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Abstract: Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a key protein responsible for
transporting Ca2+ ions from the cytosol into the lumen of the sarco/endoplasmic reticulum (SR/ER),
thus maintaining Ca2+ homeostasis within cells. Accumulating evidence suggests that impaired
SERCA function is associated with disruption of intracellular Ca2+ homeostasis and induction of
ER stress, leading to different chronic pathological conditions. Therefore, appropriate strategies to
control Ca2+ homeostasis via modulation of either SERCA pump activity/expression or relevant
signaling pathways may represent a useful approach to combat pathological states associated with ER
stress. Natural dietary polyphenolic compounds, such as resveratrol, gingerol, ellagic acid, luteolin,
or green tea polyphenols, with a number of health-promoting properties, have been described
either to increase SERCA activity/expression directly or to affect Ca2+ signaling pathways. In this
review, potential Ca2+-mediated effects of the most studied polyphenols on SERCA pumps or related
Ca2+ signaling pathways are summarized, and relevant mechanisms of their action on Ca2+ regulation
with respect to various ER stress-related states are depicted. All data were collected using scientific
search tools (i.e., Science Direct, PubMed, Scopus, and Google Scholar).
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1. Introduction

Calcium (Ca2+) is one of the most important regulators of cell survival/death pro-
cesses. Aberrations in Ca2+ homeostasis have been linked to the development of vari-
ous pathophysiological conditions, such as cardiovascular diseases [1,2], diabetes [3,4],
cancer [5], neurodegenerative diseases [6,7], and skeletal muscle pathologies [8].
Intracellular Ca2+ concentrations [(Ca2+)i] must be maintained within very low concentra-
tions (~10–100 nmol/L), which are regulated by a number of Ca2+ transport systems, such
as pumps and channels [9]. The most important amongst them are the sarco/endoplasmic
reticulum (SR/ER) Ca2+-ATPase (SERCA) pumps, which transport Ca2+ ions from the
cytosol into the SR/ER ([(Ca2+)SR/ER]~100 to 800 µmol/L) in an ATP-dependent manner [10],
thus maintaining a steep concentration gradient of Ca2+ across the membrane [11]. SERCA
pumps are coded by three genes (ATP2a1, ATP2a2, and ATP2a3), which generate several
distinct tissue-specific SERCA isoforms (SERCA1–3) through alternative splicing [12]. Cur-
rently, more than 14 tissue-specific SERCA mRNA splice variants and their corresponding
proteins have been discovered [13]. Impaired Ca2+ uptake into cardiac, vascular, and skele-
tal cells, or decreased SR/ER Ca2+ content, is associated with downregulation/reduced
activity of the respective SERCA isoforms. These changes further intervene in calcium-
release channels (ryanodine receptors (RyRs) and inositol-1,4,5-triphosphate receptors
(IP3Rs)) and plasma membrane Ca2+-influx channels, such as transient receptor poten-
tial canonical channels and calcium-release-activated calcium channels (ORAI), causing
disruption of intracellular Ca2+ homeostasis [14].

Under certain pathophysiological conditions—including Ca2+ homeostasis imbalance,
increased secretory load, energy deprivation, impaired redox homeostasis, viral infections,
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cytotoxicity, inflammation, and mutations [15,16]—unfolded and misfolded proteins may
be accumulated in the ER, activating a condition called ER stress. In order to restore
ER homeostasis, cells activate secondary adaptive events known as unfolded protein
responses, along with related signaling pathways, such as reduced protein loading into
the ER, translational attenuation, and correction of protein folding [17]. However, if the
stress is persistent, the processes of either apoptotic cell death or autophagy are triggered.
The inositol-requiring enzyme 1 with c-Jun NH2-terminal kinase (JNK) and eukaryotic
initiation factor 2 alpha with C/EBP homologous protein signaling pathways belong to
the main paths of ER stress, which are modulated by different factors involving injured
Ca2+ homeostasis [18]. ER stress has been recognized to be linked to various disease
pathogeneses, including obesity, diabetes, metabolic syndrome, neurodegenerative diseases,
and cancer [19,20]. Increasing evidence suggests that a critical role in triggering ER stress is
attributed to reduced SERCA2b function, while restoration of SERCA2b leads to the relief
of ER stress [21]. Overexpression of SERCA2a by gene therapy has been successfully used
in clinical models of heart failure [22].

SERCA function is modulated by various physiological processes and endogenous
factors. Primarily, the activity of SERCA pumps is regulated by two small endogenous
proteins: phospholamban (PLB) and sarcolipin (SLN), expressed in cardiac and skele-
tal muscles, respectively. They bind to the regulatory site in SERCA and, thus, reduce
the apparent affinity of SERCA1a and SERCA2a for Ca2+, in the case of SLN and PLB,
respectively [23], although both SLN and PLB may be involved in the modulation of
either SERCA isoform [24]. Recently, dwarf open reading frame (DWORF) has been re-
ported as a new endogenous regulator of SERCA [25]. DWORF acts as a direct activator
of SERCA, removing PLB as an inhibitor of SERCA and, thus, increasing its turnover
rate [26]. ER Ca2+ dynamics are also controlled by anti- and pro-apoptotic proteins, such as
Bcl-2 family members and protein p53, respectively. Studies demonstrate that Bcl-2 overex-
pression reduces ER Ca2+ levels by inhibiting SERCA2 [27], while the tumor suppressor
p53 stimulates SERCA activity, resulting in ER Ca2+ overload [28,29]. Additionally, various
post-translational modifications and protein–protein interactions of SERCA have been
described, leading to enhancement of SERCA activity and Ca2+ uptake [30].

Based on current knowledge, SERCA may play a role as a molecular target in
ER stress-related diseases [30]. Compounds that are able to positively regulate cellular
responses to ER stress may serve as potential drug candidates for various ER stress-related
conditions. Restoration of ER Ca2+ regulation and management of cytosolic Ca2+ levels
via SERCA are considered to represent a promising therapeutic strategy in various disease
states. There is limited information about the mechanistic behavior of polyphenol-based
activators on SERCA pumps or Ca2+-related signaling processes. As far as the authors
are aware, there is no comprehensive article available regarding polyphenol-mediated
SERCA activation. Here, we provide an overview of natural polyphenols able to modulate
Ca2+ signaling routes and increase the activity/expression of SERCA with respect to inter-
vention in various chronic pathological conditions.

2. Intracellular Ca2+ Regulation: The Role of SERCA

The endoplasmic reticulum and mitochondria are the main regulators of intracellular
Ca2+ homeostasis, which is important to maintain a variety of cellular functions. This
requires a complex interplay of different Ca2+ transporters, along with Ca2+-sensing and
-buffering proteins, channels, receptors, and their regulators. The low [Ca2+]i is maintained
due to the action of the plasma membrane Ca2+-ATPase (PMCA) and Na+/Ca2+-exchanger
(NCX), which are responsible for the extrusion of Ca2+ from the cell. Upon elevated
[Ca2+]i, the SERCA pump is activated to maintain the required [Ca2+]i by sequester-
ing Ca2+ from the cytosol into the ER [31]. Calcium-permeable channels located on
the plasma membrane regulate the entry of Ca2+ into the cell. These include voltage-
gated calcium channels (VGCCs), which respond to membrane depolarization; receptor-
operated channels (ROCs), which are activated by the interaction with ligands; and store-
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operated calcium channels (SOCs), which are stimulated by the depletion of internal
Ca2+ stores. The inositol-1,4,5-triphosphate receptor (IP3R) and the ryanodine receptors
(RyRs) are the main players in mediating the release of Ca2+ from the internal stores.
Inositol-1,4,5-triphosphate activates IP3R, triggers the release of Ca2+ from stores, and fur-
ther increases IP3R’s sensitivity to Ca2+ [32]. Store-operated Ca2+ entry (SOCE)
significantly contributes to the dynamics of Ca2+ in cells. This Ca2+ signaling pathway is
activated upon Ca2+ store depletion; consequently, the ER Ca2+-sensing stromal interaction
molecules (STIM1 and STIM2) oligomerize, move to the ER membrane, and bind to the
calcium-release-activated calcium (CRAC) channel proteins ORAI1, ORAI2, and ORAI3,
located in the plasma membrane, allowing pore opening for Ca2+ to enter the cell [33].
Some members of TRPC (transient receptor potential canonical) channels may also con-
tribute to a store-operated current [34]. Inter-organelle communication between the ER
and mitochondria is mediated via mitochondria-associated ER membranes (MAMs) in a
highly organized manner. There is a diverse group of several critical proteins involved
in ER–mitochondria tethering—especially mitofusin 2, responsible for bridge formation
between mitochondria and the ER; the interaction of IP3R with voltage-dependent anion
channel 1; the mitochondrial Ca2+ uniporter (MCU) complex, involved in coupling be-
tween cytosolic/MAM Ca2+ signaling and the activation of key dehydrogenase enzymes
for energy generation; and others, as reviewed in [35].

SERCA pumps, together with PMCAs and NCXs, are among the most important regu-
lators responsible for restoring low resting [Ca2+]i. In certain tissues, SERCA sequesters
more than 70% of the cytosolic Ca2+ [23]; therefore, it plays a crucial role in maintaining in-
tracellular Ca2+ homeostasis. The primary structures of SERCAs are highly conserved, and
individual SERCA isoforms possess a high percentage of sequence homology. Functional
differences between SERCA isoforms consist of their affinity for Ca2+ (2b > 2a = 1 > 2c > 3)
and their Ca2+ transport turnover rates [13]. Individual SERCA isoforms are tissue-specific,
and the impairment in their regulation has been associated with various disease states, as
shown in Table 1.

Table 1. The pathophysiological roles of SERCAs in human diseases.

SERCA
Isoform Tissue Distribution Disease/Complication SERCA

Activity/Expression Reference

SERCA1a Adult fast-twitch
skeletal muscle Brody’s disease ↓/↓ [12,36]

SERCA1b Fetal fast-twitch
skeletal muscle Myotonic dystrophy type 1 ↓/↑ [12,37]

SERCA2a
Slow twitch skeletal muscle,

cardiac muscle,
smooth muscle cells

Heart failure
Cardiac hypertrophy

Diabetic cardiomyopathy
Vascular complications

Early type 2 diabetes

↓/↓
-/↓
↓/↓
↓/↓
-/↑

[12,13,38,39]

SERCA2b All tissues (muscle and
non-muscle cells)

Darier’s disease
Type 1 and 2 diabetes

Cancer
Neurodegenerative diseases

↓/↓
↓/↓
-/↓
↓/↓↑

[12,36,40–42]

SERCA2c
Epithelial, mesenchymal, and

hematopoietic cells;
monocytes

Cardiomyopathy -/↑ [28,36,43]

SERCA2d Skeletal muscle Myotonic dystrophy type 1 -/↓ [37]

SERCA3a-f Non-muscle
tissues

Type 2 diabetes
Type 1 diabetes

Cardiomyopathy
Cancer

-/↓
-/SERCA3b↑
-/SERCA3f↑

-/↑↓

[39,41,43]

↓/↑ refers to decrease/increase in SERCA activity or down/upregulation of its expression.
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Since the decreased [Ca2+]ER, rather than the increased [Ca2+]i, triggers apoptosis, it
has been suggested that maintaining ER Ca2+ homeostasis via ER-localized pumps and
channels represents a primary stimulus in triggering mechanisms leading to aberrations
of intracellular Ca2+ homeostasis, as well as to the onset of ER-stress-related diseases [39].
These changes are very much dependent on the cell type and the disease model studied.
SERCAs, together with STIM1 and ORAI1, contribute to capacitative Ca2+ entry, which
is responsible for refilling of the SR/ER stores, with Ca2+ entering cells via activated
SOCs [44]. Moreover, the involvement of TRPC1 was reported to contribute to the SOCE
pathway in skeletal muscle [45]. The SERCA1 isoform is regulated by STIM1 through
direct binding to SERCA1 via the C-terminal part; thus, STIM1 is involved in maintaining
SERCA1 activity [46]. In human platelets, SERCA2b and SERCA3 are responsible for the
direct regulation of SOCE via the hTRPC1 channel [47], demonstrating strong interplay
between SOCE-related proteins and SERCAs. Under conditions of ER stress, the stimu-
latory interaction between STIM1 and SERCAs was found to be impaired [48]. Defective
Ca2+ loading into the SR/ER caused by SERCA dysfunction may be partially compensated
by other regulatory mechanisms, such as extrusion of Ca2+ via PMCAs and NCXs, uptake
of Ca2+ into the mitochondria or Golgi apparatus, or upregulation of TRPC1 [36]. However,
if cellular adaptive mechanisms directed towards balancing Ca2+ homeostasis fail, multiple
ER stress-related pathologies can be induced.

3. Polyphenol–SERCA Interactions

Polyphenols comprise a diverse group of secondary plant metabolites, which are
widely distributed in nature. They are found predominantly in various fruits, vegeta-
bles, cereals, green tea, and red wine. The major classes of dietary polyphenols comprise
flavonoids, stilbenes, lignans, and phenolic acids [49]. They are generally considered to be
safe, with a lower degree of bioavailability in humans. These phytochemicals are known
for a wide range of health-promoting properties; mainly listed are their antioxidant, anti-
inflammatory, anti-carcinogenic, and neuroprotective activities. A polyphenol-rich diet
has been associated with decreased risks of developing cancer, cardiovascular diseases,
cerebrovascular diseases, diabetes, osteoporosis, and neurodegenerative diseases [50,51].
Moreover, polyphenols have been reported to act as modulators of cellular signaling and reg-
ulatory factors of gene transcription, thus intervening in various intracellular processes [52].
However, information on their molecular interactions with protein targets is limited. This
is an important step to address in order to understand the precise mechanism of their
action. In silico evidence suggests that various polyphenols may interact with ATP-binding
cassette transport systems (ABC transporters) [53]. Direct binding of these phytochemicals
to membrane transporters, including P-type ATPases [52], has been described as an effective
health-promoting means of polyphenol-mediated protective action [54].

SERCA belongs to the most studied membrane transporters. The catalytic transport
cycle of SERCA has been described by the E1–E2 scheme, starting with the high-affinity
Ca2+-binding site (E1), followed by phosphorylation of the Ca2+-ATPase by ATP (E1~P) and
conversion into E2P, ending up with enzyme dephosphorylation (E2) [55]. The inhibitory
actions of polyphenols on different isoforms of SERCA have been extensively examined,
and their mechanisms of action have been proposed [56–61]. Thapsigargin, the most
potent natural SERCA inhibitor, acts through noncompetitive inhibition of SERCA by
blocking SERCA in the E2 conformation at sub-nanomolar concentrations [61]. Interestingly,
thapsigargin selectively inhibits all known SERCA isoforms, but fails to show a similar
inhibitory effect on PMCA—a highly homologous protein to SERCA [62]. The inhibitory
mechanisms of several polyphenols—such as curcumin [60,63], epigallocatechin-3-gallate
(EGCG) [56,59], or flavonol quercetin [58,64,65]—in the low micromolar concentration
range have been well described. Curcumin, a polyphenol of turmeric, was reported to
inhibit SERCA activity by stabilizing the E1 conformational state of SERCA and preventing
ATP binding [60]. EGCG has a preferential interaction with the E2 conformation, affecting
the enzyme at the catalytic site [56]. Quercetin and structurally similar flavonoids have
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been described to stabilize SERCA in the E1 conformation, reducing ATP binding [58]. We
previously found that both quercetin and rutin derivatives reduced SERCA1 activity in
a concentration-dependent manner, and caused structural and conformational changes
in the SERCA1 protein [66–68]. Recently, we showed that phenolic compounds from
Morus nigra modulated the viability and apoptosis of INS-1E pancreatic beta cells via
SERCA2 activity [69]. Selective SERCA inhibition by natural products has been recognized
as a useful tool to trigger targeted ER stress and apoptosis in cancer cells. Interestingly, the
inhibition of SERCA pumps was recently recognized as an efficient anti-aging strategy that
supports longevity, suggesting that Ca2+ signaling may have an impact on aging [70].

4. Pharmacological Activation of SERCA by Polyphenols

Pharmacological activation of SERCA can reduce ER stress, and may therefore repre-
sent a promising therapeutic approach for the treatment of diabetes, metabolic disorders,
cardiovascular diseases (especially heart failure), and neuropathological conditions; al-
ternatively, induction of ER stress by polyphenols may contribute to cancer treatment, as
illustrated in Figure 1.
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Figure 1. Ca2+-dependent protective effects of polyphenols linked to ER stress-related diseases.

Natural polyphenols are able to specifically modulate Ca2+ homeostasis and
Ca2+ signaling pathways via SERCA. Polyphenols can affect SERCA by direct binding [71],
followed by subsequent changes in its structure and activity. In addition, indirect mech-
anisms may also lead to alterations in SERCA expression and/or activity. Polyphenol-
mediated conformational alterations in either the ATP-binding or Ca2+-binding sites of
SERCA are crucial for their protective effects in vivo [72].
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To date, most studies on SERCA activation have been conducted regarding the quino-
line derivative CDN1163 [73,74]. This small molecular allosteric SERCA activator balances
disrupted Ca2+ homeostasis and attenuates diseases associated with ER stress, such as
diabetes, metabolic disorders, neurodegenerative problems, or muscular dystrophy [75–77].
Other drug-like SERCA activators, including istaroxime and pyridone derivatives, have
been reported to possess stimulatory effects on the cardiac SERCA2a isoform, making them
applicable in heart failure treatment [78]. However, there is little information available on
the activation of SERCA by natural compounds. Resveratrol, gingerol, ellagic acid, and
luteolin belong to the most listed SERCA-targeting compounds in the literature. Table 2
summarizes up-to-date information regarding the effects of polyphenols related to SERCA
activation. These compounds exhibit diverse mechanisms of action on the Ca2+ regulatory
machinery, from direct interaction with SERCA, through indirect effects via inhibition of
SERCA–PLB complex formation, to complex intervention in Ca2+ signaling pathways, thus
contributing to various health effects.

Table 2. The most important mechanisms of action of natural polyphenols related to SERCA activation.

Compound
(MW) Structure Mode of Action

Related to SERCA Study Model Health
Implications Ref.

Baicalein;
BAI

(270.24)
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diastolic

dysfunction,
mediating cardiac

contractile
responses

[82–84]

(-)-Epigallo-
catechin-3-

gallate;
EGCG

(458.37)
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Molecules 2022, 27, x FOR PEER REVIEW 8 of 25 
 

 

Myricetin; 
MYR 

(318.23) 

 

Upregulation of 
SERCA2b expres-
sion, partially via 

PDX1 

INS-1 cells,  
isolated rat islets 

 Protection of beta 
cells from apoptosis, 
attenuation of type 2 

DM 

[95] 

Resveratrol; 
RSV 

(228.24) 
 

Upregulation of 
SERCA via SIRT1 

activation 

Mouse model  
of type 1 DM, 

Sprague–Dawley 
rats  

Improvement of car-
diac function in dia-
betes, prevention of 
cardiac hypertrophy 

[96–98] 

Rosmarinic 
acid; 
RA 

(360.32) 
 

Upregulation of the 
expression of 

SERCA2 and RyR2 

Sprague  
Dawley rats,  

isolated hearts 

Cardioprotective ef-
fects against myo-
cardial infarction 
and arrhythmia 

[99] 

Rutin; 
RUT 

(610.52) 

 

Stimulation of 
SERCA1 activity by 

direct binding 

Skeletal SR  
vesicles 

Potential signifi-
cance in cardiovas-
cular and skeletal 
muscle diseases 

[100] 

Tannic acid; 
TA 

(1701.19) 

 

Activation of 
SERCA2 through re-

lieving the inhibi-
tory effect of PLB on 

SERCA 

Cardiac SR  
vesicles 

Pharmacological in-
tervention in im-

paired cardiac con-
tractility and func-

tion 

[83,101] 

A schematic representation of the major mechanisms of polyphenols’ action with re-
spect to intracellular Ca2+ signaling is depicted in Figure 2. 

Upregulation of
SERCA2b expression,

partially via PDX1

INS-1 cells,
isolated rat islets

Protection of beta
cells from
apoptosis,

attenuation of type
2 DM

[95]

Resveratrol;
RSV

(228.24)

Molecules 2022, 27, x FOR PEER REVIEW 8 of 25 
 

 

Myricetin; 
MYR 

(318.23) 

 

Upregulation of 
SERCA2b expres-
sion, partially via 

PDX1 

INS-1 cells,  
isolated rat islets 

 Protection of beta 
cells from apoptosis, 
attenuation of type 2 

DM 

[95] 

Resveratrol; 
RSV 

(228.24) 
 

Upregulation of 
SERCA via SIRT1 

activation 

Mouse model  
of type 1 DM, 

Sprague–Dawley 
rats  

Improvement of car-
diac function in dia-
betes, prevention of 
cardiac hypertrophy 

[96–98] 

Rosmarinic 
acid; 
RA 

(360.32) 
 

Upregulation of the 
expression of 

SERCA2 and RyR2 

Sprague  
Dawley rats,  

isolated hearts 

Cardioprotective ef-
fects against myo-
cardial infarction 
and arrhythmia 

[99] 

Rutin; 
RUT 

(610.52) 

 

Stimulation of 
SERCA1 activity by 

direct binding 

Skeletal SR  
vesicles 

Potential signifi-
cance in cardiovas-
cular and skeletal 
muscle diseases 

[100] 

Tannic acid; 
TA 

(1701.19) 

 

Activation of 
SERCA2 through re-

lieving the inhibi-
tory effect of PLB on 

SERCA 

Cardiac SR  
vesicles 

Pharmacological in-
tervention in im-

paired cardiac con-
tractility and func-

tion 

[83,101] 

A schematic representation of the major mechanisms of polyphenols’ action with re-
spect to intracellular Ca2+ signaling is depicted in Figure 2. 

Upregulation of
SERCA via SIRT1

activation

Mouse model
of type 1 DM,

Sprague–Dawley rats

Improvement of
cardiac function in

diabetes,
prevention of

cardiac
hypertrophy

[96–98]

Rosmarinic
acid;
RA

(360.32)

Molecules 2022, 27, x FOR PEER REVIEW 8 of 25 
 

 

Myricetin; 
MYR 

(318.23) 

 

Upregulation of 
SERCA2b expres-
sion, partially via 

PDX1 

INS-1 cells,  
isolated rat islets 

 Protection of beta 
cells from apoptosis, 
attenuation of type 2 

DM 

[95] 

Resveratrol; 
RSV 

(228.24) 
 

Upregulation of 
SERCA via SIRT1 

activation 

Mouse model  
of type 1 DM, 

Sprague–Dawley 
rats  

Improvement of car-
diac function in dia-
betes, prevention of 
cardiac hypertrophy 

[96–98] 

Rosmarinic 
acid; 
RA 

(360.32) 
 

Upregulation of the 
expression of 

SERCA2 and RyR2 

Sprague  
Dawley rats,  

isolated hearts 

Cardioprotective ef-
fects against myo-
cardial infarction 
and arrhythmia 

[99] 

Rutin; 
RUT 

(610.52) 

 

Stimulation of 
SERCA1 activity by 

direct binding 

Skeletal SR  
vesicles 

Potential signifi-
cance in cardiovas-
cular and skeletal 
muscle diseases 

[100] 

Tannic acid; 
TA 

(1701.19) 

 

Activation of 
SERCA2 through re-

lieving the inhibi-
tory effect of PLB on 

SERCA 

Cardiac SR  
vesicles 

Pharmacological in-
tervention in im-

paired cardiac con-
tractility and func-

tion 

[83,101] 

A schematic representation of the major mechanisms of polyphenols’ action with re-
spect to intracellular Ca2+ signaling is depicted in Figure 2. 

Upregulation of the
expression of

SERCA2 and RyR2

Sprague
Dawley rats,

isolated hearts

Cardioprotective
effects against

myocardial
infarction and

arrhythmia

[99]

Rutin;
RUT

(610.52)

Molecules 2022, 27, x FOR PEER REVIEW 8 of 25 
 

 

Myricetin; 
MYR 

(318.23) 

 

Upregulation of 
SERCA2b expres-
sion, partially via 

PDX1 

INS-1 cells,  
isolated rat islets 

 Protection of beta 
cells from apoptosis, 
attenuation of type 2 

DM 

[95] 

Resveratrol; 
RSV 

(228.24) 
 

Upregulation of 
SERCA via SIRT1 

activation 

Mouse model  
of type 1 DM, 

Sprague–Dawley 
rats  

Improvement of car-
diac function in dia-
betes, prevention of 
cardiac hypertrophy 

[96–98] 

Rosmarinic 
acid; 
RA 

(360.32) 
 

Upregulation of the 
expression of 

SERCA2 and RyR2 

Sprague  
Dawley rats,  

isolated hearts 

Cardioprotective ef-
fects against myo-
cardial infarction 
and arrhythmia 

[99] 

Rutin; 
RUT 

(610.52) 

 

Stimulation of 
SERCA1 activity by 

direct binding 

Skeletal SR  
vesicles 

Potential signifi-
cance in cardiovas-
cular and skeletal 
muscle diseases 

[100] 

Tannic acid; 
TA 

(1701.19) 

 

Activation of 
SERCA2 through re-

lieving the inhibi-
tory effect of PLB on 

SERCA 

Cardiac SR  
vesicles 

Pharmacological in-
tervention in im-

paired cardiac con-
tractility and func-

tion 

[83,101] 

A schematic representation of the major mechanisms of polyphenols’ action with re-
spect to intracellular Ca2+ signaling is depicted in Figure 2. 

Stimulation of
SERCA1 activity by

direct binding

Skeletal SR
vesicles

Potential
significance in

cardiovascular and
skeletal muscle

diseases

[100]

Tannic acid;
TA

(1701.19)

Molecules 2022, 27, x FOR PEER REVIEW 8 of 25 
 

 

Myricetin; 
MYR 

(318.23) 

 

Upregulation of 
SERCA2b expres-
sion, partially via 

PDX1 

INS-1 cells,  
isolated rat islets 

 Protection of beta 
cells from apoptosis, 
attenuation of type 2 

DM 

[95] 

Resveratrol; 
RSV 

(228.24) 
 

Upregulation of 
SERCA via SIRT1 

activation 

Mouse model  
of type 1 DM, 

Sprague–Dawley 
rats  

Improvement of car-
diac function in dia-
betes, prevention of 
cardiac hypertrophy 

[96–98] 

Rosmarinic 
acid; 
RA 

(360.32) 
 

Upregulation of the 
expression of 

SERCA2 and RyR2 

Sprague  
Dawley rats,  

isolated hearts 

Cardioprotective ef-
fects against myo-
cardial infarction 
and arrhythmia 

[99] 

Rutin; 
RUT 

(610.52) 

 

Stimulation of 
SERCA1 activity by 

direct binding 

Skeletal SR  
vesicles 

Potential signifi-
cance in cardiovas-
cular and skeletal 
muscle diseases 

[100] 

Tannic acid; 
TA 

(1701.19) 

 

Activation of 
SERCA2 through re-

lieving the inhibi-
tory effect of PLB on 

SERCA 

Cardiac SR  
vesicles 

Pharmacological in-
tervention in im-

paired cardiac con-
tractility and func-

tion 

[83,101] 

A schematic representation of the major mechanisms of polyphenols’ action with re-
spect to intracellular Ca2+ signaling is depicted in Figure 2. 

Activation of
SERCA2 through

relieving the
inhibitory effect

of PLB on SERCA

Cardiac SR
vesicles

Pharmacological
intervention in

impaired cardiac
contractility and

function

[83,101]

A schematic representation of the major mechanisms of polyphenols’ action with
respect to intracellular Ca2+ signaling is depicted in Figure 2.



Molecules 2022, 27, 5095 8 of 23Molecules 2022, 27, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 2. A schematic representation of polyphenol-mediated effects on SERCA and related intra-
cellular Ca2+ signaling pathways: Dietary polyphenols affect Ca2+ dynamics by targeting Ca2+ trans-
porters and channels as well as downstream processes. Baicalein, rutin, caffeic acid, and gingerol 
seem to stimulate SERCA directly. On the other hand, ellagic acid, (-)-epigallocatechin-3-gallate, and 
tannins were described as indirect SERCA activators acting by relieving the inhibition of SERCA by 
PLB. Resveratrol has been shown to interact with several Ca2+-handling proteins, and to modulate 
Ca2+ homeostasis through intervention in Ca2+ signaling pathways. In particular, the activation of 
deacetylase SIRT1 has been reported as a central mechanism of resveratrol action responsible for 
upregulation of SERCA. The release of Ca2+ from the ER via RyRs was shown to be facilitated by 
baicalein, (-)-epigallocatechin-3-gallate, and rosmarinic acid. Luteolin, myricetin, and rosmarinic 
acid increase the overexpression of SERCA. The regulatory effects of myricetin, resveratrol, gin-
gerol, and ellagic acid were described in relation to Ca2+-dependent channels, such as VGCCs, 
ORAI–STIM, and the KCa channel. Figure created with BioRender.com. 

Detailed information on individual polyphenol-mediated Ca2+-dependent mecha-
nisms is provided in the following sections. 
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this compound. These include antioxidant, anticancer, anti-inflammatory, anti-carcino-
genic, antidiabetic, cardioprotective, immunomodulatory, vasorelaxant, phytoestrogenic, 
and neuroprotective activities [102–105]. Moreover, clinical data regarding the pharmaco-
logical action of RSV show that this phytomolecule beneficially influences neurological 
disorders, cardiovascular diseases, diabetes, obesity, and cancer [102,104]. Plasma levels 

Figure 2. A schematic representation of polyphenol-mediated effects on SERCA and related
intracellular Ca2+ signaling pathways: Dietary polyphenols affect Ca2+ dynamics by targeting
Ca2+ transporters and channels as well as downstream processes. Baicalein, rutin, caffeic acid, and gin-
gerol seem to stimulate SERCA directly. On the other hand, ellagic acid, (-)-epigallocatechin-3-gallate,
and tannins were described as indirect SERCA activators acting by relieving the inhibition of SERCA
by PLB. Resveratrol has been shown to interact with several Ca2+-handling proteins, and to modulate
Ca2+ homeostasis through intervention in Ca2+ signaling pathways. In particular, the activation of
deacetylase SIRT1 has been reported as a central mechanism of resveratrol action responsible for
upregulation of SERCA. The release of Ca2+ from the ER via RyRs was shown to be facilitated by
baicalein, (-)-epigallocatechin-3-gallate, and rosmarinic acid. Luteolin, myricetin, and rosmarinic acid
increase the overexpression of SERCA. The regulatory effects of myricetin, resveratrol, gingerol, and
ellagic acid were described in relation to Ca2+-dependent channels, such as VGCCs, ORAI–STIM,
and the KCa channel. Figure created with BioRender.com.

Detailed information on individual polyphenol-mediated Ca2+-dependent mecha-
nisms is provided in the following sections.

4.1. Resveratrol

Resveratrol (3,4′,5,-trihydroxystilbene, RSV), a polyphenolic stilbene, is a secondary plant
metabolite found mainly in grapes and red wines. It contains two phenyl rings joined by an
ethylene bridge. Studies have reported substantial biological health effects of this compound.
These include antioxidant, anticancer, anti-inflammatory, anti-carcinogenic, antidiabetic,
cardioprotective, immunomodulatory, vasorelaxant, phytoestrogenic, and neuroprotective
activities [102–105]. Moreover, clinical data regarding the pharmacological action of RSV show
that this phytomolecule beneficially influences neurological disorders, cardiovascular diseases,
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diabetes, obesity, and cancer [102,104]. Plasma levels of RSV were found to be below the
micromolar range [106]. Owing to the lipophilic character of the RSV molecule, it is expected
to have affinity for membranes; thus, its cellular levels might be higher [107].

RSV has been reported to act as a multitarget signaling molecule. It modulates
cellular Ca2+ homeostasis by affecting intracellular Ca2+ pumps, Ca2+ channels, and/or
Ca2+ signaling pathways. RSV may act as a direct ligand for Ca2+-sensing transmembrane
proteins, such as L-type and T-type VGCCs. On the other hand, Ca2+-handling proteins such
as SERCA and PMCA constitute indirect targets of RSV [105]. RSV causes an increase in
[Ca2+]i by depletion of intracellular Ca2+ stores, mainly due to the activation of capacitative
Ca2+ entry and the involvement of other Ca2+-permeable channels [108]. RSV was found
to improve overall Ca2+ homeostasis in various conditions of cellular dysfunction. Direct
inhibition of L-type VGCCs and indirect inhibition of Ca2+-activated potassium channels
by RSV may lead to vasorelaxation, which may be beneficial in preventing cardiovascular
diseases such as hypertension and atherosclerosis [105].

It seems that RSV acts on multimodal signaling cascades. One of the key mechanisms
through which RSV manifests its protective effects is the activation of deacetylases. It
is a potent activator of the NAD+-dependent histone deacetylase SIRT1 [109], which is
associated with the regulation of various cellular functions. Therefore, RSV-mediated
modulation of SIRT expression/activity may represent an effective therapeutic strategy to
combat various chronic metabolic and inflammatory diseases [96,110]. The antidiabetic
effect of RSV has been associated with its ability to decrease blood glucose levels, preserve
beta-cell function, and improve insulin sensitivity and secretion [111]. A dramatic reduction
in SIRT1 levels has been observed in diabetic patients [112]. Sulaiman et al. [97] showed
that RSV prevented the diabetes-induced decline in SERCA2a, improved cardiac function,
and enhanced SERCA2 promoter activity in cardiomyocytes under hyperglycemia. Based
on these findings, it seems that RSV modulates SERCA2a expression and improves cardiac
function via SIRT activation [97].

RSV is able to influence various processes on the level of the mitochondria and en-
ergy metabolism [102]. RSV treatment has been reported to enhance the expression of
the mitochondrial deacetylase SIRT3 [113], which plays a role in energy metabolism, as
well as in the regulation of mitochondrial respiration rate and ATP production. In partic-
ular, improvement of oxidative phosphorylation in diabetic cardiomyopathy by RSV via
SIRT3 has been reported [114]. From the available data, it seems that the activity of SIRT
is tightly interlinked with AMP-activated protein kinase (AMPK). The activation of the
AMPK/SIRT pathway by RSV leads to inhibition of the mTOR and NF-κB pathways [107].
The suggested mechanism by which RSV may activate AMPK is based on the ability of
RSV to directly bind to the mitochondrial respiratory chain complexes, such as NADH
dehydrogenase (complex I) [115] or F0F1-ATPase/ATP synthase (complex V) [107,116]. It
has been suggested that the effect of RSV on respiratory chain complexes is concentration-
dependent [117]. While low RSV concentrations (1–5 µmol/L) stimulated respiratory
chain complex I activity in a human hepatoblastoma cell line, high concentrations of RSV
(>50 µmol/L) resulted in inhibition of complex I activity [118]. The mechanisms of SIRT1
and AMPK activation, as well as deacetylation of peroxisome proliferator-activated re-
ceptor gamma coactivator 1-alpha by RSV, have been reported to be connected with the
improvement of mitochondrial biogenesis and energy metabolism [119]. Both the AMPK
and mTOR signaling pathways are tightly connected to Ca2+ regulation. An increase
in [Ca2+]i leads to mTOR inhibition, inducing the process of autophagy [70]. RSV was
reported to induce autophagic flux via both mTOR-dependent and -independent mecha-
nisms involving mitochondrial Ca2+ signaling pathways, and depending on the presence
of IP3R and cytosolic Ca2+, suggesting that IP3R channels and intracellular Ca2+ signals
are essential to trigger autophagy in response to various stimuli [120].

Recent studies have shown that RSV can be an effective agent in fighting cardiovascular
diseases, such as cardiac hypertrophy, contractile dysfunction, atherosclerosis, and related
vascular complications, by targeting the calcium-regulatory pathway [98,121,122]. A study
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by Dong et al. [98] showed that RSV significantly ameliorated cardiac hypertrophy and
contractile dysfunction induced by pressure overload via prevention of the impairment of
Ca2+-handling proteins, including SERCA2, RyR2, NCX1, and Ca2+/calmodulin-dependent
protein kinase II (CaMKII) [98]. The mechanism of RSV-mediated protective action on
high-glucose-induced apoptosis of vascular endothelial cells has been reported to rely
on the regulation of SOCE. Since high-glucose treatment is associated with upregulation
of SOCE-related proteins—including TRPC1, ORAI1, and STIM1 [123]—RSV may man-
ifest its anti-apoptotic effect through restoration of SOCs [121]. RSV was also found to
ameliorate the apoptosis of synoviocytes in an adjuvant arthritis rat model by inhibiting
ORAI1 expression, thus affecting ORAI1–STIM1 complex formation and Ca2+ entry [122].

RSV is also known to trigger apoptotic cell death in cancer cells at higher concen-
trations (>50 µmol/L) [117]. The suggested mechanisms of the pro-apoptotic effect of
RSV include changes in Ca2+ regulation, increased ROS levels, disruption of the mito-
chondrial membrane potential, inhibition of respiratory chain complexes, and caspase
activation [117,124]. Another proposed mechanism of RSV-mediated anticancer action
is based on the inhibition of ATP synthase; consequently, the required amount of ATP
for malign cells is reduced [125]. As a result of the decreased mitochondrial content of
ATP, the activity of SERCA pumps was lowered, causing the accumulation of Ca2+ within
mitochondria-associated ER membranes, and triggering mitochondrial Ca2+ overload and
apoptosis [124–126]. Enhanced sequestration of Ca2+ into the mitochondria selectively
activated Letm1-dependent Ca2+ uptake via MCU in cancer cells. A similar effect was
observed in a structural analog of RSV—piceatannol [124].

Recently, Izquierdo-Torres et al. [127,128] contributed to better understanding of the
molecular mechanisms of the chemopreventive action of RSV. The authors showed that
RSV upregulated ATP2A3 gene expression in breast cancer cells [127,128]. Changes in the
expression of SERCA genes led to the disruption of Ca2+ homeostasis and induction of
apoptosis, suggesting a critical role of Ca2+-dependent pathways in RSV-induced cell death.
Activation of ATP2A3 gene expression was correlated with (i) reduced histone deacetylase
2 nuclear expression, (ii) reduced global histone deacetylase activity, and (iii) enhanced global
histone acetyltransferase activity [127]. Interestingly, the anti-apoptotic protein Bcl-2 was
overexpressed after RSV treatment. These studies point to the importance of ATP2A3 gene
expression in cancer therapy [127,128]. Additionally, RSV-mediated cancer prevention has
also been closely associated with the suppression of the pro-apoptotic p53 protein [129]. A
methoxylated structural analogue of resveratrol, (Z)3,4,5,4′-trans-tetramethoxystilbene, is
another promising drug with anticancer activity. This stilbenoid was found to directly bind
to SERCA and raise the intracellular Ca2+ level independently of caspase activation in lung
cancer cells. This RSV derivative suppressed the AMPK/mTOR pathway and activated
JNK—the cross-linker of ER stress [130].

4.2. 6-Gingerol

6-Gingerol [5-hydroxy-1-(4-hydroxy3-methoxyphenyl)decan-3-one; (GIN)] is a major
biologically active constituent of ginger. This polyketide is found in the Zingiberaceae
family and in the grains of paradise as well as an African ginger species. It has been
described to exhibit various effects—most importantly anticancer, anti-inflammatory, and
antioxidant properties [131]. The anti-inflammatory action of GIN is mainly attributed to
its ability to target the NF-κB pathway [132–134]. GIN has received considerable attention
as a potential therapeutic agent for the prevention and/or treatment of various—especially
inflammation-associated—disorders, including cardiovascular diseases, diabetes, metabolic
syndrome, and neurodegenerative diseases [135,136].

Changes in SERCA2a activity/expression and decreased Ca2+ uptake into the SR
lead to aberrant Ca2+ handling in failing hearts, including abnormalities in systolic and
diastolic functions [13]. Cardiotonic agents able to activate the SERCA2 isoform could
effectively target heart failure. GIN was first described as a potent cardiotonic agent
with the ability to activate the SERCA enzyme in 1987 [88]. Moreover, inotropic and
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chronotropic effects of GIN were also previously reported [137]. GIN (3–30 µmol/L)
activated both the SERCA1 and SERCA2 isoforms, with effective concentrations (EC50)
of 4.0 and 4.3 µmol/L for skeletal and cardiac SR, respectively. These results point to
direct stimulatory action of GIN on the SR’s Ca2+ uptake, which may be related to the
direct activation of SERCA at the regulatory ATP-binding site [88]. Namekata et al. [82]
investigated the effect of GIN-mediated SERCA activation on diastolic dysfunction in
streptozotocin-induced diabetic mice. Both the rate of relaxation and the rate of
Ca2+ transient decay were accelerated. The acceleration of relaxation by GIN was com-
pletely inhibited by a specific inhibitor of SR Ca2+ uptake, cyclopiazonic acid, implying
direct action on SERCA [82]. Activation of the SERCA2 pump by GIN was studied in
relation to possible regulation by PLB [84]. In cardiac muscle, the SERCA2a isoform is
regulated by the endogenous transmembrane protein PLB, which inhibits Ca2+ trans-
port at low diastolic [Ca2+]. The highest SERCA activity is gained at high systolic [Ca2+]
or when PLB is phosphorylated [138]. A significant increase in Vmax(Ca) caused by GIN was
observed in both phosphorylated and unphosphorylated SR vesicles, while Km(Ca) was only
increased in phosphorylated microsomes. Increased maximal rates by GIN may be attributed
to the competition against the inhibition of ATP-accelerated steps by PLB during the trans-
port cycle. Direct activation of the SERCA pump by GIN was outlined, which may play a
role in GIN-mediated cardiac contractile responses [84]. Recently, GIN was found to improve
pressure-overload-induced cardiac remodeling, which was associated with inhibition of the
p38 mitogen-activated protein kinase (MAPK) pathway [139]. Since activated p38 MAPK is in-
volved in pro-apoptotic events via p53 activation, leading to impairment of myocyte function [140],
the abovementioned abolishment may be of pharmacological importance in cardioprotection.

Ginger constituents, including gingerols, have been reported for their possible pre-
ventive and curative effects against neurodegenerative diseases via their interaction with
various molecular targets. GIN-mediated Ca2+ channel blockade and cholinesterase inhibi-
tion were suggested to contribute to protection against Alzheimer’s disease [141]. Possible
involvement of SERCA in the neuroprotective action of GIN under conditions of ER stress
was examined [89]. GIN was able to stimulate SERCA activity in SR microsomes (maximal
activation at 30 µmol/L) and restore its function in the presence of SERCA inhibitors.
However, GIN failed to promote Ca2+ uptake and protect neuronal cells from thapsigargin-
and cyclopiazonicacid-induced ER stress and subsequent cell death. On the other hand,
GIN (50 µmol/L) itself evoked cell death in a neuronal cell line, which was not accompa-
nied by generation of ROS or caspase activity [89]. However, only a single, rather high
concentration of GIN was tested which, in the light of hormesis, may have been responsible
for the deleterious action of GIN.

GIN was also shown to have impact on Ca2+-dependent channels. Cai et al. [142]
investigated the effect of GIN on colonic motility and the involvement of the L-type
Ca2+ channel in rats. They found that this compound mediated concentration-dependent
inhibition of spontaneous contraction of colonic longitudinal myocytes by preventing the
influx of Ca2+ through L-type Ca2+ channels [142].

Moreover, ginger extract (with abundant content of 6-gingerol and 6-shogaol) was re-
cently shown to trigger the AMPK/SIRT1 pathway, which was associated with the control of
ER stress and the mTOR pathway. Ginger extract effectively influenced energy metabolism
via AMPK/SIRT1 with the involvement of Ca2+ homeostasis regulation, and may thus be
useful in the management of obesity and associated metabolic complications [143].

Other gingerols (e.g., [8]- and [10]-gingerol) and their synthetic analogues have been
shown to increase the SERCA activity of skeletal muscle SR in a concentration-dependent man-
ner [144]. Another structural analog related to gingerol, 1-(3,4-dimethoxyphenyl)-3-dodecanon,
increased both Vmax(Ca) and Km(Ca), and decreased the Hill coefficient, as shown
previously [145].
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4.3. Ellagic Acid

Ellagic acid (2,3,7,8-tetrahydroxy-chromeno [5,4,3-cde]chromene-5,10-dione; (EA)) is
a dimeric derivative of gallic acid, which is widely distributed in many fruits (mainly
berries) and nuts. It structurally consists of both a lipophilic moiety (biphenyl) and a
hydrophilic part (hydroxyl groups and two lactone rings), contributing to the amphiphilic
properties of EA. EA has been extensively studied due to its potent antiproliferative effects
in some types of cancer, together with its antioxidant and anti-inflammatory properties.
The increased intake of EA is associated with improvement of obesity and related metabolic
complications [146].

Moreover, potent stimulation of SERCA2 activity by EA has been reported. The
mechanism by which EA increased SERCA2 activity was predominantly associated with
the displacement of PLB inhibition from SERCA [82,83]. Removal of the inhibitory inter-
action between SERCA2a and PLB was reported to favor the conformational transition
E2 to E1, accelerating Ca2+ cycling [78]. EA (EC50 ≈ 3 µmol/L) was found to stimulate
Ca2+ uptake and ATP hydrolysis at sub-micromolar Ca2+ concentrations in the cardiac
SR. SERCA2 activation was associated with the ability of EA to disrupt the interaction
between PLB and SERCA2, thereby increasing enzyme turnover [83]. It was previously
indicated that structural and functional coupling of SERCA was affected by PLB binding
to the nucleotide domain of SERCA. Phosphorylation of PLB contributes to the confor-
mational changes and functional interactions between the nucleotide active sites within
oligomeric complexes of individual SERCA molecules. These interactions are required
for efficient Ca2+ transport and maximal SERCA activity [147]. Similar findings in kinetic
measurements were reported by Antipenko et al. [84], who showed that EA increased the
maximal rate of microsomal Ca2+ uptake and evoked an insignificant decrease in Km(Ca)
in purified cardiac SR vesicles [84]. These results are in accordance with those observed
by Berrebi-Bertrand et al. [145] in crude cardiac SR vesicles. EA caused an increase in
the Vmax(Ca) of Ca2+ uptake and a slight decrease in Km(Ca) in crude cardiac microsomes,
associated with the removal of the inhibitory effect of PLB (indirect action of EA on SERCA).
However, increased Ca2+ uptake into the SR was not accompanied by a parallel increase in
SERCA activity in the skeletal SR [145], which might be attributed to the lower extent of
sample purification and unspecific interactions. Moreover, the method of Pi liberation—
which measures the total SERCA activity, and is therefore considered less specific than
NADH-coupled enzyme assay—was used to assess SERCA activity.

SERCA activity and expression were found to be dramatically reduced in diabetes and
related complications, such as cardiomyopathy. Decreased expression levels of SERCA2b
and SERCA3 have been reported in the beta cells of diabetic patients, resulting in injured
insulin secretion [148]. Namekata et al. [82] investigated the effect of EA on SERCA
activation in isolated myocardia from streptozotocin-induced diabetic mice. EA accelerated
the rate of relaxation and the rate of Ca2+ transient decay in this model. The results point
to the significance of the protection of SERCA function by specific SERCA activators in
alleviation of the pathogenesis of diabetes and its complications [82].

Recently, the anti-inflammatory action of EA was associated with positive regu-
lation of intracellular Ca2+ homeostasis by targeting the SOCE pathway [149]. The
authors found that EA stimulated IP3R and inhibited SOCE-mediated Ca2+ influx in
Jurkat T cells via disruption of ORAI–STIM complex formation. The decrease in Ca2+ influx
led to the reduction in the nuclear factor of activated T-cell translocation and suppres-
sion of cytokine expression, suggesting that the described mechanism may be involved
in the anti-inflammatory behavior of EA. These results indicate that EA directly targets
SOCE-mediated Ca2+ influx [149]. Similarly, gallic acid—a monomeric unit of EA—induced
[Ca2+]i increase via interaction with SOCE, and activated the mitochondrial apoptotic path-
way in human glioblastoma cells, pointing to its possible antitumor potential [150].
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4.4. Luteolin

Luteolin (3′,4′,5,7-tetrahydroxyflavone; LUT), a natural flavone found in many plant
species, is the most common flavonoid. Luteolin-rich dietary sources include carrots,
radicchio, peppers, celery, oregano, thyme, peppermint, rosemary, and juniper berries. The
results of preclinical studies indicate that LUT possesses a wide range of pharmacological
properties, such as antioxidant, anti-inflammatory, antimicrobial, and antitumor health
effects [151].

Cardioprotective effects of LUT have also been reported. Increased intake of LUT
was associated with reduced risk of acute myocardial infarction [152], which may be
partially associated with alterations in the function of the SERCA pump caused by PLB
inhibition [138]. According to the study of Hu et al. [91], LUT significantly improved
cardiac dysfunction by restoring contractility and Ca2+ transients, increasing SERCA2a’s
expression, activity, and stability in failing cardiomyocytes. LUT also upregulated the
expression of the small ubiquitin-related modifier SUMO1 [91]. It has been recognized
that SUMOylation belongs within the key post-translational modifications required for
regulating SERCA2a function, and that SUMOylation of SERCA2a was markedly lowered
in patients with heart failure [153]. LUT was able to increase the phosphorylation of PLB,
as well as SUMOylation of SERCA2a [91]. It has been proposed that LUT contributes to
the enhancement of SERCA2a’s stability via SUMOylation at Lys585 in a murine model of
SERCA [90]. Under conditions of myocardial ischemia–reperfusion injury in mice, LUT
was reported to exert cardioprotective effects by modulating SERCA2a’s function and
transcriptional activity via the upregulation of the transcription factor Sp1, thus improv-
ing ischemia–reperfusion injury of the myocardium. Sp1 overexpression increased the
expression of SERCA2a at the transcriptional level [92]. Another mechanism by which
LUT increases SERCA2a activity and reduces Ca2+ overload was suggested to be via sup-
pression of the activation of the p38 MAPK pathway, as shown after ischemia–reperfusion
injury in rat hearts and cardiomyocytes [93]. Inhibition of the p38 MAPK pathway by
LUT was connected with increased PLB phosphorylation, thereby enhancing SERCA2a
activity and restoring intracellular Ca2+ homeostasis [154]. Moreover, LUT was shown to
relieve ischemia–reperfusion injury by suppression of apoptosis via activation of the phos-
phatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway and increasing
the phosphorylation of Akt, resulting in improvement in SERCA2a activity, albeit without
affecting the SERCA2a expression levels in cardiomyocytes [94]. Positive regulation of
SERCA2a by LUT contributes to increased Ca2+ uptake and restoration of Ca2+ homeostasis,
leading to improved myocyte contraction in the condition of heart failure [91].

4.5. Other Polyphenols

Flavonoids, green tea polyphenols, tannins, and phenolic acids belong to the other
phenolic compounds studied in relation to their SERCA-activating properties.

Flavonoids belong to the most studied group of natural compounds for their numerous
health-promoting effects. Moreover, these compounds affect many signaling pathways due
to their potential to bind to the ATP-binding site of many proteins, including ATPases [155].
The affinity of flavonoids for transmembrane protein targets is also dependent on the
degree of their lipophilicity, where the incorporation of flavonoids into lipid bilayers plays
a role [156]. Our research group previously found that higher concentrations of rutin (RUT)
stimulated SERCA1 activity in rabbit skeletal muscle. According to kinetic analysis, in the
presence of RUT (250 and 350 µmol/L), the maximal rate of enzyme catalysis increased and
the affinity of SERCA1 for ATP decreased. RUT interacted with the cytosolic ATP-binding
region of SERCA1, as confirmed by decreased FITC fluorescence as well as by in silico
molecular docking [100].

Another member of flavonoid class, myricetin (3,3′,4′,5,5′,7-hexahydroxyflavone;
MYR), is mainly known for its potent antioxidant, anti-inflammatory, antiviral, antitu-
mor, and antidiabetic properties [157]. In relation to type 2 diabetes, MYR was found
to protect beta cells from high-glucose-induced apoptosis by inhibiting ER stress. The
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mechanism of its action involved the inactivation of cyclin-dependent kinase 5 and conse-
quent upregulation of SERCA2b, which was associated with increased transcription and
expression levels of transcription factor pancreatic duodenal homeobox 1 (PDX1), playing a
crucial role in beta-cell survival. Moreover, MYR prevented thapsigargin-induced ER stress
in beta cells [95], suggesting potential therapeutic application of MYR in the treatment
of diabetes. In another study, MYR was reported to protect rat neurons by inhibiting
glutamate-induced intracellular Ca2+ overload, ROS production, and caspase-3 activation,
pointing to promising anti-neurodegenerative properties of MYR [158]. Moreover, MYR
treatment enhanced Ca2+-dependent potassium channel currents in hypothalamic neu-
rons [159]. Another study revealed that MYR may provide cardioprotective effects by
inhibiting VGCCs [160]. Fusi et al. [161] showed that MYR facilitated vasoconstriction of
vascular smooth muscle by activating L-type Ca2+ channels [161]. Studies of MYR-mediated
stimulation of Ca2+ channel currents revealed that MYR behaved as a Ca2+ channel agonist
with high affinity for the channel in the inactivated state [162]. It has been suggested that
MYR affects Ca2+ currents by activating T- and L-type Ca2+ channels through the involve-
ment of CaMKII [163]. Taken together, the above-described complex interplay of MYR’s
action at various levels within the Ca2+ signaling cascade may ameliorate disease-driven
Ca2+ dysfunction.

Polyphenols have been reported to play an important role in suppressing the de-
velopment of heart failure by improving Ca2+ regulation in myocytes [164]. Baicalein
(5,6,7-trihydroxyflavone; BAI) is a type of flavonoid originally isolated from the roots
of Scutellaria baicalensis and Scutellaria lateriflora, and possesses many pharmacological
effects, such as antiviral, antioxidant, anti-inflammatory, anticancer, and cardioprotective
activities [165,166]. Zhao et al. [79] studied the effects of BAI on elevated pressure in heart
failure and possible involvement of Ca2+-handling proteins in Ca2+ dysregulation. They
showed that BAI prevented pressure overload in vivo, partially due to modulation of
SERCA activity, as well as upregulation of SERCA2 and RyR2 [79]. Moreover, BAI affected
downregulation of phosphorylation of CaMKII and expression of NCX. These findings
point to multimodal Ca2+-regulatory effects of BAI on myocardial remodeling. The protec-
tive action of BAI against myocardial ischemic injury was also reported by another research
group; however, the underlying protective mechanisms of BAI were mainly attributed to
its anti-inflammatory and antioxidant properties [80].

Flavonoids have also been reported to affect Ca2+-regulatory processes indirectly, via
modulation of sirtuins [167]. SIRT6 plays a role in Ca2+ signaling via the synthesis of
Ca2+-mobilizing second messengers, affecting Ca2+-dependent transcription factors and
responses, as well as the expression of pro-inflammatory cytokines. Therefore, SIRT6 mod-
ulation may be an effective approach in the treatment of cancer by targeting inflammation,
angiogenesis, and metastasis [168]; diabetes via improvement of insulin secretion [169];
and neurodegenerative disorders via neuroprotection from DNA damage [170]. According
to a recent study, the polyphenols isoquercetin, luteolin, and cyanidin activate SIRT6, while
vitexin, catechin, scutellarin, and fucoidan act as SIRT6 inhibitors. Quercetin displayed
both activating and inhibitory effects on SIRT6, depending on the concentration used [171].
Moreover, upregulation of SIRT1 and SIRT2 expression levels in vivo by quercetin was also
observed [172].

Green tea is a rich source of polyphenols, of which EGCG is the best-studied tea
component, with multiple beneficial actions in different human pathological states. EGCG
was described as affecting second messenger Ca2+ signals and raising cytosolic Ca2+ levels,
thereby modulating intracellular Ca2+ signaling pathways. As a result, EGCG (<2 µmol/L)
increased the sensitivity of RyR1 in response to inward Ca2+ current or electrical stimulation,
without altering basal [Ca2+]i, independently of SERCA [173]. Indeed, EGCG appears to be
a powerful sensitizer that is highly selective toward potentiating RyR1 activity at lower
concentrations, which does not directly affect SERCA [85]. On the other hand, higher
EGCG concentrations (>10 µmol/L) produced an elevation of [Ca2+]i, which was correlated
with the inhibition of SERCA activity [59]. Kargacin et al. [86] studied the effects of EGCG
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on SERCA2a turnover and Ca2+ transport in cardiac SR vesicles. EGCG increased the
Ca2+-sensitivity of Ca2+ uptake into cardiac SR vesicles in a concentration-dependent
manner, which was affected by the interaction between SERCA and PLB [86]. In another
study, EGCG (>1 µmol/L) improved the contractility of cardiac muscle cells via increased
Ca2+ loading into the SR, and facilitated the release of Ca2+ through RyR2 without affecting
SERCA2 activity or L-type Ca2+ currents. Enhanced activity of RyR2 promoted increased
amplitude of Ca2+ transients. Moreover, EGCG in nanomolar concentrations caused a
positive inotropic effect [87]. Possible epigenetic regulation of SOCE inhibition by EGCG via
suppression of ORAI1–STIM2 expression was reported. EGCG (10 µmol/L) downregulated
the PTEN/mTOR pathway and decreased mitochondrial potential, as shown in murine
and human Jurkat T cells [174].

Tannins are polyphenolic compounds found in a variety of plant-based foods and
beverages, including tea. Low tannin concentrations (EC50 ≈ 0.3 µmol/L) were observed
to stimulate Ca2+ uptake and ATP hydrolysis in cardiac SR, while higher concentrations
(IC50 ≈ 3 µmol/L) inhibited SERCA2 activity in both cardiac and skeletal muscle SR.
Therefore, the observed SERCA stimulation seems to result from removing the inhibi-
tion of SERCA by PLB, similarly to that observed by EA. The inhibitory effect of tannin
was attributed to competitive inhibition of nucleotide binding [83]. Tannins were like-
wise reported to activate SERCA2 by acting on the inhibitory complex SERCA–PLB [101].
Recently, the protective effect of tannic acid (TA)—a representative of tannin—against
vascular calcification in renal proximal tubular cells was reported. The TA-mediated mech-
anism of decreasing ER stress-induced cell death resulted partially from the inhibition of
the SOCE pathway, reducing the intracellular Ca2+ overload [175]. Moreover, it has been
suggested that TA might chelate available Ca2+ due to its galloyl groups [176] and, thus,
may modulate Ca2+ dysregulation.

Caffeic acid (CA) is a phenolic phytonutrient classified as a hydroxycinnamic acid,
which can be found in abundance in various plants, and possesses a wide range of beneficial
properties. CA was shown to have positive impacts on vascular function and blood pressure
by potentiating SERCA2a activity in the vascular smooth muscle cells. Binding of CA to
SERCA was accompanied by the formation of strong hydrogen bonds. Specifically, CA
restored the thapsigargin-induced rise in [Ca2+]i in a concentration-dependent manner, and
increased Ca2+ uptake into the SR [81]. Another study revealed that rosmarinic acid (RA)—a
caffeic acid ester and polyphenol constituent of many culinary herbs—had cardioprotective
effects against acute myocardial infarction, which was associated with increased gene
expressions of both SERCA2 and RyR2 [99].

Bergamot (Citrus bergamia), a citrus fruit rich in the polyphenols neoeriocitrin, neohes-
peridin, naringin, bruteridin, and melitidin, exerts various pharmacologically beneficial
properties—especially cardioprotective and antidiabetic effects [177]. Kang et al. [178]
investigated the effect of bergamot on the intracellular Ca2+-regulating properties in en-
dothelial cells. They concluded that bergamot increased the intracellular Ca2+ concentration
via the release of Ca2+ from the intracellular Ca2+ stores, as well as through SOCE, suggest-
ing protective effects on endothelial dysfunction [178].

5. Concluding Remarks

Ca2+-transport systems, including SERCAs, may represent interesting molecular tar-
gets for therapeutic interventions of pathophysiological states associated with Ca2+ dysreg-
ulation. The role of SERCA activation in the management of ER stress-related diseases has
recently emerged as a promising pharmacological strategy. Dietary polyphenols, owing to
their structural features (i.e., planar motif and/or numerous hydroxyl groups), are able to
interact with SERCA and affect a wide range of intracellular events. Based on the reviewed
information, polyphenolic substances may be beneficial in the management of chronic
disease conditions associated with SERCA downregulation, such as cardiovascular diseases,
diabetes, metabolic disorders, and neuropathological conditions.
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To summarize the key mechanisms of polyphenols’ protective action with respect to
impaired intracellular Ca2+ homeostasis, it is noteworthy to highlight the following:

(i) Upregulation of SERCA expression, specifically via AMPK/SIRT activation;
(ii) Increase in SERCA activity and stability;
(iii) Relieving SERCA2 from the SERCA–PLB complex;
(iv) Enhancing RyR1 and RyR2 activity/expression,
(v) Affecting Ca2+-dependent channels, such as L-type and T-type VGCCs, Ca2+-activated

K+ channels, or SOCs.

Increasing SERCA activity/expression via specific SERCA activators may help to ame-
liorate ER stress while reducing cytosolic Ca2+ overload as well as relieving the load on the
underlying adaptive Ca2+ regulatory pathways and, thus, contributing to the management
of diseases associated with ER stress. Activation and upregulation of SERCA2 seems to
be included within the core Ca2+-dependent mechanisms, whereby polyphenols manifest
their cardioprotective and antidiabetic actions. However, additional studies (especially
clinical trials) are required to address the detailed mechanisms of polyphenol-mediated
action with respect to polyphenol–SERCA interactions and downstream Ca2+ signaling
pathways to contribute in the management of various pathophysiological conditions.
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factor kappa B; ORAI, calcium release-activated calcium channel protein; PLB, phospholamban;
PMCA, plasma membrane Ca2+-ATPase; PPAR, peroxisome proliferator-activated receptor;
RA, rosmarinic acid; RSV, resveratrol; RUT, rutin; RyR, ryanodine receptor; SERCA, Ca2+-ATPase
from sarco/endoplasmic reticulum; SIRT, NAD-dependent deacetylase sirtuin; SOCE, store-operated
calcium entry; SOC, store-operated calcium channel; Sp1 transcription factor, specificity protein 1;
STIM1, stromal interaction molecule 1; SUMO1, small ubiquitin-related modifier 1; TA, tannic acid;
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