and memory usage, which
resulted in our model capacity being limited to 5 mil-
lion people per simulation run. We note that this limit
can be increased with better computing hardware and

more efficient usage of memory. Among the five states
that were selected for simulation, the size limit only
applied to California and New York with urban popu-
lation sizes much larger than 5 million. We used an
age-based proportional sampling approach to select up
to 5 million individuals from the urban areas.

A paper published in June 2016 [29] presented a com-
prehensive analysis of the laboratory-confirmed cases of
A(H7N9) infection in mainland China. It offered
renewed estimates for incubation period, fatality risk,
hospital admission to death/discharge, median age, and
poultry exposure. We note, however, that the parameter
estimates that we used from an earlier study [15] do not
differ significantly from those presented in [29]. Though
it appears from the published data that A(H7N9) affects
more people of higher age group, it is likely a function
of the very high level of poultry exposure (> 74% [15])
for the older age group. Our AB model does not incorp-
orate any age-dependent factor for calculating probabil-
ity of infection. However, our model does consider age-
based contact process, which in turn affects the infection
probability.

We simulated outbreaks only in urban areas and ex-
trapolated the results to the population in the remaining
(rural) areas. Urban areas constitute on average 3.4% of
the geographic area and approximately 81% of the popu-
lation [22]. Hence, the disease burden estimates, for each

Table 10 Infection attack rate (IAR), number of infected cases and number of deaths per age-group U.S. with 95% Cl

Ro = 1.5 (95% Cl)

Ro = 1.8 (95% Cl)

IAR(%) # of Infected (million) Death rate® IAR(%6) # of Infected (million) Death rate®
<=19yrs 28.74 2741 11,094.72 3843 36.65 14,836.87

(24.36-33.11) (23.24-31.58) (9405.4-12,783.77) (33.7-43.15) (32.14-41.16) (13,011.57-16,660.22)
20-64 yrs 14.59 25.77 5631.32 19.33 34.15 746297

(12.05-17.12) (21.29-30.24) (4652.51-6610.03) (16.49-22.17) (29.13-39.17) (6366.79-8559.84)
65+ yrs 14.29 6.60 5517.08 19.29 891 744797

(9.51-19.06) (4.39-8.8) (3671.81-7359.07) (13.94-24.64) (6.44-11.38) (5382.23-9513.5)
Total US. 18.78 59.77 7252.30 25.05 79.70 9670.99

(17.09-20.48) (54.38-65.16) (6598.45-7907.33) (23.19-26.91) (73.78-85.63) (8953.66-10,389.95)

“Rates per 100,000
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Table 11 Comparison of infection attack rates among different influenza viruses

Description HT1N1T 2009 H5N1 Seasonal Influenza AH7NO9)
(See Ref [7]) (See Ref [6]) (See Ref [33, 34]) (Current Paper)
Data used surveillance data from simulated outbreak in Surveillance data Simulated outbreak

U.S. outbreak

Method used Extrapolation with

Correction factors

US. and England

AB simulation model

from U.S.
Proposed by CDC

in US.

AB simulation model
and stratification

NPIs (school & workplace closure, yes (with antiviral) yes (with vaccine and no yes
case isolation) antivirals)
Age-groups analysis yes yes yes yes

Estimated IAR 50%

28% for Ry=1.7
349 for Ry=2.0

5% - 10% in adults
20% - 30% in children

18.78% for Ry=1.5
25.05% for Ry=1.8

state, cluster, and age-group, as presented here, are likely
to be upper bounds, since the rural areas are likely to
yield less number of infections with less contacts and
higher distances between individuals. Also, applications
of vaccines and antivirals were not considered in our AB
model, which increased the number of susceptible and
the intensity of infection, respectively. Furthermore, the
disease burden estimates could have been lowered by ap-
plication of the full extent of NPIs.

For the NPI strategy implemented in our simulation
model, we chose its parameters (e.g., length of school
closure) somewhat arbitrarily. We note that these pa-
rameters could be optimized based on the virus and
societal characteristics. In another study focused to as-
sess in community resilience for influenza pandemic
outbreaks, we tested NPIs with two different sets of pa-
rameters for a small A(H7N9) outbreak in a region with
1.1 million people in the state of Florida in U.S. [33].
Table 12 shows the parameters of these NPI strategies

Table 12 NPI parameters

and the corresponding IARs. Note that the strategy
marked as NPI(1) is same as the strategy used in the
study presented in this manuscript, and NPI(2) is the
strategy that was recommended in [19].

Conclusions
Our AB simulation model has the following notable lim-
itations. It does not assign specific geographic locations
for the households, places, and community locations. As
a result, we had to use estimated values for the distance
between susceptible and infected (f(d; ) in Eq. (1)) in
calculating the force of infection. Use of antivirals could
have reduced the profile of infectiousness with a lower
peak and shorter duration, in turn reducing the virus
spread and the corresponding IAR. Also, we did not
consider pre-existing immunity for any age-group in the
population.

We reiterate the fact that A(H7N9) has not yet been
found to be human-to-human transmittable. This paper

# Measure NPI (1) NPI (2)
1 Global Threshold 10 10

2 Deployment delay 3 days 7 days
3 Case isolation threshold 1 day 1 day
4 Case isolation duration 7 days 10 days
5 Case isolation compliance for workers 75% 75%

6 Case isolation compliance for non-workers 84% 57%

7 Household quarantine threshold 1 day 1 day
8 Household quarantine duration 7 days 7 days
9 Household quarantine compliance workers 75% 53%

10 Household quarantine compliance non-workers 84% 84%

11 Cases to close a class in a school 4 1

12 Classes to close a school 6 3

13 School closure duration 10 days 21 days
14 # cases to close a department in a workplace 6 3

15 % of departments to close a workplace 60% 30%

16 Workplace closure duration 10 days 7 days
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considers the hypothetical scenario of the virus mutating
to a state capable of causing a worldwide human pan-
demic. Also, the disease natural history and the parame-
ters used to calculate force of infection are extrapolated
from the data gathered from recent cases of animal-to-
human transmissions of A(H7N9) as well as data from
previous pandemics caused by related viruses. Hence,
the numbers presented in this paper are estimates at
best.
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