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ABSTRACT
◥

Background: TP53 and estrogen receptor (ER) both play essen-
tial roles in breast cancer development and progression, with recent
research revealing cross-talk between TP53 and ER signaling path-
ways. Although many studies have demonstrated heterogeneity of
risk factor associations across ER subtypes, associations by TP53
status have been inconsistent.

Methods:This case–case analysis included incident breast cancer
cases (47% Black) from the Carolina Breast Cancer Study (1993–
2013). Formalin-fixed paraffin-embedded tumor samples were
classified for TP53 functional status (mutant-like/wild-type-like)
using a validated RNA signature. For IHC-based TP53 status,
mutant-like was classified as at least 10% positivity. We used
two-stage polytomous logistic regression to evaluate risk factor
heterogeneity due to RNA-based TP53 and/or ER, adjusting for
each other and for PR, HER2, and grade. We then compared this
with the results when using IHC-based TP53 classification.

Results: The RNA-based classifier identified 55% of tumors as
TP53 wild-type-like and 45% as mutant-like. Several hormone-
related factors (oral contraceptive use, menopausal status, age at
menopause, and pre- and postmenopausal body mass index)
were associated with TP53 mutant-like status, whereas repro-
ductive factors (age at first birth and parity) and smoking were
associated with ER status. Multiparity was associated with both
TP53 and ER. When classifying TP53 status using IHC methods,
no associations were observed with TP53. Associations observed
with RNA-based TP53 remained after accounting for basal-like
subtype.

Conclusions: This case–case study found breast cancer risk
factors associated with RNA-based TP53 and ER.

Impact: RNA-based TP53 and ER represent an emerging
etiologic schema of interest in breast cancer prevention
research.

Introduction
Many studies evaluating etiologic heterogeneity in breast cancer

have found risk factors to be disparately associated with tumor
subtypes. Previous studies of heterogeneity by molecular and clinical
subtypes have largely focused on subtypes defined by estrogen receptor
(ER) status (1–6) or clinical subtypes defined by ER, PR, and
HER2 (1, 6–11). A limited number of studies have evaluated RNA-
based intrinsic subtypes (12, 13). These schemas emphasize clinically
relevantmarkers that are widely available; however, theremay be other

important etiologic subtypes. In the Cancer and Steroid Hormone
(CASH) Study (14) and the Carolina Breast Cancer Study (CBCS;
ref. 15), cross-classification of ER and TP53 status appears to account
for more etiologic heterogeneity (as assessed by a global statistical
measure of etiologic variance) than other widely accepted clinical
multimarker schemes for clinical subtypes. These findings are biolog-
ically relevant given the established roles of TP53 and ER in breast
cancer development and progression, and evidence of cross-talk
between TP53 and ER signaling pathways (16–20).

These previous studies evaluating the TP53- and ER-based schema
used IHC methods for TP53 classification, which misclassifies some
mutant-like tumors as wild-type-like, particularly for mutations that
do not result in protein overexpression or mutations in other genes of
the pathway that indirectly suppress TP53 gene expression (21–23). In
contrast, RNA approaches detect patterns of loss or activity in the
TP53 signaling pathway. Moreover, although the prior studies
estimated a unitary measure (D value) to quantify the degree of
heterogeneity across all risk factors, we have sought to identify the
relative contribution of different tumor markers to the heteroge-
neity of effects for each risk factor. We use a two-stage logistic
regression model (24, 25), which is an efficient method for esti-
mating exposure–disease associations in the presence of tumor
subtype heterogeneity across multiple markers, while accounting
for multiple comparisons and missing data on tumor markers. This
two-stage modeling approach has not been applied to CBCS pre-
viously, and heterogeneity has not been assessed for RNA-based
TP53 subtypes.

In the current study, breast tumors were classified using a validated
RNA signature that aggregates information on the expression of TP53-
dependent genes (26). We assessed risk factor heterogeneity across
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breast cancer subtypes defined by RNA-based TP53 and IHC-based
ER, while accounting for other highly correlated tumor characteristics
(i.e., PR, HER2, and tumor grade). Classifying tumors for TP53
functional status using RNA-based methods may reduce misclassifi-
cation and thereby strengthen etiologic associations.

Materials and Methods
Study population

CBCS is a population-based study that enrolled participants in three
phases. The catchment area for phase I (1993–1996) and phase II
(1996–2001) spanned 24 counties in North Carolina. The study
protocol for phase III (2008–2013) was similar to the prior phases
and expanded enrollment to 44 counties. The present study is restrict-
ed to invasive breast cancer cases (N ¼ 4,806 in phases I–III). Study
details have been described previously (27). Briefly, incident invasive
breast cancers among women 20 to 74 years of age were identified
using a rapid case ascertainment system. Black women and those
younger than 50 years of agewere oversampled. InCBCS, racewas self-
reported. However, in North Carolina population, self-reported race
and genetic ancestry are highly concordant (28). Nonetheless, we
herein interpret race as a social construct, which addresses both
biological/genetic differences as well as complex social determinants
of health. At study enrollment, trained nurses measured body mass
index (BMI) and administered a questionnaire to collect data on
reproductive and lifestyle risk factors. Risk factor data were collected
within 5.5 months of breast cancer diagnosis, on average (29, 30).
Clinical characteristics at diagnosis were assessed by collectingmedical
records. All participants in the CBCS were recruited with written
informed consent under a protocol approved by the Institutional
Review Board of the School of Medicine, University of North Carolina
at Chapel Hill.

Breast tumor markers
Methods for tissue processing and IHC analysis of tumor markers

have been described previously (29, 31–33). Briefly, IHC expression of
ER, PR,HER2, andTP53was abstracted from the clinical record for the
majority of cases in phases I–II. For the remainder of the cases in
phases I–II, and for all cases in phase III, formalin-fixed paraffin-
embedded (FFPE) tumor blocks (collected from cases at study enroll-
ment) were requested from the participating pathology laboratories.
The tumor blocks were used to generate whole sections for cases in
phases I–II and a portion of those in phase III. For themajority of cases
in phase III, tumor blocks were used to generate tissue microarrays.
IHC staining was completed by the Immunohistochemistry Core
Laboratory at UNC and quantified using automated image analysis.
Samples with≥10%positive cells were classified as positive (for ER, PR,
and HER2) and mutant-like (for TP53). Concordance between lab-
oratory and clinical record was 93% for ER andHER2, and 88% for PR,
as reported in Allott and colleagues (31). At the time of study
enrollment for phases I–II, it was not yet the clinical standard of care
to classify ER borderline tumors (≥1% and <10% positivity) as ER
positive. Thus, many borderline ER-positive tumors in these phases
were reported as ER negative. We therefore used a 10% cutoff for ER
positivity in all study phases to avoid having differential classification
by phase. Additionally, Allott and colleagues have shown that a 10%
cutoff for ER positivity has the highest correlation with molecular
phenotypes (e.g., intrinsic subtypes; ref. 31). Tumor stage, size, and
node status were abstracted from the clinical records. Tumor grade,
available only for subjects in CBCS phases I and III, was defined by
centralized pathology review.

RNA expression in CBCS has been quantified using NanoString
assays on FFPE tumor samples, with tumor tissue slides and cores used
for RNA isolation in phase I–II and phase III, respectively (31, 34, 35).
A previously validated RNA signature (Supplementary Table S1) that
aggregates information on TP53-dependent genes was used to classify
TP53 functional status (mutant-like or wild-type-like) based on a
similarity-to-centroid approach (26). RNA-based TP53 status was
missing for the majority of cases in phase I (70%) and for about half
of cases in phases II and III (48% and 53%, respectively). For the earlier
phases, missingness is due to biospecimen resource depletion and
degradation, butmissingness in phase III is due to random sampling of
a subset of specimens for molecular analysis. However, because small
specimens do not afford adequate tissue for molecular analysis, cases
with TP53 status were likely to be larger, later stage, and higher grade
(Supplementary Table S2). A research version of the PAM50 predictor
was used to classify tumors into intrinsic subtype (34, 36), which was
then dichotomized as basal-like or non–basal-like (i.e., luminal A,
luminal B, HER2-enriched, or normal-like). For cases in CBCS phase I,
two complementary DNA-based methods were used for detecting
TP53 gene mutations using FFPE tumor samples. First, single-strand
conformational polymorphism (SSCP) analysis was used as a screen-
ing procedure to detect mutations in exons 4–8 of the TP53 gene, with
subsequent manual radiolabeled sequencing of SSCP positives (37).
The Roche p53 Amplichip research test was also used to detect single
base-pair substitutions and single base-pair deletions in exons 2–11, as
well as splice sites (2 base pairs before and after each exon), in theTP53
gene (38). In a previous paper, Dorsey and colleagues published DNA
data on 656 of 861 phase I specimens. Almost all of these (N ¼ 640)
were also submitted for IHC; however, fewer samples had residual
tissue available for RNA (N ¼ 255). All assays were carried out by a
central laboratory at the University of North Carolina.

Throughout this article, we refer to “TP53” status when making
inferences about the mutation status of the TP53 gene, regardless of
whether we are using RNA- or protein-based methods. Inferred
mutation status (by RNA or IHC methods) is referred to as
“mutant-like” or “wildtype-like,” with “mutant” and “wild-type”
referring to measured DNA mutation status.

Statistical analyses
To compare across technical methods of classifying TP53 status

(RNA signature, DNA sequencing, and IHC), we looked at associa-
tions between TP53 status (mutant/mutant-like vs. wild-type/wild-
type-like) and clinical characteristics. In this analysis, we used
generalized linear models (identity link) to estimate relative
frequency differences and corresponding 95% confidence intervals
(CI), stratified by ER status.

We evaluated heterogeneity of the associations between breast
cancer risk factors and tumor markers using a two-stage polytomous
logistic regression model to calculate case–case odds ratios (OR) and
95% CIs (24, 25). Associations with the following risk factors were
estimated: age at menarche (per 2 years), age at first full-term birth
(≥25 vs. <25 years), nulliparity (yes vs. no), multiparity (≥3 vs. <3
births), breastfeeding duration (>4 months vs. never), oral contracep-
tive use (ever vs. never), menopausal status (postmenopausal vs.
premenopausal), age at menopause (<40 vs. >50 years), pre- and
postmenopausal BMI (≥30 vs. <25 kg/m2), estrogen-only hormone
therapy use (ever vs. never), estrogen and progesterone hormone
therapy use (ever vs. never), smoking status (ever vs. never), alcohol
use (ever vs. never), family history of breast cancer in at least one first-
degree relative (yes vs. no). There was an intermediate category
modeled for breastfeeding duration (<4 months), age at menopause
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(≥40 to ≤50 years), and BMI (≥25 to <30). Age at menopause, premen-
opausal and postmenopausal BMI, and breastfeeding duration are
modeled as ordinal (with comparisons shown between the highest and
lowest categories), age at menarche was modeled as continuous, and all
other variables are modeled as dichotomous. Tumor markers of interest
included RNA-based TP53 (mutant-like vs. wild-type-like), ER, PR, and
HER2 (positive vs. negative), as well as tumor grade (III vs. I/II). All risk
factors of interest were included as predictors, and all tumor markers
were included as outcomes, with adjustment for age at diagnosis, race
(Black/non-Black), and study phase.We then repeated the analysis using
IHC-based TP53 status (mutant-like vs. wild-type-like). As a sensitivity
analysis, we assessed risk factor heterogeneity (exposures) byRNA-based
TP53 subtype (outcome), adjusting for PAM50-intrinsic subtype (basal-
like vs. non–basal-like). The two-stage model handles missing tumor
marker data [RNA-based TP53 (N ¼ 2,456), PAM50-intrinsic subtype
(N ¼ 2,456), IHC-based TP53 (N ¼ 1,603), tumor grade (N ¼ 1,169),
HER2 (N¼ 374), PR (N¼ 132), and ER (N¼ 114)] through imputation
based on the conditional probability. The model also accounts for
multiple comparisons due to the inclusion of multiple outcomes (i.e.,
tumor markers; ref. 25). All statistical analyses were conducted in R
software version 4.0.2 (R Foundation for Statistical Computing).

Results
Demographic and clinical characteristics of cases in the CBCS are

found in Supplementary Table S2, demonstrating overrepresentation
of younger cases (<50 years of age at diagnosis) and Black cases. The
majority of cases were ER positive (68%), PR positive (61%), andHER2
negative (83%). The RNA-based classifier identified 55% of the tumors
as TP53 wild-type-like and 45% as mutant-like. After controlling for
ER status, stage, race, and age, we did not observe statistically
significant differences in the proportion of TP53-mutant-like tumors
according to study phase.

The proportion of TP53 mutant/mutant-like tumors varies accord-
ing toRNA-,DNA-, and IHC-based approaches (Fig. 1). Given the fact
that the distribution of tumors differs by age and race, proportions are
stratified by these factors when comparing across technical methods of
TP53 classification. Among ER-positive cases, the proportion of cases
identified as TP53 mutant was similar across classification methods in
each demographic group. Among ER-negative cases, however, the
RNA signature classified a higher proportion of cases as mutant
compared with the other methods. For example, among non-Black

women 50 years of age or greater, RNAmethods classified 77% of cases
as mutant, compared with 45% and 46% by DNA and IHC methods,
respectively. Consistent with Fig. 1, percent agreement and kappa
values for TP53 status classified using the different methods varied by
ER status (Supplementary Tables S3 and S4). Agreement of RNA and
DNA-based TP53 status is generally high, ranging across demographic
groups from 73% to 75% among ER positive cases and 73% to 82%
among ER-negative cases (Supplementary Table S3). Agreement of
RNA and IHC-based TP53 status varies by ER status, with high
agreement among ER-positive cases (ranging from 70% to 76% across
demographic groups) and relatively low agreement among ER-
negative cases (ranging from 54% to 57%; Supplementary Table S4).

The distributions of TP53 expression score are shown by type of
DNAmutations (structural and functional), stratified by race (Fig. 2).
Tumors with a score greater than zero are classified as TP53 mutant-
like. Compared with Black cases, non-Black cases had a higher
proportion of DNA-based wild-type tumors and a lower proportion
of nonsense and indel mutations. Also, the majority of TP53 wild-type
tumors among non-Black cases (73%) showed no loss of pathway
function by RNA-based classifier, whereas among Black cases, only
about 60% of TP53 wild-type tumors showed normal TP53 pathway
function. Non-Black cases had more tumors with subtle TP53 mis-
sense changes that do not result in loss of TP53 pathway function,
whereas nonsense and indel mutations are nearly all associated with
RNA-based TP53 mutant-like status, regardless of race. When further
stratifying missense mutations and single base-pair substitutions by
hotspot/non-hotspot mutations, 100% of hotspot mutations among
Black cases were classified as TP53 mutant-like, compared with 88%
among non-Black cases.

We assessed the associations of DNA-, IHC-, and RNA-defined
TP53 status with clinical factors, stratified by ER status (Fig. 3;
Supplementary Table S5). Generally, associations with clinical factors
were of highermagnitude and significancewhen classifying TP53 status
using the RNA signature. For example, all three classification methods
revealed associations with PR status and tumor grade, but RNA-based
classification showed the largest differences in TP53 prevalence.
Further, RNA was the only method to capture a statistically significant
associationbetweenTP53 status andBlack race (regardless of ER status)
and tumor stage (among ER positive cases). For some clinical factors,
the magnitude of effect when using DNA-based TP53 classification
was similar to that for RNA-based, notably age at diagnosis (among
ER-positive cases) and tumor size (among ER-negative cases).

Figure 1.

Proportion of breast cancer cases classified as TP53mutant/mutant-like across three classificationmethods, by age and race categories among (A) ER-positive cases
and (B) ER-negative cases. Data on RNA- and IHC-based TP53 classification include subjects from CBCS phases I–III. Data on DNA-based TP53 classification include
subjects from CBCS phase I.
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Next, we used two-stagemodels to assess the contribution of ER and
TP53 to etiologic heterogeneity, considering each TP53 classification
method separately. Given RNA-based mutant-like status, several
statistically significant associations with risk factors were identified
with ER and TP53, whereas fewer associations were identified with PR,
HER2, and grade (Fig. 4A; Supplementary Table S6). Adjusting for the
effects of the other markers, TP53 was significantly associated with
several hormone-related factors, such as oral contraceptive use, men-
opausal status, age at menopause, and pre- and postmenopausal BMI
(Fig. 4A). Relative to TP53 wild-type-like, the risk of a TP53 mutant-
like tumor was higher among women who ever used oral contra-
ceptives [OR (95% CI) ¼ 1.38 (1.02–1.87)] as well as among premen-
opausal women with a BMI of 30 kg/m2 or greater [1.28 (1.11–1.47)].
Conversely, the risk of a TP53 mutant-like tumor was lower among
postmenopausal women generally [0.71 (0.54–0.93)], and specifically
among those with an age at menopause less than 40 years [0.87 (0.77–
0.97)] or a BMI of 30 kg/m2 or greater [0.86 (0.75–0.98); Fig. 5A;
Supplementary Table S6]. ER status was associated with certain
reproductive factors (age at first birth and parity) and smoking status
(Fig. 4A). Nulliparous women, those 25 years of age or greater at first
birth, and those who ever smoked were at higher risk of an ER-positive
tumor compared with negative (Fig. 5A; Supplementary Table S6).
Multiparity was independently associated with both ER and TP53
(Fig. 4A). Having three or more births was associated with higher risk
of TP53 mutant-like compared with wild-type-like, as well as of ER
positive compared with negative (Fig. 5A; Supplementary Table S6).

Unlike RNA-based TP53, no statistically significant associations
were observed between risk factors and IHC-based TP53 status

(Figs. 4B and 5B; Supplementary Table S7). There were a greater
number of risk factor associations with ER and tumor grade in this
model than with TP53. Grade was associated with several factors that
were previously observed to be associated with RNA-based TP53
(including menopausal status, age at menopause, and premenopausal
BMI). The associations between ER status and age at first birth,
nulliparity, and smoking status that had been observed when adjusting
for RNA-based TP53 persisted when adjusting for IHC-based TP53,
with additional associations observed with premenopausal BMI and
alcohol use. Finally, we performed a sensitivity analysis to assess the
influence of adjustment for PAM50-intrinsic subtype (basal-like vs.
non–basal-like; Fig. 4C and Supplementary Table S8). The associa-
tions between risk factors and RNA-based TP53 were unaffected.

Discussion
This study showed that RNA-based TP53 and ER status are both

related to breast cancer risk factors and can thus define etiologically
relevant subtypes of breast cancer. TP53 was most strongly associated
with hormonal factors and BMI, whereas ER was mostly associated
with nulliparity and smoking. Prior analyses examining heterogeneity
of the effects of BMI across subtypes defined by ER status (without
accounting for TP53 status) in Black and White women have been
somewhat inconsistent (6, 39, 40). However, in line with the current
study, parity has consistently shown differential associations by ER
status (6, 41–44). The consistency of the RNA-based TP53 effects after
adjustment for basal-like status suggested this may be an alternative
etiologic schema with value in parallel to the intrinsic subtypes that are

Figure 2.

Distribution of TP53 expression score across functional and structural DNA mutation types, stratified by race, in CBCS phase I. The TP53 expression score is the
correlation to the TP53mutant-like centroid. Tumorswith a correlation greater than or less than zero are classified as TP53mutant-like orwild-type-like, respectively.
Indel, insertion or deletion; SBPS, single base-pair substitution.
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now widely studied. Although TP53 is not widely used as an etiologic
marker, one of the advantages of an ER/P53 defined schema is that
TP53 has a well-known role in DNA repair, whereas ER has well-
known receptor-mediated effects. Thus, incorporating both markers
might reflect two important mechanisms in breast cancer.

Despite the important biological role of TP53 in breast tumors (30%
have a mutation), few studies have defined TP53 as a key etiologic
marker. This may be because of inconsistencies between studies,
particularly those that use IHC classification methods. Other than
one study observing heterogeneity with regard to smoking status (45),
no prior studies have observed heterogeneity of the effects of

any environmental or reproductive risk factors across breast
cancer subtypes defined by IHC-based TP53 (as a single marker;
refs. 11, 33, 46, 47). It is possible that the null associations are due
to misclassification; they may also be due to distinct TP53 biology that
is captured by the different measures. The IHC-based TP53 classifi-
cationmethod captures missense mutations but is a poor surrogate for
deletions and insertions, as well as nonsense and frameshift mutations;
in contrast, RNA-based methods capture downstream transcriptional
activity—making RNA methods more sensitive to pathway changes
caused by these mutation types (26, 32, 48). Misclassification alone,
however, may not be a sufficient explanation for the differences. For

Figure 3.

Associations of clinicopathology vari-
ables with RNA-, DNA-, and IHC-
defined TP53 status, stratified by ER sta-
tus. Data on RNA- and IHC-based TP53
classification includes subjects from
CBCS phases I–III. Data on DNA-based
TP53 classification includes subjects
from CBCS phase I. See Supplementary
Table S4 for details. CI, confidence inter-
val; ER, estrogen receptor; HER2, human
epidermal growth factor receptor 2; IHC,
immunohistochemistry; PR, progester-
one receptor.

Figure 4.

Risk factor associations with breast
tumor markers, when (A) classifying
TP53 functional status using the RNA
signature, (B) classifying TP53 status
using immunohistochemistry staining,
and (C) accounting for basal-like intrin-
sic subtype. Associations with each
tumor marker have been adjusted for
the associations of all other tumor mar-
kers, as well as age at diagnosis, race,
and study phase. See Supplementary
Tables S6–S8 for sample sizes, ORs
(95% CI), and P values for heterogene-
ity. Age at menopause, premenopausal
and postmenopausal BMI, and breast-
feeding duration are modeled as ordi-
nal variables (with comparisons shown
between the highest and lowest cate-
gories), age at menarche is modeled as
continuous, and all other risk factors
are modeled as dichotomous variables.
�Themagnitude of association was cal-
culated as the odds ratio with the low-
est risk category as the referent. HER2,
human epidermal growth factor recep-
tor 2; HRT, hormone replacement ther-
apy; PR, progesterone receptor.
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example, it is important to consider the complex relationship between
ER and TP53. Only three prior studies of risk factor heterogeneity by
IHC-based TP53 subtypes have stratified by ER status (11, 15, 49). A
case–control study (15) observed heterogeneity of the effects of
nulliparity and a case–case study (49) found heterogeneity of the
effects of parity and breastfeeding across TP53 subtypeswithin luminal
A-like cases as defined by IHC.Otherwise, the risk profiles were similar
among the cross-classified tumor subtypes. These findings are similar
to our results showing no heterogeneity of epidemiologic risk factors
by IHC-based TP53 status when accounting for ER and other tumor
markers; however, novel associations are reported in our study when
using the RNA-based subtype.

Two prior studies, using data from the CASH Study (14) and
CBCS (15), assessed which individual markers (ER, PR, HER2, and
IHC-based TP53) or combinations of these markers showed the
greatest evidence for etiologic heterogeneity. The magnitude of het-
erogeneity was quantified using a single measure that captures the
extent to which the subtypes differ with respect to a profile of given risk
factors. In both populations, ER status provided a stronger heteroge-
neity signal compared with PR, HER2, or IHC-based TP53. Both
studies also found that subtypes formed by ER and IHC-based TP53
explained a higher degree of etiologic heterogeneity than the widely
accepted IHC-defined intrinsic subtypes.

The present study builds on this work by using a two-stage model to
address the question of whether effects for individual risk factors differ
across levels of each individual tumor marker, while adjusting for
multiple correlated tumor features. Although the prior studies esti-
mated a unitarymeasure to quantify the degree of heterogeneity across
all risk factors, we have sought to identify the relative contribution

of different tumor markers to the heterogeneity of effects for each
risk factor. To this end, we found that RNA-based TP53 and IHC-
based ER accounted for more heterogeneity of risk factor associa-
tions, with specific risk factor profiles for the two markers. We also
observed associations between select risk factors and PR, HER2, and
grade that were independent of ER and TP53. Some of these, such as
heterogeneity of the effects of hormone replacement therapy use by
tumor grade, have been previously reported in different popula-
tions (50). Compared with the prior analyses, the present study has
more than doubled the sample size of breast cancer cases and
directly measured heterogeneity by estimating case–case compar-
isons. The strength of a case–case approach is that it is statistically
efficient. It is a substantial advantage to use case–case methods in a
context such as this, where the case–control associations have been
previously reported (15). Unlike most case–control analyses, here
the associations with each tumor marker have been adjusted for the
associations of all the other tumor markers (TP53, ER, PR, HER2,
and grade). This is important because a key assumption for inter-
preting a case–case odds ratio as evidence of etiologic heterogeneity
is that it is not affected by markers of progression. The case–case
ORs reported here cannot be directly interpreted as indicative of
either a deleterious (for ORs above one) or protective (for ORs
below one) association, rather case–case odds ratio represents a
measure of heterogeneity.

Limitations of our analyses included the lack of DNAmutation data
for participants in CBCS phases II–III, which prevented us from
evaluating risk factor heterogeneity across subtypes defined by
DNA-based TP53 status. Additionally, RNA-based TP53 status was
missing for about half of participants with complete risk factor data

Figure 5.

Case–case ORs and 95%CIs for breast cancer risk factor associations with (A) RNA-based TP53 status and ER status, as well as with (B) IHC-based TP53 status
and ER status. ORs for TP53 and ER are mutually adjusted for each other, as well as for PR, HER2, tumor grade, age at diagnosis, race, and study phase. Age at
menopause, premenopausal and postmenopausal BMI, and breastfeeding duration are modeled as ordinal variables (with comparisons shown between the
highest and lowest categories), age at menarche is modeled as continuous, and all other risk factors are modeled as dichotomous variables. HRT, hormone
replacement therapy.
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(N ¼ 2,456). As with most studies, specimens available for analysis
tended to be larger tumors withmore aggressive features. Nonetheless,
relative to resources like TCGA, the CBCS hasmuch higher prevalence
of smaller, low-grade tumors. Another limitation was that as risk
factors were measured at the time of breast cancer diagnosis, reporting
could be related to the disease but is unlikely to be differential with
respect to the tumor characteristics. This could result in nondiffer-
ential misclassification. It is also important to note that whereas our
models accounted for multiple outcomes (i.e., tumor markers), we did
not account for multiple covariates (i.e., risk factors). Lastly, although
about half of the cases were Black women, numbers were small when
stratifying cases by both race and tumor subtype. It will be important
for future studies to compare TP53 effects across different ancestries,
races, and ethnicities.

Analyses of the joint effects of ER and RNA-based TP53 status
with breast cancer risk factors suggest that cross-classification of
these two markers may be an important etiologic schema in breast
cancer prevention research. These results are compelling given the
established role of estrogen-dependent risk factors as well as DNA-
repair–mediated effects of TP53 in breast cancer etiology. Consid-
ering the biological role of these two separate pathways and their
established interaction, it is biologically intuitive that they could be
strong markers for etiologic heterogeneity, as both pathways would
appear to have independent effects and may have joint effects on
risk. Given these etiologic differences and the strength of the RNA-
based method for increasing the magnitude of the effects observed,
future work should evaluate the prognostic implications of different
classification methods.
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