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A B S T R A C T

A few observational neuroimaging investigations have reported subcortical structural changes in
the individuals who recovered from the coronavirus disease-2019 (COVID-19) caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the causal relationships between
COVID-19 and longitudinal changes of subcortical structures remain unclear. We performed two-
sample Mendelian randomization (MR) analyses to estimate putative causal relationships be-
tween three COVID-19 phenotypes (susceptibility, hospitalization, and severity) and longitudinal
volumetric changes of seven subcortical structures derived from MRI. Our findings demonstrated
that genetic liability to SARS-CoV-2 infection had a great long-term impact on the volumetric
reduction of subcortical structures, especially caudate. Our investigation may contribute in part to
the understanding of the neural mechanisms underlying COVID-19-related neurological and
neuropsychiatric sequelae.

1. Introduction

Over the past few years, the rapid spread of coronavirus disease-2019 (COVID-19) around the world has caused more than 6.9
million deaths and posed a serious threat to the global economy [1–3]. The pathogen that causes COVID-19 is named severe acute
respiratory syndrome coronavirus type 2 (SARS-CoV-2). Mounting evidence suggests that the respiratory tract is not the only organ
affected by SARS-CoV-2, and it has been reported that approximately one-third of patients with COVID-19 develop a variety of
neurological and neuropsychiatric symptoms in the acute stage [4–7]. Neuroimaging studies to date have primarily focused on acute
cases in hospitalized COVID-19 patients, and radiological findings based on CT, MRI, and PET have revealed a wide range of ab-
normalities, including signs of ischaemic or haemorrhagic strokes, white matter hyper-intensity or hypo-perfusion throughout the
whole brain, but in an inconsistent pattern [8–10].

Although substantial progress has been made in addressing the acute neurological and neuropsychiatric effects of COVID-19, the
long-term consequences for recovered patients remain largely unclear. An increasing number of patients, including those without
specific nervous systemmanifestations in the acute phase, have reported post-acute neurological and neuropsychiatric sequelae; this is
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known as long-COVID, which can last weeks, months, or even years after infection [11–14]. Patients with long-COVID can have a wide
range of neurological and neuropsychiatric symptoms, such as headache, fatigue, difficulty thinking (sometimes referred to as “brain
fog”), sleep problems, changes in smell or taste, depression or anxiety, etc [15,16]. Further investigation into the pathophysiology of
long-COVID is necessary, as it is a prerequisite for early diagnosis and timely, appropriate treatment of discharged patients, especially
elderly patients who are associated with higher comorbidity, hospitalization rates, and poorer prognoses [17,18]. In addition, it is
equally beneficial to patients without acute and clear neurological manifestations, as their increased risk of developing long-COVID
has been easily overlooked, even though they represent a large proportion of this pandemic [19,20]. As the population of recov-
ered COVID-19 patients continues to grow, the scientific and medical community should pay more attention to post-infection care and
the long-term effects of mild-to-moderate COVID-19 [21]. Therefore, a deeper investigation into the sequelae of COVID-19 is essential
for creating individualized medical care for recovered patients. An open question remains to be addressed in the urgent efforts to
elucidate the neural mechanisms underlying long-COVID-associated cognitive impairment.

In-depth neuropathological examination have revealed an inflammatory response and hypoxic-ischemic damage in the brain of
COVID-19 death cases, and these neuropathological changes may be related to the neurological and neuropsychiatric sequelae seen in
COVID-19 long haulers [22,23]. The long-term presence of neurological and neuropsychiatric symptoms suggests that the neuronal
damage may also be long-term, but the exact duration is uncertain. Pathological research on a large sample size is inaccessible due to
the difficulty of obtaining postmortem brain tissue. As a non-invasive method, MRI is an essential tool to evaluate the structure and
function of the brain, and changes in brain structure and function might be related to cognitive impairment [24]. Therefore, it is of
utmost importance to gain a better understanding of the neural mechanisms underlying long-COVID and identify the long-term effect
of COVID-19 on the brain by using MRI. Whilst the acute effects of COVID-19 on the brain have been widely documented, studies

Fig. 1. Mendelian Randomization Analysis Overview. Study flow chart of the causal inference between COVID-19 phenotypes (susceptibility,
hospitalization, and severity) and longitudinal volume changes in subcortical brain structures.

Z. Wang et al.



Heliyon 10 (2024) e37193

3

investigating the long-term effects remain scarce [8,25]. To date, only a few observational neuroimaging investigations with relatively
small sample sizes have reported longitudinal changes in brain structure and function in COVID-19 recovered individuals [26–29]. In
addition, observational studies can only yield correlations rather than true causality because the effects of confounding factors and
reverse causality cannot be eliminated [30]. Taking observational neuroimaging studies specifically, although these studies found
COVID-19 to be associated with some specific brain abnormalities, the abnormalities may have existed prior to SARS-CoV-2 infection
[26]. The causal effect of long-term COVID-19 on brain structures remains unknown.

Mendelian randomization (MR) is a causal analysis method that can eliminate the interference of some common biases (e.g.,
confounding factors and reverse causation) in classical observational studies [31]. By using genetic variants (e.g., single nucleotide
polymorphisms [SNPs]) that are specifically associated with a putative exposure as instrumental variables (IVs), MR can be used to
make inferences about the causal effect of an exposure on an outcome [32]. Due to the random assortment of alleles at conception, the
distribution of genetic variants that are associated with a particular exposure is largely independent of factors that confound
exposure-outcome associations in conventional observational analyses. Therefore, estimates from MR are less affected by environ-
mental confounders and can provide more reliable insights into causal relationships between risk factors and traits or diseases than
classical observational studies. In addition, given that the genotype of an individual is determined at conception and cannot be
modified by subsequent outcomes, the direction of causation is always from the genetic variants to the traits or diseases of interest, and
therefore, it eliminates the potential of the variables being reverse causation [33–35]. Genome-wide association studies (GWAS) are
the primarymethod for studying the association of SNPs with phenotypes, providing an adequate and reliable source of information for
the identification of appropriate IVs. The rapid development of GWAS and increased summary-level data availability have led to a
proliferation of MR studies.

COVID-19 Host Genetics Initiative (COVID-19 HGI) conducted a GWAS on COVID-19 susceptibility, hospitalization, and severity,
shedding light on the role of host genetic factors in the pandemic in a large sample size of 219,692 cases and>3million controls [36]. A
recent GWAS conducted by Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium has identified common
genetic variants that affected longitudinal volumetric changes in seven subcortical structures (amygdala, caudate, hippocampus,
nucleus accumbens, pallidum, putamen, and thalamus) in 15,640 individuals of European descent throughout their lifespan, which
were associated with aging, psychiatric, developmental, and neurodegenerative diseases [37]. These two GWASs have provided
publicly available summary-level data which can be used to determine the causal relationships between COVID-19 phenotypes and
longitudinal volumetric changes in subcortical structures. With the aim of understanding the genetic links between COVID-19 and
longitudinal volumetric changes in subcortical structures, we performed a two-sample MR analysis to explore the causal effects of three
COVID-19 phenotypes (susceptibility, hospitalization, and severity) on long-term volumetric changes in seven subcortical structures.
Our study may help to reveal the long-term effects of SARS-CoV-2 infection on the subcortical structures and thereby explain, to some
extent, the neurological sequelae in COVID-19 recovered patients. The frame chart of our MR analysis is presented in Fig. 1.

2. Material and methods

2.1. Two GWAS summary datasets

The GWAS summary-level data of COVID-19 phenotypes were acquired from the COVID-19 HGI (RELEASE 7, April 2022) (https://
www.covid19hg.org/). COVID-19 HGI is the largest GWAS of COVID-19, which combines data from over 3 million individuals across
82 large cohorts. Three COVID-19 related phenotypes are included: (1) susceptibility, which is defined as individuals who reported
positive (self-reports, laboratory diagnosis, or physician diagnosis) for SARS-CoV-2 infection (up to 159,840 cases and 2,782,977
controls, with 88.3% of participants being of European origin), (2) hospitalization, which is defined as individuals who were hospi-
talized for related infection symptoms with laboratory-confirmed SARS-CoV-2 infection (up to 44,986 cases and 2,356,386 controls,
with 87.3% participants being of European origin), and (3) severity, which is defined as COVID-19-confirmed individuals with very
severe respiratory symptoms or those who died from this disease (up to 18,152 cases and 1,145,546 controls, with 93.3% participants
being of European origin).

Recently, the ENIGMA consortium has released the GWAS summary-level data of the common genetic variants associated with
annual volumetric change rates in seven subcortical structures (amygdala, caudate, hippocampus, nucleus accumbens, pallidum,
putamen, and thalamus) across the lifespan in 15,640 individuals of European descent across 40 cohorts [37]. For each subcortical
structure, only the average volume of both sides can be obtained, which is equal to the left and right volumes divided by two. The
annual rate of change was calculated using follow-up volume minus baseline volume and divided by the year(s) of follow-up duration.
The mean follow-up durations were from 0.3 to 7.5 years across 40 cohorts and the minimum and maximum were 0.2 and 16.7 years,
respectively. All the two datasets in our study are publicly available GWAS summary statistics (Supplementary Table S1), and so no
additional ethical approval was required. Detailed ethical approval and participants’ consent can be found in the original GWAS
publications [36,37].

2.2. The estimated standardized effect size of SNPs

The estimated standardized effect size (β) and standard error (se) were obtained using minor allele frequency (MAF), sample size,
original effect size, and standard error. The following equation is described previously [38].
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β=
z
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2f(1 − f)(n+ z2)

√ (2)

where z can be calculated as β/se from the original summary data, n is total sample size, and f is MAF.

2.3. Selection of IVs

The COVID-19 HGI has recently released summary statistics of a second updated GWAS which reported 21, 40, and 30 independent
SNPs associated with COVID-19 susceptibility, hospitalization, and severity at a genome-wide significance (P < 5 × 10− 8) [36]. To
minimize the bias due to population stratification, our MR analyses were performed only in the participants of European ancestry
(COVID-19 susceptibility: 122,616 cases and 2,475,240 controls; hospitalization: 32,519 cases and 2,062,805 controls; severity: 13,
769 cases and 1,072,442 controls). Statistical information about the SNPs were obtained. Data harmonization was performed in the
exposure and outcome data to ensure the effect alleles were aligned in different GWAS summary data, and palindromic SNPs were
removed with intermediate allele frequencies. The outcomes, longitudinal volumetric changes in seven subcortical structures-related
SNPs were removed in our MR analysis. The potential confounders including drinking behavior, smoking behavior, body mass index
(BMI), and education have been reported to affect brain structures in previous studies [39–42]. We also removed the SNPs associated
with the above-mentioned potential confounders. The phenoScanner V2 database [43] (http://www.phenoscanner.medschl.cam.ac.
uk/) was used to check the information on the association of SNPs and phenotypes. The F-statistics were calculated for instrument
strength [44]. The R2 of IVs is the sum of R2 of each IV. R2was calculated using the reported effect estimate, standard error, MAF of the
SNPs, and the sample size of exposures to represent the proportion of variance explained by the SNPs in the exposure variable, and the
formula is as follows.

F=
R2 × (n − 2)
(
1 − R2

) (3)

R2 =2× β2 × f × (1 − f) (4)

where R2 is the explained variance of IVs on the exposure, β is the genetic effect size from the exposure GWAS, n is the sample size from
the exposure GWAS, and f is MAF.

2.4. Two-sample MR analysis

The casual analyses were performed using several MR analysis methods: i) IVW, ii) weighted median (WM), iii) MR-Egger, and iv)
maximum likelihood (ML) in “TwoSampleMR” [45] package, and v) and Robust Adjusted Profile (RAPS) in “mr.raps” package [46]. In
our study, the IVW random-effects model was used as the primary MR analysis method to estimate causal effects [47] and four other
complementary MRmethods were used to further verify our MR findings. The IVWmethod is the most efficient and robust analysis and
has been widely used in MR analysis, especially in the absence of pleiotropy [48,49]. It combines the Wald ratio estimates of different
SNPs to obtain the estimate of the causal effect. The WM method is more resistant to pleiotropy. The median IV estimate of all the
variants is used and therefore is applied to eliminate the influence of outliers [50]. The MR-Egger method considers a non-zero
intercept term in the presence of pleiotropic effects when it applies a weighted linear regression [51]. The intercept term is used to
assess the magnitude of pleiotropy and the slope represents a causal estimate. The RAPS method contributes to assessing the mea-
surement error (due to a weak instrument). The combination of different MR analysis methods was performed to strengthen the causal
inference. Bonferroni correction was performed for multiple comparisons at a significant level of P < 0.007 (0.05/7, seven subcortical
structures). The Bonferroni correction is too stringent, as a result, causal association with P < 0.05 was regarded as nominally
significant.

2.5. MR sensitivity analyses

Sensitivity analyses on different assumptions were performed including heterogeneity and pleiotropy tests after MR analysis to
strengthen causal inference. The MR-Egger intercept test was applied to assess possible pleiotropy and the statistical significance was P
< 0.05. MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) approach was performed to identify potentially pleiotropic outliers
that affecting the overall results and to evaluate the causal estimate after removing outliers [52]. Cochran’s Q statistic was calculated
to assess the heterogeneity among IVs and the statistical significance was P < 0.05. In addition, leave-one-out sensitivity analysis was
carried out to pinpoint potential outliers and validate robustness of the results. In the leave-one-out sensitivity test, IVs were eliminated
one by one, and then a two-sample MR analysis was conducted based on the remaining IVs. The sensitivity analyses were conducted
using the “TwoSampleMR” [45] and “MRPRESSO” packages [52].
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2.6. Power calculation

The statistical power for all the MR analysis results was calculated via an online web tool (https://sb452.shinyapps.io/power/)
[53] and the alpha level was set at 0.05. Briefly, the power calculation was based on the causal effect of MR analysis results, explained
variance of IVs on the exposure, and GWAS sample size on the outcome.

3. Results

3.1. Genetic IVs selection and instrument strength

Among the 21, 40, and 30 independent SNPs associated with COVID-19 susceptibility, hospitalization, and severity, one SNP
associated with education and two SNPs associated with BMI were removed. None of the SNPs associated with longitudinal volumetric
changes in subcortical structures overlapped with the SNPs of COVID-19 phenotypes. The F-statistics for these genetic instruments
included in the MRmodel were all greater than 10, indicating no significant weak instrumental bias [54]. Finally, a total of 20, 38, and
29 independent SNPs associated with susceptibility, hospitalization, and severity of COVID-19, respectively, were selected as the
genetic IVs of the exposure. Details of the SNPs used in theMR analysis and those associated with potential confounders are provided in
Supplementary Tables S2–3.

In MR analysis, selected IVs (SNPs) should satisfy the following three assumptions: (1) be strongly associated with exposure
(Relevance); (2) be independent of confounding factors of exposure-outcome association (Independence); and (3) cannot affect
outcome directly except through indirect effect on the exposure (Exclusion restriction). In our study, the IVs (independent SNPs) were
selected from a recently second updated meta-analysis GWAS of COVID-19 at a genome-wide significance (P < 5 × 10− 8) in a large
sample size of 219,692 cases and >3 million controls [36]. The calculation of F-statistics and the removal of SNPs associated with
potential confounders and outcomes ensured that the selected IVs in our MR analyses met all the three assumptions.

Causal associations of three COVID-19 phenotypes on longitudinal volumetric change rate in subcortical structures.
We identified that genetically predicted COVID-19 susceptibility was significantly negatively associated with the longitudinal

volumetric change rate of caudate (IVW beta = − 0.2791, 95 % CI: 0.4610 to − 0.0972, P = 0.0026 < 0.007, surpassing Bonferroni
correction) and nominally negatively associated with the longitudinal volumetric change rate of pallidum (IVW beta= − 0.2136, 95 %
CI: 0.4078 to − 0.0194, P= 0.0311) (Fig. 2). An increase of 1 SD in genetically predicted COVID-19 susceptibility was associated with a
decrease of 0.2791 SD in longitudinal volumetric change rate of caudate, which suggested that host genetic susceptibility to SARS-CoV-
2 infection causally led to faster shrinkage of caudate volume, in the long-term effect. The causal estimates of COVID-19 susceptibility
on the longitudinal volumetric change of caudate were significant by all the four other MR analysis methods (WM, MR-egger, ML, and
RAPS) and the estimated statistical power was 88.4 % when the alpha was set at 5 %, which indicated the reliability of our result. The
directions of the causal estimates of COVID-19 susceptibility on the longitudinal volumetric change of pallidum by all the four other
MR analysis methods were the same as those of the IVW method, but were only significant by ML and RAPS methods. Furthermore,
COVID-19 hospitalization and severity were nominally negatively associated with the longitudinal volumetric change rate of caudate
(IVW beta = − 0.0695, 95 % CI: 0.1292 to − 0.0098, P = 0.0304; IVW beta = − 0.0525, 95 % CI: 0.0966 to − 0.0084, P = 0.0195) and
thalamus (IVW beta = − 0.0604, 95 % CI: 0.1133 to − 0.007, P = 0.0253; IVW beta = − 0.0425, 95 % CI: 0.0794 to − 0.0056, P =

0.0240). The causal estimates of COVID-19 hospitalization and severity on the longitudinal volumetric change rate of caudate were
significant by all the four other MR analysis methods. The directions of the causal estimates of COVID-19 hospitalization and severity
on the longitudinal volumetric change rate of the thalamus by all the four other MR analysis methods were the same as those of the IVW
method, but were only significant by ML and RAPS methods. However, we did not find any causal association (P > 0.05) between the

Fig. 2. IVW estimates from COVID-19 phenotypes on longitudinal volume changes in seven subcortical brain structures. (A) COVID-19 suscepti-
bility, (B) COVID-19 hospitalization, (C) COVID-19 severity. ***P value < 0.007 (0.05/7, seven subcortical structures) is defined as significant after
Bonferroni correction for multiple testing, and *P value < 0.05 is defined as nominal significant. IVW: inverse variance weighted.

Z. Wang et al.

https://sb452.shinyapps.io/power/


Heliyon 10 (2024) e37193

6

COVID-19 phenotypes and other subcortical structures (amygdala, hippocampus, nucleus accumbens, putamen). The causal effects of
genetically predicted three COVID-19 phenotypes on the longitudinal volumetric change rates in subcortical structures by using IVW
methods are displayed in Table 1 and as a forest map in Fig. 2. The result of all MR methods performed in our study are presented in
Supplementary Table S4.

Sensitivity analyses were applied to confirm the MR results. The MR-Egger intercept and MR-PRESSO tests indicated that there was
no notably possible pleiotropy. No heterogeneity across the selected IVs was detected using Cochran’s Q statistic (Supplementary
Table S5). Additionally, the leave-one-out analysis indicated that there was no single SNP driving the MR estimates, which are dis-
played in Supplementary Figs. S1–S3.

4. Discussion

So far as we know, this is the first MR study to assess the causal relationship between three COVID-19 phenotypes (susceptibility,
hospitalization, and severity) and longitudinal volume changes in seven subcortical structures. Our MR analyses indicated that genetic
liability to COVID-19 susceptibility was negatively associated with longitudinal volumetric change of caudate (surpassing Bonferroni
correction) and pallidum. Furthermore, COVID-19 hospitalization and severity were negatively associated with longitudinal volu-
metric changes of caudate and thalamus. Our finding demonstrated that COVID-19 had a long-term impact on the subcortical
structures and led to the reduction of their volumes, especially caudate. Since no heterogeneity or pleiotropy in sensitivity analyses was
detected, the inferred causalities between three COVID-19 phenotypes and longitudinal volumetric changes in the subcortical
structures described above were reliable. Additionally, the estimated causal effect of COVID-19 susceptibility on the longitudinal
volumetric change of caudate was significant by all the five MR analysis methods (IVW, WM, MR-egger, ML, and RAPS), and the
estimated statistical power was 88.4% when the alpha was set at 5%, which indicated the robustness of our result.

The large difference in the sample size of the cases among three COVID-19 phenotypes (susceptibility: 122,616 cases; hospitali-
zation: 32,519 cases; and severity: 13,769 cases) may influence the MR results. Due to the lack of clinical information on the patients
with COVID-19, we are unable to perform MR analysis only in mild cases of COVID-19 by excluding the hospitalized and severe cases.
Nonetheless, most of the patients with COVID-19 susceptibility were mild cases according to the sample size of the three phenotypes
(susceptibility: 122,616 cases; hospitalization: 32,519 cases; and severity: 13,769 cases; the hospitalized and severe cases are included
in the susceptible cases, accounting for only 26.50% and 11.29% of the susceptible cases, respectively). For this reason, we roughly
considered that the causal effect of COVID-19 susceptibility on longitudinal volumetric reduction of the caudate was mainly caused by
mild SARS-CoV-2 infection.

The subcortical regions join with cortical areas to form circuits that coordinate movement, learning, memory, and motivation, and
alterations in the circuits can lead to abnormal behaviors and diseases [55–60]. The caudate is part of the cortico-striatal-thalamic loop
engaging in normal emotional modulation [61–63]. It also functions in planning, execution, learning, memory, and other related
functions [64–67]. The primary function of the globus pallidus is to control conscious and proprioceptive movements, and it also
connects to cortical areas that support motivation and cognition [68–70]. The thalamus is part of the brain that relays sensory and
motor signals from various locations to the cerebral cortex [71–73]. Additionally, it plays a role in alertness, sleep, and consciousness

Table 1
The IVW estimates of three COVID-19 phenotypes (susceptibility, hospitalization, and severity) on the longitudinal volumetric changes of seven
subcortical structures.

COVID-19 phenotypes Subcortical structures Beta P-value SE CI lower CI upper

Susceptibility Amygdala 0.010 0.918 0.093 − 0.172 0.191
Susceptibility Caudate − 0.279 0.003*** 0.093 − 0.461 − 0.097
Susceptibility Hippocampus 0.060 0.520 0.093 − 0.122 0.242
Susceptibility Nucleus accumbens − 0.131 0.156 0.092 − 0.313 0.050
Susceptibility Pallidum − 0.214 0.031* 0.099 − 0.408 − 0.019
Susceptibility Putamen − 0.145 0.120 0.093 − 0.327 0.038
Susceptibility Thalamus − 0.135 0.146 0.093 − 0.317 0.047
Hospitalization Amygdala 0.000 0.989 0.027 − 0.052 0.053
Hospitalization Caudate − 0.070 0.022* 0.030 − 0.129 − 0.010
Hospitalization Hippocampus 0.012 0.711 0.031 − 0.050 0.073
Hospitalization Nucleus accumbens − 0.025 0.391 0.030 − 0.084 0.033
Hospitalization Pallidum − 0.040 0.154 0.028 − 0.094 0.015
Hospitalization Putamen − 0.044 0.100 0.027 − 0.097 0.008
Hospitalization Thalamus − 0.060 0.025* 0.027 − 0.113 − 0.007
Severity Amygdala − 0.004 0.848 0.019 − 0.040 0.033
Severity Caudate − 0.053 0.020* 0.023 − 0.097 − 0.008
Severity Hippocampus 0.014 0.471 0.019 − 0.024 0.052
Severity Nucleus accumbens − 0.015 0.439 0.019 − 0.051 0.022
Severity Pallidum − 0.021 0.267 0.019 − 0.058 0.016
Severity Putamen − 0.033 0.078 0.019 − 0.070 0.004
Severity Thalamus − 0.042 0.024* 0.019 − 0.079 − 0.006

Notes: ***P value< 0.007 (0.05/7, seven subcortical structures) is defined as significant after Bonferroni correction for multiple testing, and *P value
< 0.05 is defined as nominal significant. IVW: inverse variance weighted.

Z. Wang et al.
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as well as learning and memory [74–77]. A few observational neuroimaging investigations disclosed the structural and functional
impairment in these subcortical regions in post-COVID-19 patients [27,28,78–80]. Kas et al. explored the COVID-19-related longi-
tudinal brain metabolic patterns using 18F-FDG-PET/CT, and they found a prominent hypometabolism in a widespread cerebral
network including the caudate and this network remained mildly to severely impaired 6 months after disease onset [81]. A recent MRI
study observed a decrease in left thalamus and pallidum volume in patients with post-COVID fatigue. Qin et al. reportedmicrostructure
changes in 3-month follow-up in patients who recovered from COVID-19 without neurological manifestations and they found that the
severe group tended to have significantly reduced volumes of the bilateral thalami compared to the normal healthy group [27]. Our
result further confirmed the causal links between genetically predicted COVID-19 and the longitudinal volumetric reduction of these
subcortical regions.

Mounting evidence supports the strong association between COVID-19 and cognition impairment [82–84], neuropsychiatric [5,6,
13,16,85] and neurodegenerative disorders [86–89]. A systematic review and meta-analysis selected 81 studies and found that a
significant proportion of individuals after acute COVID-19 experienced persistent cognitive impairment [83]. Previous MR analyses
indicated that genetic liabilities to SARS-CoV-2 infection and COVID-19 severity confer causal effects on intelligence [90]. A growing
number of observational and MR studies revealed the link between COVID-19 and the increased risk of various neuropsychiatric and
neurodegenerative disorders, such as anxiety [16,91], depression [16,92,93], schizophrenia [85,94], Alzheimer’s disease [86,87], and
Parkinson’s disease [95]. Baranova et al. examined bidirectional causal associations between major depressive disorder (MDD) and
COVID-19 to evaluate whether theMDD could aggravate the outcomes of COVID-19 or whether the genetic liability to COVID-19 could
trigger MDD [96]. They found that genetic liability to MDD was associated with increased risk of SARS-CoV-2 infection, while genetic
liability to the three COVID-19 outcomes did not confer any causal effects on MDD. Chen et al. also utilized bidirectional MR approach
to investigate mutual influences between COVID-19 outcomes and childhood mental disorders including
attention-deficit/hyperactivity disorder (ADHD), Tourette’s syndrome (TS), and autism spectrum disorder (ASD) [97]. They revealed
that ADHD confers a causal effect on hospitalized COVID-19 and TS confers a causal effect on critical COVID-19. However, genetic
liability to the COVID-19 outcomes may not increase the risk for the childhood mental disorders. These two studies suggest that MDD,
ADHD and TS may augment the susceptibility to COVID-19, which emphasizes the need to increase social support and improve mental
health intervention for patients with neuropsychiatric disorders during the pandemic. Furthermore, the volumetric reductions of the
caudate, pallidum, and thalamus have been reported in the above-mentioned neuropsychiatric [57,98–102] and neurodegenerative
disorders [103–108]. Given the great impact of COVID-19 on the neuropsychiatric and neurodegenerative disorders and the pivotal
role of these subcortical structures in pathological processes of these disorders, exploring the causal relationship between COVID-19
and longitudinal changes of subcortical structures is of great importance for understanding the underlying neural mechanism of the
association between COVID-19 and these diseases. We speculate that triggered neuroinflammatory pathways [109,110] might be the
potential molecular mechanisms of long-term brain impairment in patients with COVID-19. Our results might shed light on the
long-term effects of COVID-19 on the alterations of subcortical structures, especially caudate, which might be one of the possible
mechanisms contributing to COVID-19-related neurological and neuropsychiatric sequelae.

Our study has several limitations. First, we only included individuals of European ancestry to minimize the bias due to population
stratification, and hence, our findings should be cautiously interpreted when generalizing to other ethnicities. Second, some partic-
ipants from the UK Biobank were included both in the exposure and outcome GWAS datasets. The total number of overlapped par-
ticipants was less than 2536. Even if all the 2536 overlapped participants in the outcome GWAS dataset were included in the COVID-19
GWAS data, the proportions were 0.098 %, 0.121 %, and 0.233 % for COVID-19 susceptibility, hospitalization, and severity,
respectively. Based on Burgess’s suggestion, a very small percentage of sample overlapping was not sufficient to bias the results of MR
analysis [44]. Third, the sample size in the outcome GWAS data of the longitudinal change rate of brain structure phenotypes was
relatively small (15,640 individuals). However, to our knowledge, this is so far the largest GWAS identifying the common genetic
variants associated with longitudinal changes in brain structure across the lifespan. The power calculation results also indicated that
our sample provided sufficient statistical power (Supplementary Table 5). Fourth, the GWAS data of the longitudinal change rate of
regional brain structures only include seven subcortical structures, therefore, we cannot perform MR analysis of the effects of
SARS-CoV-2 infection on the longitudinal changes of the other regional brain structures. Fifth, since the clinical information of the
COVID-19 patients, such as patients’ age, sex, vaccination status, the SARS-CoV-2 strains, and the use of drugs, was unavailable, we
cannot perform stratified analysis. Sixth, the cognitive performance of the COVID-19 patients is also unavailable, we cannot perform
the correlation between the volumetric change of subcortical structures and their cognitive function. Seventh, the follow-up durations
of the longitudinal changes in subcortical structures vary from 0.2 to 16.7 years. Due to the unavailability of a detailed follow-up time
in each individual, it’s impossible to estimate the effects of SARS-CoV-2 infection on the longitudinal changes in subcortical structures
during a relatively fixed period of time, since the longitudinal structure changes in patients with COVID-19 have been reported to be
possibly dynamic [28]. Finally, the main strength of our study is that MR analysis is generally less affected by the confounding and
reverse causation than the traditional observational studies [31], but we still cannot completely exclude the effects of potential
confounding factors on our results even though we used the various MR analysis methods to validate our results and performed the
sensitivity analyses to detect the heterogeneity and pleiotropy. Therefore, validation of our results in additional follow-up cohorts is
warranted and the underlying neurological mechanisms of this causative association require further investigation.
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