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Abstract
Case-control design based high-throughput pharmacoinformatics study using 
large-scale longitudinal health data is able to detect new adverse drug event 
(ADEs) signals. Existing control selection approaches for case-control design in-
cluded the dynamic/super control selection approach. The dynamic/super con-
trol selection approach requires all individuals to be evaluated at all ADE case 
index dates, as the individuals’ eligibilities as control depend on ADE/enrollment 
history. Thus, using large-scale longitudinal health data, the dynamic/super con-
trol selection approach requires extraordinarily high computational time. We 
proposed a random control selection approach in which ADE case index dates 
were matched by randomly generated control index dates. The random control 
selection approach does not depend on ADE/enrollment history. It is able to sig-
nificantly reduce computational time to prepare case-control data sets, as it re-
quires all individuals to be evaluated only once. We compared the performance 
metrics of all control selection approaches using two large-scale longitudinal 
health data and a drug-ADE gold standard including 399 drug-ADE pairs. The 
F-scores for the random control selection approach were between 0.586 and 0.600 
compared to between 0.545 and 0.562 for dynamic/super control selection ap-
proaches. The random control selection approach was ~ 1000 times faster than 
dynamic/super control selection approach on preparing case-control data sets. 
With large-scale longitudinal health data, a case-control design-based pharmaco-
informatics study using random control selection is able to generate comparable 
ADE signals than the existing control selection approaches. The random control 
selection approach also significantly reduces computational time to prepare the 
case-control data sets.
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INTRODUCTION

Adverse drug events (ADEs), the unintended pharmaco-
logical consequences of correctly administered dugs, are 
a significant challenge for healthcare practice. Currently, 
in the United States, ADEs cause ~  125,000 hospital ad-
missions each year, complicate 53% hospital stays, and 
cause up to 4.6% of deaths.1–3 Many serious ADEs cannot 
be detected prior to the drug approval. For instance, in the 
United States, the times from approval to withdrawal due 
to safety concerns were 3.4 years for valdecoxib, 4.7 years 
for tegaserod, and 5.4 years for efalizumab.4 Traditionally, 
a pharmacoepidemiological study has been used to inves-
tigate prespecified ADE hypothesis from real-world health 
data. For instance, a pharmacoepidemiological study can 
be driven by suspicious ADE case reports. Unlike a phar-
macoepidemiological study, a pharmacoinformatic study 
is not driven by any prespecified hypothesis. A pharma-
coinformatic study is a discovery-driven approach.5 It 
screens signals from a large number of drug-ADE pairs.6 
Thus, a pharmacoinformatic study is able to generate ADE 
hypotheses for the subsequent pharmacoepidemiological 
studies, and hence accelerates translational ADE research. 
Currently, regulatory agencies collect postmarket ADE 
reports through Spontaneous Reporting Systems (SRSs) 
for identifying ADE hypothesis. An SRS report usually in-
cludes drug usages, ADE outcomes, and other information 

(i.e., patient demographics). Using SRS, a pharmacoinfor-
matic study is able to screen ADE signals under the case-
control design setting, as the reports can be summarized 
into a two-by-two contingency table by drug status (yes/
no) and ADE status (yes/no).

Pharmacoinformatic studies have successfully identi-
fied ADE signals from SRS databases.7 Pharmacoinformatic 
approaches based on two-by-two contingency tables (i.e., 
the case-control design setting) are also known as dispro-
portion analysis (DPA), as they measure ADE signal by the 
outcome (i.e., total count of a drug-ADE pair) to expecta-
tion (i.e., expected count of a drug-ADE pair assuming no 
association) ratio. Frequentist DPA approaches include the 
proportional reporting ratio (PRR) and the reporting odds 
ratio (ROR).8,9 The Empirical Bayesian geometric mean 
(EBGM) is an empirical Bayesian DPA approach and the in-
formation component (IC) is a Bayesian DPA approach.10,11 
Zhang et al. proposed a three-component mixture model 
(3CMM), which provided false discovery rate estimation for 
DPA signals.12 In addition to DPA approaches, multivariable 
approaches, such as multiple logistic regression or regulated 
logistic regression, have been used to adjust potential con-
founding variables (i.e., comedications).13 All these pharma-
coinformatic studies have their own validations, and many 
promising discoveries have been successfully validated.7,14

Pharmacoinformatic studies have also identified 
ADE signals from longitudinal health data including 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Large-scale longitudinal health data and adverse drug event (ADE) phenotyping 
algorithms have become increasingly available. Traditional methods are highly 
computationally intensive to conduct high-throughput ADE screening using 
large-scale longitudinal health data.
WHAT QUESTION DID THIS STUDY ADDRESS?
We propose a computationally efficient control selection approach to conduct 
case-control design based on high-throughput ADE screening using large-scale 
longitudinal health data.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A case-control design-based pharmacoinformatics study using randomly selected 
index dates as controls (i.e., random control selection) has comparable or higher 
performance metrics compared with existing control selection approaches, 
whereas the random control selection approach is able to significantly reduce 
the time.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Using the random control selection approach, a case-control design-based phar-
macoinformatics study can be upscaled to screen several hypotheses in short pe-
riod of time (e.g., 15 min), and identify single drugs and drug combinations with 
increased ADE risks.
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electronic health record (EHR) data and administrative 
claims data.15–17 Unlike SRS, EHR data and administra-
tive claims data contain individual level and longitudinal 
information, including clinical outcomes (i.e., diagnoses) 
and medications (i.e., pharmacy prescriptions/claims). 
Compared to SRS, EHR data and administrative claims 
data contain more population groups (i.e., individuals 
without any ADE), variables (i.e., health conditions other 
than ADE), and detailed temporal information. Although 
the utilization of this additional information can improve 
ADE screening, pharmacoinformatic studies using longi-
tudinal health data require sophisticated epidemiological 
study designs, such as the case-control design.18 Under 
the case control-design, the aforementioned pharmacoin-
formatic approaches for SRS (e.g., DPAs) can be directly 
applied to longitudinal health data. For instance, Wang 
et al. identified drug combinations with higher myopathy 
(i.e., a common muscular ADE) risks from an EHR data-
base using the case-control design.16

Although pharmacoinformatic studies generated valu-
able ADE signals from longitudinal health data, they shall 
be expanded to investigate: (i) more large-scale longitu-
dinal health databases, and (ii) much larger numbers of 
ADEs.19,20 First, large-scale longitudinal health databases 
become more common and available. For instance, the 
MarketScan commercial claims and encounters database 
contains over 40  million patients’ information per year,21 
and it has been cited more than 10,000 times according to 
the Google Scholar. Second, informatic resources allow a 
high-throughput pharmacoinformatics study to screen a 
large number of ADEs. For instance, algorithms to annotate 
different coding systems allow more than a hundred ADEs 
to be identified from longitudinal health data.22–24 Currently, 
the development of large-scale longitudinal health data 
and informatics resources facilitate a high-throughput 
pharmacoinformatic study using large-scale longitudinal 
health data. However, the control selection process in the 
case-control design requires a tremendous amount of time 
for data preparation. For instance, under the existing inci-
dence density sampling approach, at each ADE case index 
date (i.e., the health encounter date with an ADE diagno-
sis), other individuals who had not yet developed the ADE 
were eligible as controls.25,26 Thus, the incidence density 
sampling approach requires all individuals to be evaluated 
at all ADE case index dates. Such a process requires a sig-
nificant amount of computational time. If the data set con-
tains a few million individuals, our experiences show that 
the incidence density sampling approach may require ap-
proximately 1 week to prepare the case-control data set for 
a common ADE using a standard computer. Additionally, 
using the incidence density sampling approach, the selected 
controls for one ADE cannot be used for another ADE, as 
the control selection approach depends on the history of the 

ADE. Thus, the computational time to prepare case-control 
data sets is further increased for investigating a large num-
ber of ADEs. For over a hundred ADEs, the projected time 
to prepare all case-control data sets is over 1 month on a 
computer cluster or over 1  year on a standard computer. 
The extraordinarily high computational time to prepare 
case-control data sets is a significant challenge, which can-
not be addressed by existing approaches.

In this study, we propose a random sampling approach 
(i.e., random control selection) for case-control design, 
which is computationally efficient for investigating a large 
number of ADEs using large-scale longitudinal health data. 
To reduce the computational time, we propose to select a 
random control pool by using random generated control 
index dates. The proposed approach is able to significantly 
reduce the computational time, as it only requires all indi-
viduals to be evaluated once. Additionally, the random con-
trol pool can be used to prepare multiple case-control data 
sets without additional computational time. On the con-
trary, controls for one ADE cannot be used as controls for 
other ADEs under existing approaches. Thus, the random 
control selection approach is more computationally efficient 
for high throughput ADE screening. We used two large-
scale longitudinal health data sets and the Observational 
Medical Outcomes Partnership (OMOP) gold standard7 to 
evaluate the performance metrics of the proposed random 
control selection approach and existing control selection ap-
proaches under the case-control design.

METHODS

Control selection approaches

As individuals were enrolled in different dates in longitudi-
nal health data, the case-control design required a baseline 
period (i.e., 3- or 6-month). The case index date was defined 
as the date of health encounter with an ADE diagnosis given 
no ADE diagnosis in the baseline period prior to the en-
counter date. Under the case-control design, control index 
dates were selected for each of the case index dates. For in-
stance, the control index date could be the same date as the 
corresponding case index date (i.e., matching by ADE case 
index date), as long as the selected individual was eligible as 
a control at the case index date. Noting that a control index 
date should have duration of enrollment longer than the 
baseline period prior to the control index date. Thus, an in-
dividual’s eligibility as a control changed over time depend-
ing on the individual’s enrollment history. We investigated 
the drug exposures prior to all case index dates and control 
index dates. The existing control selection approaches and 
the proposed random control selection approach are illus-
trated in Figure 1, and are summarized below:
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•	 Dynamic (i.e., the incidence density sampling) con-
trol selection (Figure  1a): for an ADE, individuals 
eligible as control at a case index date should have 
duration of enrollment longer than the baseline pe-
riod and had not yet developed the ADE. Control 
index dates were matched to the corresponding case 
index dates.26 Control index dates should be sepa-
rately generated for different ADEs, as the control 
selection process for a specific ADE depends on the 
ADE’s history.

•	 Super control selection (Figure 1a): for an ADE, individ-
uals eligible as controls at a case index date should have 
duration of enrollment longer than the baseline period 
and had never developed the ADE during the entire 
enrollment period. Control index dates were matched 

to the corresponding case index dates.25 Control index 
dates should be separately generated for different ADEs, 
as the control selection process for a specific ADE de-
pends on the ADE’s history.

•	 Random control selection (Figure  1b): randomly se-
lected index dates with duration of enrollment longer 
than the baseline period were gathered as a control pool. 
Control index dates were not matched to the case index 
dates. Control index dates in the control pool could be 
used for all ADEs, as the control selection process did 
not depend on the ADEs’ histories.

In a short summary, the proposed random control se-
lection approach relaxed two restrictions: (i) matching by 
case index date, and (ii) matching by ADE history.

F I G U R E  1   (a) Algorithm for 
dynamic/super control selection 
approach. (b) Algorithm for random 
control selection approach. ADE, adverse 
drug event

(a)

(b)
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Data preparation

We used two large-scale longitudinal health databases 
in this study. The first database was the MarketScan 
Commercial Claims and Encounters database from 2012 
to 2017. The MarketScan database included ~  43  mil-
lion individuals per year. The second database was the 
Indiana Network for Patient Care Common Data Model 
(INPC-CDM) from 2004 to 2015. The INPC-CDM database 
included ~ 5 million individuals per year. Both databases 
included individual-level demographic information (i.e., 
age and gender), administrative information (i.e., date 
of hospital visit), diagnoses, procedures, and pharmacy 
records. The MarketScan database used International 
Classification of Disease (ICD)-9/ICD-10 codes to record 
diagnoses and National Drug Codes (NDCs) to record 
pharmacy claims. The INPC-CDM database used OMOP 
concept IDs to record diagnoses and RxNorm to record 
pharmacy prescriptions. More details of the MarketScan 
database are presented in the Supplementary Data and 
Codes.

Our outcomes were acute myocardial infarction, acute 
renal failure, acute liver injury, and gastrointestinal bleed-
ing. These ADEs were identified by using ICD-9/ICD-10 
codes (algorithm given in Table S1). For each ADE, we de-
fined a case as: an ADE diagnosis after a 180-baseline period 
(Figure S1). For instance, the first ADE diagnosis of an indi-
vidual after 180-day enrollment was considered as a case; a 
subsequent ADE diagnosis of an individual was considered 
as a case if all previous ADEs were diagnosed 180 days prior 
to the current diagnosis. From the MarketScan database, 
we identified 203,797 acute myocardial infarction cases, 
295,956 acute renal failure cases, 227,755 liver injury cases, 
and 137,420 gastrointestinal bleeding cases. From INPC 
data, we identified 137,439 acute myocardial infarction 
cases, 165,469 acute renal failure cases, 200,956 liver injury 
cases, and 235,056 gastrointestinal bleeding cases.

We conducted case-control designs for all four ADEs 
using the two databases. We used the ADE diagnosis dates 

as the case index dates. We generated the control index 
dates by using the dynamic control selection approach, 
super control selection approach, and random control se-
lection approach. Similar as the cases, individuals eligible 
as controls must be enrolled 180 days prior to the control 
index dates (Figure S1). In addition, we also applied gender 
and age matching for all three control selection approaches, 
and we fixed the case-control ratio as 1:50. Last, we exam-
ined the drug exposure statuses within 30-day prior to the 
index dates. For both databases, the drug names were nor-
malized to generic drug names. As we did not have the au-
thority to share the original data, we created a mock data 
set that had similar structures as the administrative claim 
data. Additionally, we provided sample codes to prepare 
case-control data sets from the mock data set. Please see 
Supplementary Data and Codes.

Gold standard and DPA analysis

The OMOP drug-ADE gold standard was designed to es-
tablish a reference set for a pharmacovigilance study.7 
It included 399 drug-ADE pairs that were based on 181 
drugs and the aforementioned four ADEs (acute myo-
cardial infarction, acute renal failure, acute liver injury, 
and gastrointestinal bleeding). These 399 drug-ADE pairs 
were classed as 165 true positive test cases and 234 true 
negative test cases.

For each of the drug-ADE pair in the gold standard, 
the case-control data set (i.e., all case index dates and con-
trol index dates) was summarized into a two-by-two con-
tingency table by statuses of the ADE (Yes/No) and the 
drug (Yes/No; i.e., a, b, c, and d in the 2-by-2 table). In 
this study, we selected two frequentist DPA approaches 
and one Bayesian DPA approach for evaluation. They 
were PRR, ROR, and IC (Table 1). Additionally, we com-
puted PRR025, ROR025, and IC025, which were the lower 
bounds of the 95% confidence intervals for the aforemen-
tioned quantities.

DPA Formula Quantity of estimation and description

PRR8 a

(a+ b)
∕

c

(c+ d)
P(ADE |Drug)

P(ADE |No Drug)

ROR9 a

b
∕
c

d

(
P(ADE|Drug)

P(No ADE|Drug)

)
∕
(

P(ADE |NoDrug)
P(No ADE |No Drug)

)

IC10

log2

[
a+ 1

(a + c) × (a + b)

a + b + c + d
+ 1

]
log2

(
P(ADE&Drug)

P(ADE) ×P(Drug)

)

By adding 1 on both the numerator and the 
denominator, infrequent drug-ADE pairs 
will have penalized IC values.

Note: a = count (ADE = Yes and drug = Yes), b = count (ADE = No and drug = Yes), c = count 
(ADE = Yes and drug = No), and d = count (ADE = No and drug = No).
Abbreviations: IC, information component; PRR, proportional reporting ratio; ROR, reporting odds ratio.

T A B L E  1   Pharmacoinformatics 
approaches: PRR, ROR and IC (a, b, c, 
and d are the four counts in a two-by-two 
contingency table)
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RESULTS

There were 107,509,200 unique individuals in the 
MarketScan database. For the four ADEs, there were 
864,928 distinct case index dates. We selected 20,000,000 
random index dates as the control pool for random con-
trol selection approach. Subsequently, we generated 
case-control data sets by using the dynamic control 
selection approach, super control selection approach, 
and random control selection approach. We computed 
PRR, PRR025 (i.e., the lower bound of 95% confidence 
interval of PRR), ROR, ROR025, IC, and IC025 for all 
gold standard drug-ADE pairs. The rules to determine 
ADE signals for the aforementioned quantities were: 
PRR greater than 1, PRR025 greater than 1, ROR greater 
than 1, ROR025 greater than 1, IC greater than 0, and 
IC025 greater than 0. We computed precision, recall, 
and F-score (i.e., performance metrics) using the sig-
nal detection rules and the OMOP gold standard. The 
performance metrics for using all drug-ADE pairs are 
shown in Figure 2. First, F-scores of random control se-
lection approach were either close to or slightly higher 
than the F-scores of dynamic/super control selection 
approaches. Specifically, random control selection ap-
proach had F-scores between 0.586 and 0.600; and dy-
namic/super control selection approaches had F-scores 
between 0.545 and 0.562. Second, the random control 
selection approach had higher recall values (0.854–
0.961) compared to dynamic/super control selection ap-
proaches (0.720–0.804). Last, all three control selection 

approaches had similar precision values. Specifically, 
the random control selection approach had precision 
values between 0.436 and 0.446; and dynamic/super 
control selection approaches had precision values be-
tween 0.430 and 0.449. The ADE-specific performance 
metrics are shown in Figure S2. In a short summary, all 
three control selection approaches had similar F-scores 
for acute renal failure, acute liver injury, and gastroin-
testinal bleeding. However, the random control selec-
tion approach had higher F-scores for acute myocardial 
infarction. Additionally, in the INPC data analysis, the 
performance metrics of the random control selection 
were either close to or higher than dynamic/super con-
trol selection approaches (Figures S3 and S4).

Due to the random nature of the control selection pro-
cess (i.e., the controls were randomly sampled), we repli-
cated the control selection process 50 times to investigate 
the consistency of control selection. Using acute myocar-
dial infarction as the ADE, we generated 50 case-control 
data sets for each of the control selection approaches. 
Subsequently, we computed precision, recall, and F-score; 
and their 95% empirical confidence intervals (i.e., the 2.5% 
and the 97.5% quantiles of the performance metrics). The 
results are shown in Figure 3. First, the random control 
selection approach had higher performance metrics than 
the dynamic/super control selection approaches. Dynamic 
control selection and super control selection had similar 
performance metrics. Second, all three control selection 
approaches yield consistent performance metrics with 
narrow empirical confidence intervals.

F I G U R E  2   Precision, recall, and F-score in MarketScan data analysis. IC, information component; PRR, proportional reporting ratio; 
ROR, reporting odds ratio
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We also evaluated the actual computation time for 
all control selection approaches using the MarketScan 
data on our local server. Because all control selection ap-
proaches had the same initialization steps (i.e., determine 
ADE case index dates and enrollment periods), we only 
compared the computational time to generate the control 
index dates. We fixed the case-control ratio as 1:50. With 
107,509,200 individuals, we evaluated the computational 
time to generate: (i) 500 control index dates for 10 cases; 
(ii) 5000 control index dates for 100 cases; (iii) 50,000 con-
trol index dates for 1000 cases; and (iv) 500,000 control 
index dates for 10,000 cases. The computational times for 
10, 100, 1000, and 10,000 cases were: (i) 0.01, 0.14, 1.41, 
and 13.94 h for the dynamic control selection approach; 
(ii) 0.01, 0.12, 1.14 and 10.86 h for the super control selec-
tion approach; and (iii) only 0.03, 0.35, 3.21, and 33.32 s 
for the random control selection approach (Figure 4). The 
random control selection approach was ~ 1000 times faster 
than the dynamic/super control selection approaches.

DISCUSSION

We propose a random control selection approach to con-
duct case-control design-based high-throughput ADE 
screening using large-scale longitudinal health data. Under 
the random control selection approach, randomly selected 
index dates are gathered as a random control pool, which 
can be used to prepare case-control data sets for multiple 

ADEs. Compared with existing dynamic/super control se-
lection approaches, the random control selection approach 
relaxes the matching by the case index date restriction and 
the matching by ADE history restriction. We evaluated the 
performance metrics of all control selection approaches by 
using a large-scale administrative claims data set and drug-
ADE gold standard. Using precision, recall, and F-score as 

F I G U R E  3   Performances for 50 independent replications using MarketScan data and acute myocardial infarction as ADE. ADE, adverse 
drug event; IC, information component; PRR, proportional reporting ratio; ROR, reporting odds ratio

F I G U R E  4   Actual and projected computation time for random 
control selection approach and dynamic/super control selection 
approach using MarketScan data
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metrics, we identified that the proposed random control 
selection approach had similar performance metrics as 
the dynamic/super control selection approaches in three 
ADEs: acute liver injury, acute renal failure, and gastroin-
testinal bleeding (Figure 2), and better performance met-
rics than the dynamic/super control selection approaches 
in acute myocardial infarction (Figure  3). We replicated 
the control selection process 50 times, and observed the 
random control selection approach had consistent perfor-
mance metrics (Figure 3). Thus, the reproducibility of the 
random control selection approach has been confirmed by 
50 replications (Figure 3), and another EHR data analysis 
(Figures S3 and S4). These results suggested that the case-
control design-based pharmacoinformatics study using 
the random control selection approach was comparable 
to using the dynamic/super control selection approach for 
screening ADEs.

Our primary motivation for proposing the random con-
trol selection approach is to reduce computational time for 
high-throughput ADE screening using large-scale longitudi-
nal health data. At each case index date, the dynamic/super 
control selection approaches require all individuals to be 
evaluated for eligibility, as the control selection approaches 
depend on ADE/enrollment history. For instance, at a case 
index date, eligible dynamic controls are individuals who 
have not yet developed the ADE and have been enrolled over 
a period (Figure 1). Thus, the total computational time for 
dynamic/super control selection approaches is proportional 
to the total number of case index dates. Given the large 
amount of distinct case index dates in large-scale longitudi-
nal health data, dynamic/super control selection approaches 
require a considerable amount of computational time. 
Moreover, for investigating multiple ADEs, the selected con-
trols using dynamic/super control selection approaches for 
one ADE cannot be used as controls for another ADE, as 
the dynamic/super control selection approaches depend on 
the ADE history (i.e., the controls are ADE specific). Thus, 
computational time to select controls is further increased for 
screening multiple ADEs, as multiple case-control data sets 
are required. In contrast, the random control selection ap-
proach does not depend on the health history, nor depend 
on the ADE history. For random control selection, individ-
uals are randomly selected to from a control pool, and con-
trol index dates are randomly selected as well. Thus, once 
the control pool has been formed, the total computational 
complexity remains fixed as the number of case index dates 
increases. Moreover, the random control pool can be used to 
generate case-control data sets for screening multiple ADEs 
without additional computational time expense. For large-
scale longitudinal health data like MarketScan data (i.e., 
N > 40 million per year), dynamic/super control approaches 
required 100 h to prepare a case-control data set for an ADE 
that has a rate of 0.1% (Figure 4). Thus, it required 1000 h to 

prepare 10 case-control data sets for 10 ADEs with similar 
rates. Alternatively, the random control selection approach 
required only 5  min to generate the random control pool. 
Subsequently, control index dates were random sampled 
from the control pool. The total time to prepare one case-
control data set was ~ 1 min. For 10 ADEs, the random con-
trol selection approach only required 15 min (i.e., 5 min for 
preparing the random control pool and 10 min for selecting 
control index dates for 10 ADEs).

We would like to point out that the primary aim for 
ADE screening is to prioritize true ADE signals (i.e., ADE 
signal ranking). Thus, bias is not a significant concern for 
screening ADE signals, as long as the true ADEs can be pri-
oritized.27 The proposed random control selection approach 
reduces computational time by relaxing the matching by 
case index date restriction and the matching by ADE his-
tory restriction. In traditional pharmacoepidemiological 
study, these two restrictions are used to reduce potential 
biases. Matching by case index date is able to reduce po-
tential temporal bias.28 Additionally, matching by ADE 
history restriction is able to reduce selection bias.29 We 
conducted additional simulation studies to evaluate the im-
pact of relaxation the aforementioned restrictions (details 
give in Supplementary Simulation Results). Based on 5000 
simulations, we observed the estimated PRR, ROR, and IC 
values under the random control approach were closed to 
the values under the dynamic/super control selection ap-
proach (relative differences less than 1%). Thus, relaxing 
these restrictions may not induce significant biases. In fact, 
the biased control selection approaches were widely used 
for practical or scientific reasons.25,30 For instance, the 
super control selection approach is a biased control selec-
tion approach.25 Please note that even carefully conducted 
case-control design is subject to bias.31,32 Currently, the ac-
tive comparator design is considered as the gold standard 
for accessing drug outcome.33 In the active comparator 
design, the ADE rate among patients exposed to the can-
didate drug is compared to the ADE rate among patients 
exposed to the comparator drug (i.e., a drug similar to the 
candidate drug). However, the active comparator design is 
highly computationally expensive, as it requires all drug ex-
posures to be assessed. Thus, it is natural to first screen ADE 
signals by using a computationally efficient approach, and 
subsequently to validate the ADE signals by using a more 
rigorous approach. In this study, we observed: (i) the ran-
dom control selection approach had similar or better perfor-
mance metrics compared with the dynamic/super control 
selection approaches; and (ii) the random control selection 
approach required much less computational time. Based on 
these two reasons, the random control selection approach 
is able to accelerate ADE screening process and generate 
comparable ADE signals. We would like to point out that 
the proposed random control selection approach can reduce 
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bias by using stratified matching. This can be accomplished 
by generating separate random control pools for each of 
the strata. Although the actual computation time for data 
preparation in case-control design may depend on many 
factors (i.e., hardware and matching process), the proposed 
random control selection approach shall significantly re-
duce the computation time with stratified matching too.

In these studies, we selected four ADEs for performance 
evaluation. They were acute myocardial infarction, acute 
renal failure cases, liver injury, and gastrointestinal bleed-
ing. We selected these ADEs as they were in the OMOP 
drug-ADE gold standard. These ADEs were also highly 
frequent and had significant clinical consequences (i.e., 
causing emergency department visit).34 Thus, these ADEs 
have been continuously monitored by the US Food and 
Drug Administration (FDA).35 Although we are not pri-
marily focusing on the performance metrics of the DPA 
methods, we would like to discuss ADE screening with re-
spect to different types of databases and ADEs. First, the 
performance metrics of a pharmacoinformatics study using 
different types of longitudinal health databases may be dif-
ferent. In administrative claims data analysis, the random 
control selection approach had F-score ~  0.6 (precision 
~ 0.45 and recall ~ 0.90) for all four ADEs. In other words, 
the random control selection approach was able to select 
~ 90% true ADEs. In EHR data analysis, the random con-
trol selection approach had F-score ~ 0.5 (precision ~ 0.45 
and recall ~ 0.40) for all four ADEs. Administrative claims 
data and EHR data had different informatics structure due 
to their nature structures.36 Thus, an algorithm to identify 
an ADE may perform differently in these two types of data. 
Subsequently, the performance metrics of pharmacoin-
formatic studies may differ. Second, we identified that the 
performance metrics among four ADEs were different. In 
administrative claims data analysis, acute liver injury had 
F-score ~ 0.8; whereas acute myocardial infarction, acute 
renal failure, and gastrointestinal bleeding had F-scores be-
tween 0.4 and 0.6. The performance metrics of case-control 
design-based pharmacoinformatics study depend on the 
length of the window to examine drug exposure (i.e., drug 
exposure window).18 In our study, we used 1 month drug 
exposure window for all four ADEs. However, the 1 month 
window may not be the best window for all ADEs. For a 
high-throughput pharmacoinformatics study of multi-
ple ADEs, an ADE-specific drug exposure window can be 
used. The duration of the drug exposure window can be 
determined by clinical knowledge or sensitivity analysis. 
Additionally, the performance metrics of a pharmacoin-
formatic study also depend on confounding control.37,38 
Longitudinal health data contain a variety of variables, in-
cluding both categorical and numerical confounders. Both 
categorical confounders and numerical confounders can 

be controlled by using multivariable analysis. Additionally, 
confounders can be controlled in the case-control design 
by using stratified case-control matching (i.e., matching by 
gender or dichotomized age). The performance of a phar-
macoinformatic study also depends on the quality of phe-
notyping algorithms. Currently, ADE phenotyping is a fast 
growing field. We expect to see more accurate ADE pheno-
typing algorithms in the near future.

The scope of this work is to identify a computational effi-
cient control selection algorithm for screening ADE signals 
from large-scale longitudinal health database. Currently, 
large-scale longitudinal health databases and ADE pheno-
typing algorithms become increasingly available. Using the 
random control selection approach, a case-control design-
based pharmacoinformatic study can be upscaled to screen 
a tremendous amount of hypotheses without spending a tre-
mendous amount of time, and identify single drugs and drug 
combinations with increased ADE risks. The random con-
trol selection approach is able to accelerate the subsequent 
validation studies as well. Ultimately, high-throughput ad-
verse drug events screening using large-scale longitudinal 
health data will find better ways in promoting health. One 
limitation of this study is that the association between drug 
dosage and ADE was not investigated. Although dosage 
information is available in the MarketScan database and 
INPC database, its utilization requires sophisticated text 
mining algorithms. Another limitation is that whereas 1:4 
to 1:10 case-control ratios were used in the current study, 
the optimal case-control ratio for ADE screening, remains 
unclear for large-scale health data mining.

With large-scale longitudinal health data, a case-control 
design-based pharmacoinformatic study using randomly 
selected index dates as controls (i.e., random control se-
lection approach) has similar or higher performance met-
rics compared with existing control selection approaches. 
Compared with existing control selection approaches, the 
random control selection approach is able to significantly 
reduce the time to prepare the case-control data sets.
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