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Abstract 

Background:  Variable selection is frequently carried out during the analysis of many types of high-dimensional data, 
including those in metabolomics. This study compared the predictive performance of four variable selection methods 
using stability-based selection, a new secondary selection method that is implemented in the R package BioMark. 
Two of these methods were evaluated using the more well-known false discovery rate (FDR) as well.

Results:  Simulation studies varied factors relevant to biological data studies, with results based on the median values 
of 200 partial area under the receiver operating characteristic curve. There was no single top performing method 
across all factor settings, but the student t test based on stability selection or with FDR adjustment and the variable 
importance in projection (VIP) scores from partial least squares regression models obtained using a stability-based 
approach tended to perform well in most settings. Similar results were found with a real spiked-in metabolomics 
dataset. Group sample size, group effect size, number of significant variables and correlation structure were the most 
important factors whereas the percentage of significant variables was the least important.

Conclusions:  Researchers can improve prediction scores for their study data by choosing VIP scores based on stabil-
ity variable selection over the other approaches when the number of variables is small to modest and by increas-
ing the number of samples even moderately. When the number of variables is high and there is block correlation 
amongst the significant variables (i.e., true biomarkers), the FDR-adjusted student t test performed best. The R pack-
age BioMark is an easy-to-use open-source program for variable selection that had excellent performance characteris-
tics for the purposes of this study.

Keywords:  Stability-based variable selection, False discovery rate (FDR), High-dimensional biological data, Partial area 
under the receiver-operating characteristic curve (pAUC), Variable importance in projection (VIP)
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Background
Variable selection is an important first step in the anal-
ysis of diverse chemical data, where often the goal is to 
identify a subset of measured variables that can distin-
guish between two or more different groups. Including 
all measured variables is impossible in practice and leads 
to reduced precision of model estimates and over-fitting 
in most analytical methods [1]. Many variable selec-
tion methods have been developed for high- and ultra 

high-dimensional data settings and for a variety of mod-
elling approaches and data types [2–4].

The R package Biomark [5, 6] includes these popu-
lar variable selection methods: student t test, Variable 
Importance in Projection (VIP) scores [7, 8] from Partial 
Least Squares Regression (PLS-DA) models, Least Abso-
lute Shrinkage and Selection Operator (LASSO) [9], and 
Elastic Net [10, 11]. Each method has different strengths 
and weaknesses for identifying significant variables often 
found in biological data like in metabolomics, and pos-
sibly, for modelling them. Models for such data should 
be able to handle multi-collinearity in the measured vari-
ables, small n-large p cases (i.e., more variables than sam-
ples), sparsity (i.e., few significant variables), and multiple 
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variables in a regression context, and should have ease of 
interpretation.

Resampling approaches used for prediction with vari-
able selection methods tend to perform poorly when the 
numbers of samples within groups are small. Stability-
based selection is a new general approach that can be 
used with several different analytical methods, from stu-
dent t tests to various regression techniques [12, 13]. It 
is similar to multiple-testing methods like the FDR [14] 
and q-values [15, 16], as these approaches all employ 
secondary selection based on an initial evaluation of the 
variables. Stability-based selection operates by repeat-
edly taking subsets of variables and samples from the full 
data set, and then estimates and ranks the coefficients, 
scores or P values as generated by the chosen analytical 
method in each perturbed dataset. If the fraction of the 
time a variable is included in a fixed number of top vari-
ables in the perturbed datasets is high, it is deemed to be 
stable and, therefore, a potential significant variable (i.e., 
a biomarker). Those variables appearing by chance in 
a few perturbations will not be a consistent indicator of 
class differences when the results are averaged, so are not 
selected. Thus, stability-based selection, like the jackknife 
[17] approach, perturbs the data to identify those vari-
ables that are consistently selected as group difference 
indicators [5, 12, 13] to improve prediction.

Performance of the variable selection methods using 
their selected significant variables can be evaluated using 
Receiver Operating Characteristic (ROC) curves when 
the real significant variables (i.e., true biomarkers) are 
known, such as with simulated and spiked-in data. ROC 
curves are generated by starting with the first selected 
biomarker then sequentially including the remain-
ing ones and plotting the proportion of false positives 
(x-axis) against the proportion of true positives (y-axis) at 
each step. The Area Under the ROC curves (AUC) sum-
marizes the performance of the selected set of signifi-
cant variables by a variable selection method on a scale 
between zero and one; that is, the AUC measures how 
well a random pair of samples, one from each group, is 
correctly classified. The higher the AUC, the better the 
biomarker classification method performs. Instead of cal-
culating the AUC for the whole curve, often the partial 
AUC (pAUC) is calculated [18–20] since most of the true 
significant variables are usually selected first without too 
many false ones. Restricting the calculation of the AUC 
to a smaller range of values of the false positive rate (i.e., 
higher specificity) is appropriate for diagnostic and other 
medical tests based on biomarkers for use in a clinical 
situation [21] and is the metric adopted here.

The objective of this study was to evaluate the perfor-
mance of four popular variable selection methods using 
the robust stability-based selection criterion and two 

of these methods (VIP and student t test) with an FDR 
adjustment to identify significant variables. Our evalu-
ation metric for each method was the pAUC, which 
assesses predictive performance using model-based sim-
ulated biological data for each of the variable selection 
methods.

Methods
Simulation study design
To evaluate the variable selection methods, we used 
model-based simulated data that mimicked biological 
data that have undergone pre-processing and pre-treat-
ment steps in a metabolomics analysis pipeline [22]. By 
varying several biological and experimental factors likely 
to impact variable selection, we could systematically eval-
uate their effects across the methods we considered, since 
we knew the identity of the true significant variables.

Metabolomics data are typically right skewed and 
their range can vary substantially between individual 
metabolites. Logarithmic or other transformations are 
used along with centering and scaling the data to unit 
variance before analysis [22]. The simulated datasets were 
generated assuming these pre-analytical steps have been 
followed, resulting in standard multivariate normal dis-
tributions, which is the joint distribution of correlated 
univariate normal variables with zero means and unit 
variances (i.e., scaled data). The parameters that were 
varied included the combined study sample size N = 50, 
100; the number P = 50, 200, 1000 of measured variables; 
the percentage Q =  10, 15, 20% of significant variables; 
the effect size (or mean abundance or signal) Δ = 0.2, 0.4, 
0.8 in the treatment (or disease) group; and the correla-
tion structure. Similar to Wehrens et al. [13], the follow-
ing correlation structures were adopted: (1) independent 
(i.e., pair-wise and higher order correlations were zero), 
(2) block correlation (i.e., correlation between significant 
variables was 0.7, between non-significant variables was 
0.1, and between blocks was zero), and (3) autoregressive 
of order 1 [AR(1), with correlation rhoabs(i−j) between var-
iables i and j, for rho = 0.5].

Combinations of the various parameter values resulted 
in a total of 36 distinct parameter configurations for each 
correlation structure. For each configuration, 200 data-
sets were simulated and results are based on medians 
across these datasets. For LASSO and Elastic Net, the 
mixing parameter α was set at 1 and 0.5, respectively, 
and the value of the regularization parameter λ was cho-
sen when the number P × Q of significant variables was 
first selected or the maximum number of variables when 
fewer were identified. Two components were adopted 
for PLS-DA models and the BioMark default values for 
the percentage of variables (variable.fraction) included in 
the subgroups as well as percentage of samples removed 
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per group (oob.size) were used. A default top fraction 
ntop  =  10 and a stringent consistency threshold level 
min. present =  0.5 (i.e., 50%) [13] were used so that a 
selected variable had to be in the top 10 variables in at 
least half of the 200 resampled datasets. In every set-
ting, two groups of equal sample sizes were used to 
compare the ability of the four stability-based and two 
FDR-adjusted selection methods to correctly identify 
the significant variables associated with the treatment 
group. The pAUC was set at 0.2, which corresponds to 
a false positive fraction of 0.2 or equivalently, a specific-
ity of 80%. The R code used to generate these data and 
the results can be found here: https://people.ucalgary.
ca/~kakopciu/Simulated Metabolomics Biomarkers R 
Code.docx.

Spiked‑in metabolomics dataset
The spiked-in dataset was from a study that developed 
a standardized approach to untargeted metabolomics 
biomarker discovery [23]. Standardized human serum 
samples from the National Institute for Standards and 
Technology (NIST) were spiked at physiologic concentra-
tions (50-300 um) with two sets of distinct metabolites. 
Maximum spiked concentration was calculated at double 
the target concentration, with dilution sets of samples 
of 0.33 to twofold concentration differences prepared. 
Sample extraction and derivatization followed our stand-
ard laboratory protocols and each sample underwent 
gas chromatography-mass spectrometry (GC–MS) on a 
Waters Technology machine. All samples were randomly 
ordered and run on the same day. A total of 18 repli-
cates from each of the two solution sets were compared 
to each other. Spiked-in metabolites from Solution 1 
included glycine (Gly), serine (Ser), threonine (Thr), and 
aspartic acid (Asp) while those from Solution 2 included 

alanine (Ala), valine (Val), lysine (Lys), and pyroglutamic 
acid (Pyr). Table 1 provides details on the concentration 
ranges. Fifty-two other metabolites were included as all 
samples could be measured, i.e., were above the detec-
tion limits. Additional details on our experimental pro-
tocol and the dataset used in this study are available here: 
https://people.ucalgary.ca/~kakopciu/Steps in design-
ing and preparing the spiked-in Data set.pdf and https://
people.ucalgary.ca/~kakopciu/Spiked-in Data Set BMC 
Notes paper.csv, respectively.

Findings
Figures 1, 2, 3 and 4 present the simulation study results 
for the six variable selection methods for various com-
bined sample size N, proportion of true significant 
variables Q, number of variables P, effect size Δ from 
treatment group, and correlation structure [i.e., AR(1), 
independent and block-correlation]. Point estimates rep-
resent the median values of pAUC for the 200 simulated 
datasets for each parameter configuration. Bootstrap 
sampling was carried out to estimate the 95% confidence 
intervals (CIs) for the medians of the 200 replicates using 
algorithm Basic in the R package boot [6]. The widths 
of the estimated CIs were quite narrow, with an inter-
quartile range of 0.0408, suggesting that the estimated 
medians did not vary substantially. They are available in 
tabular form in the Supplementary Materials (https://
people.ucalgary.ca/~kakopciu/BootstrapCIs for Simula-
tion Study BMC.xlsx).

In the independent correlation setting (centre panels in 
all figures), all selection methods provided nearly iden-
tical results, except when the number of variables and 
the effect size was high (P =  1000, Δ =  0.8). The study 
parameters with the greatest effect on the pAUC val-
ues were the combined sample size N (Figs. 1 vs. 2, 3 vs. 

Table 1  Reference and measured identification parameters for spiked metabolites, with range of serum concentrations 
and injected amounts over the dilutional series

a  RI Retention index, RSD relative standard deviation, TMS trimethylsilyl groups

Metabolite species Concentration 
range (μM)

Injection amount 
range (ng)

GOLM database Measured parameters

RIa Select m/z ions Mean RI m/z ions RSDa (%)

Solution 1

Glycine (3TMS)a 200–300 0.6–3.7 1302.7 174|248|276|100|86 1305.7 174|248|147 101

Serine (3TMS) 100–150 0.4–2.6 1352.8 204|218|278|306|100 1357.9 204|218|147 106

Threonine (3TMS) 80–120 0.4–2.4 1377.2 219|291|218|117|320 1382.9 291|218|117 122

Aspartic acid (3TMS) 26.5–41 0.1–0.8 1511.2 232|218|306|202|334 1512.7 232|218|100 70

Solution 2

Alanine (2TMS) 187 0.6–3.7 1108.6 116|190|218|100|233 1098.9 116|204|118 100

Valine (2TMS) 50–300 0.5–2.9 1207.1 144|218|156|246|100 1209.9 144|218|72 116

Lysine (4TMS) 33–200 0.4–2.4 1881.2 156|174|317|230|434 1915.1 156|174|317 94

Pyroglutamic acid (2TMS) 8–50 0.1–0.5 1650.4 156|258|230|140|273 1516.6 156|258|147 20

https://people.ucalgary.ca/%7ekakopciu/Simulated
https://people.ucalgary.ca/%7ekakopciu/Simulated
https://people.ucalgary.ca/%7ekakopciu/Steps
https://people.ucalgary.ca/%7ekakopciu/Spiked-in
https://people.ucalgary.ca/%7ekakopciu/Spiked-in
https://people.ucalgary.ca/%7ekakopciu/BootstrapCIs
https://people.ucalgary.ca/%7ekakopciu/BootstrapCIs
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4) and the effect size Δ (Figs. 1 vs. 3, 2 vs. 4). Doubling 
the combined sample size from 50 (i.e., 25 per group) to 
100 (i.e., 50 per group) increased the pAUC values by at 
least 0.15 when Δ was 0.4 or 0.8, but had no effect at 0.2 
(results not shown). Doubling the effect size (Figs. 1 vs. 
3, 2 vs. 4) from 0.4 to 0.8 increased the pAUC values by 
at least 0.2. pAUC values increased the most when both 
N and the Δ were increased for all combinations of P and 
Q compared to when Δ was 0.2 (not all results shown). In 
the setting with P = 1000 variables and a large effect size 
(Δ = 0.8), the FDR-adjusted student t test and the Elastic 
Net had pAUCs values that were from 0.15 to 0.4 higher 
than those for the other four methods.

In the AR(1) correlation setting (left panel in all fig-
ures), all selection methods provided results that were 

quite similar to those for the Independent Correlation 
setting; however, the Elastic Net and LASSO methods 
had slightly lower pAUC values than in the Independent 
Correlation setting. For number of variables P =  50 or 
200, the FDR-adjusted student t test or the student t test 
and VIP obtained using the stability-based approach had 
pAUC values that were generally higher by at least 0.1 
than those for the other methods. As in the Independent 
Correlation setting, when either the number of variables 
or effect size was high, the FDR-adjusted student t test 
and the Elastic Net had the highest pAUCs values.

In the block correlation setting (right panel in all fig-
ures), all six selection methods provided very different 
results when the effect size was greater than 0.2. The 
Elastic Net and LASSO consistently ranked the lowest for 

Fig. 1  Partial Area Under the ROC curves (pAUCs) as the proportion of significant variables is increased from 0.1 to 0.3. Results are presented for all 
three correlation structures [independent, AR(1) and block correlation] for the six selection methods [four stability-based methods: Elastic Net (Enet), 
LASSO, student t test, VIP, and two FDR-adjusted methods: student t test BH and VIP BH]. The total number N of samples is 50 and the effect size Δ is 
0.4. The total number P of variables is 50 (Top row), 200 (Middle row) and 1000 (Bottom row)
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pAUC values for any P, any Q (i.e., percentage of signifi-
cant variables), and for any N, and for modest or high Δ. 
The VIP scores based on an FDR adjustment had higher 
pAUC values when Q was 0.1, but performed poorly as it 
increased to 0.2 and 0.3. As Δ was increased, the pAUC 
values for both unadjusted and FDR-adjusted student t 
tests and the stability-based VIP scores increased sub-
stantially: twofold to fourfold when Δ was doubled from 
0.2 to 0.4 (results not shown), and from 0.4 to 0.8 when 
N was 50, but generally only when Q was low (0.1) to 
modest (0.2). When N was 100, a two-fold increase was 
observed when Δ was doubled from 0.2 to 0.4 (results not 
shown), with less dramatic but still substantial increases 
(0.15 to 0.45) when it was doubled from 0.4 to 0.8. The 
only scenario where the VIP scores tended to perform 

worse in the block correlation setting was when Q was 
high (0.3) and P was at least 200. Both unadjusted and 
FDR-adjusted student t tests were less affected with 
increasing P and high Q, especially at the greatest effect 
size (Δ = 0.8). However, when P was high (1000) and Q 
was greater than 0.1, the FDR-adjusted student t test out-
performed all other methods.

In the spiked-in dataset, the patterns for the pAUC val-
ues for the four variable selection methods were also con-
sistent with the model-based simulated datasets when N 
and Q are small. As shown in Table 2, the pAUC values 
for the stability-based method were 0.875 for the VIP and 
both unadjusted and FDR-adjusted student t tests, and 
0.5 for the LASSO and Elastic Net, indicating that these 
latter two methods are equivalent to just guessing. In 

Fig. 2  Partial Area Under the ROC curves (pAUCs) as the proportion of significant variables is increased from 0.1 to 0.3. Results are presented for 
all three correlation structures [independent, AR(1) and block correlation] for the six selection methods [four stability-based methods: Elastic Net 
(Enet), LASSO, student t test, VIP, and two FDR-adjusted methods: student t test BH and VIP BH]. The total number N of samples is 100 and the effect 
size Δ is 0.4. The total number P of variables is 50 (Top row), 200 (Middle row) and 1000 (Bottom row)
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contrast, when the FDR-adjusted P values from the VIP 
and student t test were estimated, noticeably lower pAUC 
values were obtained than for their corresponding meth-
ods adopting the stability-based approach. The pAUC 
from the FDR-adjusted VIP method was 0 versus 0.875 
with resampling, and was 0.75 for the FDR-adjusted 
student t test versus 0.875 with resampling. The FDR-
adjusted student t test selected only six of the eight bio-
markers but fewer non-biomarkers, resulting in higher 
specificity. None of the methods selected Pyroglutamic 
acid from Solution 2, and most included 1–10 additional 
metabolites that were not spiked-in. The modest num-
ber of replicates can make identification of the spiked-in 
metabolites more difficult, and may have led to these low 
pAUC values [24].

Conclusions
The results from this study add to the literature on vari-
able selection methods in several ways. Multivariate 
approaches such as VIP scores, which incorporate cor-
relations across the variables, should theoretically out-
perform simple univariate methods such as the student 
t test when the effect size is low and the significant vari-
ables are correlated [25–27]. This was confirmed in this 
study for the stability-based version of the VIP method 
in the Block Correlation setting when the effect size was 
low (Δ =  0.4) but only when the number of measured 
variables (P = 50) as well as the percentage of significant 
variables were low (Q < 20%). The FDR-adjusted version 
of the VIP method also performed well in the Block Cor-
relation setting when the effect size was low (Δ = 0.4) but 

Fig. 3  Partial Area Under the ROC curves (pAUCs) as the proportion of significant variables is increased from 0.1 to 0.3. Results are presented for all 
three correlation structures [independent, AR(1) and block correlation] for the six selection methods [four stability-based methods: Elastic Net (Enet), 
LASSO, student t test, VIP, and two FDR-adjusted methods: student t test BH and VIP BH]. The total number N of samples is 50 and the effect size Δ is 
0.8. The total number P of variables is 50 (Top row), 200 (Middle row) and 1000 (Bottom row)
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now when the number of measured variables (P =  200, 
1000) was higher and when the percentage of significant 
variables was very low (Q =  10%). In addition, variable 

selection based on the student t test has been previously 
shown to perform well in high-dimensional data set-
tings when variables are strongly associated with class 

Fig. 4  Partial Area Under the ROC curves (pAUCs) as the proportion of significant variables is increased from 0.1 to 0.3. Results are presented for 
all three correlation structures [independent, AR(1) and block correlation] for the six selection methods [four stability-based methods: Elastic Net 
(Enet), LASSO, student t test, VIP, and two FDR-adjusted methods: student t test BH and VIP BH]. The total number N of samples is 100 and the effect 
size Δ is 0.8. The total number P of variables is 50 (Top row), 200 (Middle row) and 1000 (Bottom row)

Table 2  Comparison of  results between  stability-based and  FDR-adjusted methods for  the spiked-in data set for  four 
selection methods (true biomarkers in italics font)

a  pAUC Partial area under the receiver operating characteristic curve (0.2)

Method Test statistic Biomarkers selected pAUCa, sensitivity 1-Specificity

Stability (0.5) VIP Gly Ser Thr Ala Val Lys 20 36 24 13 42 23 41 44 57 19 Asp 0.875 0.169

Student t test Gly Ser Thr Ala Val Lys 20 36 13 23 42 41 Asp 44 57 24 48 0.875 0.169

Lasso Gly Ala Val 20 23 Thr 21 0.5 0.034

Elastic net Gly Ala Val 23 20 Thr 0.5 0.051

FDR Student t test P values <0.05 Gly Ser Thr Ala Val Lys 25 0.75 0.034

VIP P values adj <0.05 – 0 0
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label [28]; this was also confirmed in this study when 
the effect sizes were large (Δ =  0.8) and the number of 
variables is larger than the sample size (≥100). Chong 
and Jun [8] also found that selection based on VIP scores 
performed better than LASSO using similar experimen-
tal factors but different performance metrics. The Elastic 
Net was expected to outperform LASSO when variables 
are highly correlated [11], which was the case in the sim-
ulated data with AR(1) and block correlation, and in the 
independent correlation setting only when the effect size 
and number of variables were both large.

Not surprisingly, our finding that increasing the sam-
ple size improves prediction was also found to increase 
classification accuracy in high-dimensional data settings 
[28, 29]. Implicit in this result for simulated data is that 
additional heterogeneity is not introduced; that is, all 
samples are drawn from the same population. To evaluate 

the effect of a smaller ratio of sample size to number of 
variables, we examined the setting where the number 
of variables is high (P =  1000), the effect size is mod-
est (Δ =  0.4) and the sample size per group is modest, 
low and very low (N/2 = 50, 25 and 10). As we can see 
in Fig. 5, the effect on the pAUC values of reducing the 
sample size even further is evident in their general shift 
downwards, with the single exception of the student t test 
in the Block correlation setting when the number of sig-
nificant variables is 200 or 300. However, the wide 95% 
CIs for the student t test suggest high variability.

If any correlation is present between the significant vari-
ables, using the stability-based VIP scores from a PLS-DA 
model resulted in better prediction when the effect size 
was low to modest (0.2–0.4). Chemometrics methods are 
increasingly being applied in biotechnological processes 
[30] and the results from this study support using the VIP 

Fig. 5  Partial Area Under the ROC curves (pAUCs) as the total number of variables increases from 20 to 100. Results are presented for all three cor-
relation structures [independent, AR(1) and block correlation] for the six selection methods [four stability-based methods: Elastic Net (Enet), LASSO, 
student t test, VIP, and two FDR-adjusted methods: student t testBH and VIP BH]. The number P of variables is 1000 and the effect size Δ is 0.4. The 
total number N of samples is 20 (Top row), 50 (Middle row) and 100 (Bottom row)



Page 9 of 10Lu et al. BMC Res Notes  (2017) 10:143 

scores from the projection-based PLS-DA models using 
the stability-based method when effect sizes are not large 
and the number of variables is low or modest (≤200).

Finally, the findings from this study provide new results 
for variable selection methods, especially for the stabil-
ity-based variable selection approach, which has not 
previously been extensively evaluated for LASSO and 
Elastic Net [5, 12]. The stability-based student t test and 
VIP scores outperformed Elastic Net and LASSO in all 
parameter configurations but not when the effect size 
and the number of variables were large. In general, the 
stability-based VIP scores performed similarly to or bet-
ter than the student t test while Elastic Net performed the 
same as or slightly better than LASSO. When the number 
of variables was very large, the FDR-adjusted student t 
test performed consistently well.

The objective of this paper was to provide guidance on 
popular and easily accessible variable selection meth-
ods already available in R and readily accessible to any 
researcher. The R package BioMark provides several addi-
tional variable selection methods for identifying impor-
tant variables to classify new observations into one of two 
groups, including principal components. The stability-
based selection approach adopted in this study avoids 
over-fitting and is robust even when the sample size in 
each group is small. Our results suggest that using the VIP 
scores over the other three stability-based variable selec-
tion methods, as it generally provides the highest pAUC 
values. It was the best performing method when the num-
ber of variables was low, and especially when the effect 
size was modest (≤0.4). When there is a large number of 
variables (P = 1000) and block correlation is present, the 
FDR-adjusted student t test performed the best—even in 
the very-small-sample size setting (10 per group). Thus, 
it should be the preferred approach in this high variable-
to-sample ratio setting. Doubling the sample size from 
small (50 observations in total) to modest (100 observa-
tions in total) tended to yield an increase in the pAUC for 
any method and any correlation structure with at least 
some signal in the data (Δ ≥ 0.2). Future research direc-
tions should examine ultra high-dimensional data set-
tings to see if similar findings hold and should explore the 
performance of the regularization methods Elastic Net 
and LASSO across a wider range of sparse data settings. 
Finally, extension of the stability-based selection approach 
to other study designs (e.g., three or more groups) would 
increase its usefulness and widen its applicability.
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