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A B S T R A C T   

The outbreak of COVID-19 is caused by high contagiousness and rapid spread of SARS-CoV-2 virus between 
people when an infected person is in close contact with another one. In this overall scenario, the disinfection 
processes have been largely improved. For instance, some countries have approved no-touch technologies by 
vaporizing disinfectants such as hydrogen peroxide, with the overriding goal to boost the safety of the places. In 
the era of sustainability, we designed an electrochemical paper-based device for the assessment of hydrogen 
peroxide nebulized by a cost-effective ultrasonic aroma diffuser. The paper-based sensor was fabricated by 
modifying via drop-casting a filter paper-based screen-printed electrode with a dispersion of carbon black- 
Prussian Blue nanocomposite, to assess the detection of hydrogen peroxide at − 0.05 V vs Ag/AgCl. The use of 
paper-based modified screen-printed electrode loaded with phosphate buffer allowed for monitoring the con-
centration of hydrogen peroxide in aerosol, without any additional sampling instrument to capture the nebulized 
solution of hydrogen peroxide at a concentration up to 7% w/w. Hydrogen peroxide, a reconverted ultrasonic 
aroma diffuser, and the paper-based electrochemical sensor assisted by smartphone have demonstrated how 
different low-cost technologies are able to supply an useful and cost-effective solution for disinfection 
procedures.   

1. Introduction 

The outbreak of SARS-CoV-2 is having a large impact on the health of 
citizens at a worldwide level as well as on the healthcare management 
and economy in each country that must face this huge pandemic event. 
The easy spread of SARS-CoV-2 and its persistence are some of the key 
issues of the prevalence and contagiousness of COVID-19. The principal 
way by which people are infected is through exposure to mucosalivary 
droplets formed during breathing, speaking, coughing, and sneezing. 
Among mucosalivary droplets, larger droplets rapidly fall out, while 
smaller droplets remain suspended for a longer time and they are able to 
travel through air currents [1]. Indeed, as reported by L. Bourouiba, the 
mucosalivary droplets are primarily made of a multiphase turbulent gas 
cloud, able to avoid evaporation for a much longer time in respect to 
isolated droplets, with a probable lifetime enlarged by a factor of up to 

1000, from a fraction of a second to minutes, thus augmenting the 
presence of droplets in the air [2]. 

The other key issue is the persistence on the environmental surfaces; 
indeed SARS-CoV-2 remains on clothes up to one day, on banknotes up 
to two days, on stainless steel, plastic and the inner layer of the mask up 
to four days, and on the outer layer of the mask up to seven days [3], 
demonstrating the need of disinfection to avoid the spread of SARS-CoV- 
2 by contact. SARS-CoV-2 survives in a wide range of pH values and 
ambient temperatures but, fortunately, it is vulnerable to heat and 
standard disinfection methods such as the one based on chlorine-based 
product, adopted as reported by WHO [4]. In addition, some countries 
have approved no-touch technologies by vaporizing disinfectants such 
as hydrogen peroxide, using customized instrumentations [4,5]. 
Hydrogen peroxide is a compound characterized by high oxidant 
properties, being able to produce hydroxyl radicals that attack DNA, 
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membrane lipids, and other essential cell components. SARS-CoV-2 is an 
enveloped virus, thus characterized by a breakable outer lipid envelope 
that renders it more vulnerable to disinfectants compared with non- 
enveloped viruses, such as rotavirus and poliovirus. The major types 
of hydrogen peroxide room disinfection devices are based on aerosolized 
hydrogen peroxide systems (e.g. GLOSAIR; Advanced Sterilization 
Products, Irvine, CA) or hydrogen peroxide vapor systems (e.g. Bioquell, 
Andover, Hampshire, UK) using hydrogen peroxide in the range of 5–15 
% w/w [5]. As in the case of the insufficient amount of personal pro-
tective equipment at the start of the COVID-19 outbreak, when several 
industries have reset their production chain to urgently supply them, the 
commercially available ultrasonic aroma diffuser with very low cost 
(lower than 20 €) can be reconverted for the disinfection of rooms at 
home or in offices using hydrogen peroxide as a disinfectant. However, 
one of the parameters to be controlled relies on the amount of hydrogen 
peroxide spread by the diffuser, being the hydrogen peroxide an un-
stable compound. Thus, a cost-effective sensing system is needed to 
assess the hydrogen peroxide concentration and to customize the correct 
disinfection process, avoiding excessive use of the disinfectant. 

The use of paper in the development of electrochemical devices has 
attracted huge attention by scientific community, due to its low cost and 
unexpected and unprecedented features, being able to create micro-
fluidic patterns without expensive instrumentation and the requirement 
of external pumps [6,7]. In addition, the porosity of the paper has been 
used to load the reagents, delivering reagent-free devices [8,9]. 
Furthermore, the porosity of the paper has been also recently exploited 
to detect analytes in the gas phase without any sampling system, as 
demonstrated by our group in the case of a wearable sensor for mustard 
agent detection [10] and by Dincer’s group for the hydrogen peroxide 
monitoring in breath [11]. Indeed, the porous structure of paper allows 
for loading the reagents, and the aerosol is sufficient to wet the cellulose 
network, allowing for the measure in the thin film layer of the solution 
within the cellulose network. In our previous work, we used an origami 
system to load reagents, namely enzyme and substrate, waiting that the 
two layers of the paper became wet. After, the two layers of paper were 
put in close contact and exposed to the mustard agent aerosol, demon-
strating the capability to detect the aerosol by using paper-based devices 
without any additional sampling system [10]. 

Herein, we demonstrated for the first time that the modification via 
drop-casting with nanomaterials is not relegated to office paper-based 
sensors, but it is applicable also in the case of filter paper-based sen-
sors, allowing for a cost-effective mass-production of sensors. In addi-
tion, we reported a novel smartphone based electrochemical device with 
a paper-based sensor for the measure of hydrogen peroxide aerosol 
produced by an ultrasonic aroma reconverted diffuser, with the aim to 
boost a cost-effective, reliable, and controlled room disinfection system. 

2. Experimental section 

2.1. Reagents and equipment 

Potassium chloride, phosphoric acid, hydrogen peroxide 30% (w/w), 
N,N-dimethylformamide were purchased from Sigma Aldrich (St. Louis, 
MO, USA). Carbon Black N220 was kindly gifted by Cabot, Ravenna, 
Italy. Carbon black/Prussian blue nanoparticles (CB/PBNPs) powder 
was synthesized by using K3Fe(CN)6 and HCl obtained from Sigma, and 
FeCl3 from Fluka. Mueller Hinton agar plates (Liofilchem®, Italy) for 
cultivating bacteria and Sabouraud dextrose agar plates (Liofilchem®, 
Italy) for fungi and yeasts. Micrographs of the bare screen-printed 
electrode and the screen-printed electrode modified with nano-
composite constituted of carbon black and Prussian Blue nanoparticles 
were acquired by means of electron microscopy FEI Quanta 400. A 
ColorQube 8580 Xerox printer (Xerox Corporation, USA) was used to 
print the wax patterns. The paper-based electrodes were produced by 
SENSE4MED Company (Rome, Italy) with 245 DEK (Weymouth, UK) 
serigraphic printer using graphite-based ink (Electrodag 421) for the 

printing of tracks, counter, and working electrode, while silver/silver 
chloride ink (Electrodag 4038 SS) was used for the printing of reference 
electrode. Cyclic voltammetry and chronoamperometry were carried 
out using a portable potentiostat, Sensit Smart (PalmSens, Netherlands), 
in connection with a smartphone. 

2.2. Paper-based screen-printed electrode preparation 

Filter paper-based screen-printed electrodes (SPEs) unmodified and 
modified with CB/PBNPs nanocomposite 0.3% w/w were supplied by 
SENSE4MED (Rome, Italy). The whole sensor is characterized by a 
dimension of 28 mm length × 12 mm width, while the diameter of 
working electrode is equal to 4 mm. For modification via drop-casting of 
filter paper-based SPEs, a 2 µL-drop of CB/PBNPs dispersion 0.06 mg/ 
mL was cast onto the working electrode of the SPE. The CB/PBNPs 
nanocomposite was synthesized according to previous work [12] and 
used for the preparation of a 0.06 mg/mL dispersion in a mixture of N,N- 
dimethylformamide and distilled water 1:1 (v/v) as the solvent, fol-
lowed by sonication for 60 min at 59 kHz. 

2.3. Hydrogen peroxide detection in solution 

The chronoamperometric technique was used for hydrogen peroxide 
detection by connecting SPEs to a smartphone-assisted miniaturized 
potentiostat (Sensit Smart, PalmSens, The Netherlands). Chro-
noamperometry measurements were performed by dropping 40 µL of 
standard solution at different concentrations of hydrogen peroxide onto 
the electrochemical cell and applying a potential of − 0.05 V vs Ag/AgCl 
pseudoreference for 30 s. The obtained current intensity was propor-
tional to the amount of hydrogen peroxide present in the standard so-
lution. All the solutions were prepared in 0.05 M phosphate buffer 
containing 0.1 M KCl at pH = 7.4. 

2.4. Hydrogen peroxide detection in aerosol phase 

Hydrogen peroxide detection in the aerosol phase was carried out by 
directly exposing the SPEs to nebulized solution for 30 s at 0.5 cm from 
the nebulizer, in order to wet the cellulose network homogeneously. 
Before the measurement, the sensor is loaded with 5 µL of phosphate 
buffer at pH = 7.4 and let to dry; then, it is ready for hydrogen peroxide 
detection in the aerosol phase. Immediately after the accumulation time, 
the chronoamperometric detection was performed with the same pa-
rameters described in paragraph 2.3. The solutions were nebulized by 
using a commercially available ultrasonic aroma diffuser, with a flow 
rate equal to 0.6 mL/min. 

2.5. Experimental set-up for the evaluation of disinfectant property of the 
commercial available ultrasonic aroma diffuser loaded with hydrogen 
peroxide 

To evaluate the disinfectant capability of the commercially available 
ultrasonic aroma diffuser, the settle plate method was selected to eval-
uate the efficiency of disinfection, counting colony-forming units (CFU) 
of bacteria naturally present in the air before and after the exposure to 
the hydrogen peroxide aerosol. The study was carried out using 
hydrogen peroxide at 5% (w/w) in a room of 63 m3, positioning the 
diffuser 1,50 m high in the corner 2 and the settle plates at the 4 corners 
of the room (1, 2 , 3, 4). The settle plates were located in all the sites 
before starting the disinfection (blank experiment) and during and after 
the disinfection lasting 1 h, at different times: T0 (during the disinfec-
tion), T1 (at the end of the disinfection for 2 h), T2 (4 h after the 
disinfection T0), and T3 (6 h after the disinfection T0). 

For the blank experiment, the sterile plates with culture medium 
were exposed to the room air for 2 h. T0 sample was considered when 
the diffuser was running for 1 h. Then the machine was turned off and 
settle plate samples were taken every 2 h for 3 times (T1, T2, T3). 
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After every sampling, the plates were closed, incubated at 37 ◦C for 
48 h for bacteria and at 28 ◦C for 72 h for fungi and the number of CFU 
was recorded. 

3. Results and discussion 

3.1. Paper-based sensor for hydrogen peroxide detection in solution 

The electrochemical detection of hydrogen peroxide at a screen- 
printed bare electrode is avoided due to the high overpotential 
needed. As widely reported in the literature [13], Prussian Blue elec-
trochemical mediator has demonstrated outstanding electrocatalytic 
activity, being able to electrocatalyze the reduction of hydrogen 
peroxide to water at potential close to 0 vs Ag/AgCl, the reason for that it 
was called artificial peroxidase. Recently, we have demonstrated that 
the presence of carbon black nanomaterial is able to customize the 
dimension of Prussian Blue nanoparticles during its synthesis. Using 
carbon black as support, the chemical synthesis with potassium ferri-
cyanide and potassium hexacyanoferrate allowed for obtaining a carbon 
black decorated with Prussian Blue nanoparticles characterized by a 
diameter of 19 ± 3 nm and low detection limit, i.e. 0.3 µM for hydrogen 
peroxide [12]. Using filter paper, we usually modify the ink during the 
screen-printing process with the powder of carbon black decorated with 
Prussian Blue nanoparticles, (i.e. bulk modification), because in the case 
of porous paper, the reaction occurs between the solution entrapped in 
the layer of the cellulose network and the working electrode surface in 
contact with the paper (i.e. the backside of the working electrode) 
[14,15]. On the contrary, in the case of office paper, we modify the 
working electrode surface by drop-casting the dispersion of carbon 
black-Prussian Blue nanoparticles; being office paper not so porous, the 

solution remains on the electrochemical cell as drop [15]. In our pre-
vious paper, we demonstrated the suitability of bulk modification also in 
the case of office paper for the detection of capsaicin [16]. Herein, we 
evaluated the possibility to use the drop-casting approach also in case of 
filter paper. Fig. 1A shows the cyclic voltammetry of carbon black- 
Prussian Blue nanoparticles-modified filter paper-based sensor in 
phosphate buffer solution at pH = 7.4. The cyclic voltammetry reported 
a characteristic couple of peaks at a potential close to 0.2 V due to the 
oxidation and reduction reaction of Prussian Blue nanoparticles as 
follows: 

KFeIII[FeII(CN)6

]
+ e− + K+⇄K2FeII[FeII(CN)6

]

demonstrating the presence of the electrochemical mediator on the 
working electrode surface. Furthermore, the small distance between 
peak-to-peak potentials (i.e. 40 mV) as well as the ratio of cathodic and 
anodic peak currents close to one, remarks the typical behaviour of an 
electroactive specie adsorbed on the electrode surface. To confirm the 
presence of the nanocomposite on the working electrode surface, the 
morphological characterization was carried out by SEM analysis. 
Fig. 1B-D showed micrographs of screen-printed electrode printed on 
filter paper and of screen-printed electrode printed on filter paper and 
modified with carbon black-Prussian Blue nanoparticles dispersion. As 
depicted in Fig. 1B, the primary fiber structure of the paper is high-
lighted, covered with a layer of graphite-based ink in the working 
electrode area. The high magnification micrograph of the bare screen- 
printed electrode (Fig. 1C) reported micrometer-sized flakes of 
graphite covered with small particles ascribed to the cross-linking as 
well nanoparticle-based agents in the original ink. Fig. 1D reported SEM 
micrograph of the working electrode modified with carbon black- 

Fig. 1. A) Cyclic voltammetry performed in phosphate buffer 0.05 M + KCl 0.1 M, pH 7.4, using paper-based sensor. B) SEM micrograph of the bare screen-printed 
electrode depicting graphite-based working electrode (1) and paper substrate (2). C) SEM micrograph of bare screen-printed electrode. D) SEM micrograph of screen- 
printed electrode modified with carbon black-Prussian Blue nanoparticles. 
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Fig. 2. A) Cyclic voltammetries using sensors printed on filter paper and modified with carbon black-Prussian Blue nanoparticles in absence (dashed line) and in 
presence (continuous line) of hydrogen peroxide 0.003 % w/w. Inset: Chronoamperograms recorded for hydrogen peroxide detection at a concentration of 7 % w/w, 
using bare electrode (dashed line), electrode modified with carbon black-Prussian Blue nanoparticles dispersion via drop-casting (black line), electrode bulk modified 
adding carbon black-Prussian Blue nanoparticle in the ink during the screen-printing procedure (green line), and electrode modified via bulk plus via drop-casting 
(red line). B) Calibration curve of hydrogen peroxide carried out in phosphate buffer 0.05 M + KCl 0.1 M, pH = 7.4 at an applied potential of − 0.05 V vs Ag/AgCl. 
Inset: chronoamperograms recorded using SPE modified with carbon black-Prussian Blue nanoparticles for hydrogen peroxide detection at a concentration equal to 
1% (brown), 3% (orange), 5% (green), 7% (yellow). 

Fig. 3. A) Experimental set-up using the sensor exposed to hydrogen peroxide nebulized during the study of sampling time and the using the embedded system 
constituted of a sensor combined with smartphone assisted potentiostat. B) Selection of sampling time using a solution of hydrogen peroxide at a concentration of 5% 
w/w in the ultrasound diffuser. C) Calibration curve sampling the aerosol of hydrogen peroxide at 30 sec at an applied potential of − 0.05 V vs Ag/AgCl using the 
embedded system constituted of a sensor combined with smartphone assisted potentiostat. Inset: Chronoamperograms recorded using SPE modified with carbon 
black-Prussian Blue nanoparticles for hydrogen peroxide detection at a concentration equal to 1% (brown), 3% (orange), 5% (yellow), 7% (green). 
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Prussian Blue nanoparticles which underlined the rough and sponge-like 
structure of carbon black-Prussian Blue nanocomposite, confirming the 
presence of the electrochemical mediator onto the working electrode 
surface. 

To evaluate the effectiveness of the paper-based electrode modified 
with carbon black-Prussian Blue nanoparticle dispersion for the detec-
tion of hydrogen peroxide, cyclic voltammetry in absence (dashed line) 
and in presence (continuous line) of hydrogen peroxide 0.003% w/w 
was carried out and reported in Fig. 2A. The measure was carried out by 
adding 40 µL of phosphate buffer solution at pH = 7.4 on the electro-
chemical cell without or with hydrogen peroxide. The cyclic voltam-
metry in presence of hydrogen peroxide has shown an increase of the 
cathodic peak and a decrease of the anodic peak, when compared with 
the cyclic voltammetry in absence of hydrogen peroxide, confirming the 
electrocatalytic activity of the carbon black-Prussian Blue nanoparticles 
towards hydrogen peroxide reduction. In the inset, we report the 
amperometric responses of hydrogen peroxide at a concentration of 7% 
w/w, using the three different configurations, namely SPE modified with 
the dispersion via drop-casting (black line), SPE bulk modified adding 
carbon black-Prussian Blue nanoparticle in the ink during the screen- 
printing procedure (green line), and SPE modified via bulk plus via 
drop-casting (red line). The amperograms depicted the same response, 
within the experimental errors, in case of SPE modified via drop-casting 
or bulk plus via drop-casting, in contrast with a lower sensitivity 
observed in case of the single bulk modification. Thus, the paper-based 
sensor modified via drop-casting was selected for further studies. Suc-
cessively, we evaluated the analytical performances in chro-
noamperometry by checking the sensitivity of the sensor, obtaining a 
linear range suitable for the concentration necessary for the disinfection 
process, namely 1–7% w/w. Indeed, this sensor is able to detect several 
ranges of hydrogen peroxide concentration; for instance between 0.003 
and 0.03% w/w the linear range is described by the following equation 
y = (− 8 ± 4) + (− 49 ± 1) ×, R2 = 0.996. However, we focalized the 
detection of hydrogen peroxide at concentrations used for disinfection 
(between 1% and 7% w/w). As reported in Fig. 2B, the sensor is able to 
detect hydrogen peroxide comprised between 1% and 7% w/w, 
described by the following equation: y = (− 132 ± 6) + (− 38 ± 1) ×, R2 

= 0.991. The repeatability was evaluated by testing a concentration of 
hydrogen peroxide at a concentration of 7% w/w with three different 
sensors and obtaining an RSD % equal to 1%. 

3.2. Paper-based sensor for hydrogen peroxide detection in aerosol phase 

For the hydrogen peroxide detection in the aerosol phase, the sensor 

was put in proximity of the aerosol as reported in Fig. 3A. The first study 
was the evaluation of the time of exposure to the aerosol, because this 
time is needed to wet the cellulose network of the sensor and to enrich it 
with the hydrogen peroxide. It is worthy of note that for delivering a 
reagent-free sensor, the sensor is loaded with phosphate buffer at pH =
7.4, then left to dry. Thus, when the aerosol wet the sensor, the film of 
the solution formed in the cellulose network is at pH = 7.4, because 
dissolving the phosphate buffer salts previously loaded on the paper. As 
reported in Fig. 3B, the time selected was 30 sec as a compromise be-
tween sensitivity and wetting process, while a longer time allowed 
wetting also the electric contacts with an incorrect electronic measure. 
After selecting the time, the calibration curve was evaluated using 
different concentrations of hydrogen peroxide in the ultrasound diffuser, 
obtaining a linear range up to 7% w/w, described by the following 
equation: y = (− 48 ± 14) + (− 64 ± 3) ×, R2 = 0.978, and a repeatability 
with RSD = 7% (n = 3) testing a solution of hydrogen peroxide equal to 
7% w/w. The results achieved demonstrate the suitability of this sensor 
for evaluating the nebulized hydrogen peroxide, with the advantages, 
with respect to the sensors reported in the literature (Table 1), to detect 
high concentration level needed for disinfection as well as to be a cost- 
effective and flexible paper-based sensor combined with a smart-phone 
assisted potentiostat. 

Table 1 
Sensors for hydrogen peroxide in aerosol/gas phase.  

Sensor types Detection 
method 

Sensitivity Linear range Comments Ref. 

Pt-Nafion Amperometric 3.3 μA ppm− 1 0.1–40 ppm Bulk electrodes, No flexible and cost-effective sensor, 
Low detection limit 

[17] 

Thin-film calorimetric 
sensor 

Calorimetric 0.57 ◦C/% (v/v) (51 ×
10− 6 ◦C ppm− 1) 

0–8% v/v (0–89 × 103 

ppm) 
High working temperature (270 ◦C) 
No flexible and cost-effective sensor 
Detection of high concentrations 

[18] 

Paper-based wearable 
electrochemical sensor 

Amperometric 0.02 nA μM− 1 mm− 2 (0.59 
nA ppm− 1 mm− 2) 

40–320 µM (1.36–10.88 
ppm) 

Flexible and cost-effective sensor 
Low detection limit 
Chromatography paper and screen-printed electrode 
using Prussian Blue modified ink 
Application in biomedical field 

[11] 

Commercial H2O2 gas 
sensor  –  – 

0–100 ppm 
100–2000 ppm 

No flexible and cost-effective sensor [19] 

MOSFET Output voltage – Detection limit close to 
0.8 μM (0.027 ppm) 

Hydrogen peroxide is measured in the condensed phase 
using Peltier element 
No flexible and cost-effective sensor 

[20] 

Paper-based electro- 
chemical sensor 

Amperometric 64 µA/% (w/w) cm2 (5.8 
× 10− 3 µA ppm− 1 cm− 2) 

1–7% w/w (11–78 × 103 

ppm) 
Filter paper and screen-printed electrode modified via 
drop-casting with carbon black/Prussian Blue 
nanoparticles 
Flexible and cost-effective sensor 

This 
work  

Fig. 4. Room planimetry.  
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3.3. Test to assess the disinfection process using an ultrasonic diffuser and 
hydrogen peroxide at a concentration of 5% w/w 

To confirm the utility of the sensor developed to assess the presence 
of hydrogen peroxide vaporized by an ultrasonic diffuser, we evaluated 
the antimicrobial activity of hydrogen peroxide 5% w/w vaporized by 
ultrasonic diffuser on airborne bacteria and fungi. 

The adopted hydrogen peroxide concentration was selected in order 
to have a good compromise between solution stability and disinfection 
performance. In fact, hydrogen peroxide solutions with concentrations 
higher than 10% w/w are usually unstable over time and can be cor-
rosive and potentially explosive. On the other hand, 3% w/w hydrogen 
peroxide solution would require very high volumes to obtain acceptable 
disinfection. 

The experiment was performed in a room of 63 m3, where the door 
and window remained closed during the experiment. The diffuser was 
placed as shown in Fig. 4, while the blue/red boxes indicated the posi-
tion of the settle plates. 

The first set of plates was placed for two hours in the room before 
starting the disinfection to evaluate the pre-existing microbial presence 
in the room (blank experiment). Then, the plates were displaced with 
new ones and the disinfection was carried out for 1 h by switching-on the 
diffuser. After disinfection, the microbiological efficiency of the treat-
ment was evaluated every 2 h for 6 h by counting bacterial and fungal 
visible colonies grown on the plates. The results obtained were reported 
in Table 2. 

Results showed a fast and strong decrease in the bacterial load in the 
room. In particular, during the supply of the disinfectant solution in the 
air, a sharp decrease of the CFU was detected, in the range comprised 
between around 40% and 80% depending on the initial amount of 
bacteria and the site of the plates with respect to the diffuser. We would 
like to highlight that this system was used in a room without any 
additional source of contamination. Under this experimental condition, 
we demonstrated the effect of disinfection as well as that the developed 
sensor is capable to measure the level of hydrogen peroxide needed for 
this disinfection process. 

4. Conclusions 

In the last decade, paper-based electrochemical sensors have 
demonstrated the potentiality to be used in diverse contexts, ranging 
from point of care devices through wearable sensors for the detection of 
analytes in liquidand gas-phase [21,22]. Herein, we reported the use of a 
filter paper-based electrochemical device for the detection of hydrogen 
peroxide nebulized by using a cost-effective ultrasonic aroma recon-
verted diffuser. By modifying the filter paper-based sensor via drop- 
casting, we demonstrated that this procedure is not only applicable to 
office paper-based sensors but also to filter paper-based sensors, 
enlarging the applicability of this easy mass-modification procedure. 
The sensor developed was tested using hydrogen peroxide solution in a 
concentration ranging from 1% to 7% w/w, demonstrating linearity in 
the analyzed range corresponding to the concentrations usually 
employed for disinfection processes. The data reported in this short 
communication demonstrated the capability of paper-based 

electrochemical sensors to detect the nebulized hydrogen peroxide, 
paving the way for its use in the customization of the disinfection 
processes. 
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