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Abstract 

Background:  Resting 12-lead electrocardiography is widely used for the detection of cardiac diseases. Electrocardio-
gram readings have been reported to be affected by aging and, therefore, can predict patient mortality.

Methods:  A total of 12,837 patients without structural heart disease who underwent electrocardiography at baseline 
were identified in the Shinken Database among those registered between 2010 and 2017 (n = 19,170). Using 438 
electrocardiography parameters, predictive models for all-cause death and cardiovascular (CV) death were developed 
by a support vector machine (SVM) algorithm.

Results:  During the observation period of 320.4 days, 55 all-cause deaths and 23 CV deaths were observed. In the 
SVM prediction model, the mean c-statistics of 10 cross-validation models with training and testing datasets were 
0.881 ± 0.027 and 0.927 ± 0.101, respectively, for all-cause death and 0.862 ± 0.029 and 0.897 ± 0.069, respectively 
for CV death. For both all-cause and CV death, high values of permutation importance in the ECG parameters were 
concentrated in the QRS complex and ST-T segment.

Conclusions:  Parameters acquired from 12-lead resting electrocardiography could be applied to predict the all-
cause and CV deaths of patients without structural heart disease. The ECG parameters that greatly contributed to the 
prediction were concentrated in the QRS complex and ST-T segment.
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Background
Prediction of the risk of all-cause death has been the cor-
nerstone of epidemiology and allows for the readjustment 
of the current medical treatment and the modification 
of established risk factors (i.e., smoking cessation, sta-
tin therapy, or blood pressure control for cardiovascular 

disease) [1]. Predictive models for all-cause death have 
mostly been developed through the combination and 
weighting of patient characteristics, i.e., age, sex, and var-
ious comorbidities. However, because the risk of all-cause 
death is strongly affected by the stage of each disease, 
applying a simple, dichotomized category of disease (i.e., 
existence or absence) to the risk models would under- or 
overestimate the risk of all-cause death, as it ignores the 
wide range of individual differences in the disease status.
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Resting 12-lead electrocardiography, which is a non-
invasive and readily available test, is widely performed 
for the detection and management of cardiac diseases. 
Electrocardiography enables the evaluation of the risk of 
cardiac diseases in medical examinations. Many studies 
have shown that electrocardiogram (ECG) parameters 
are affected by age [2, 3], and through complex equations, 
ECG parameters can produce a model of biological age 
[4, 5]. Similarly, ECG parameters may predict mortality, 
even in the absence of structural heart diseases, by focus-
ing purely on the person’s age. A number of predictive 
models for all-cause death using ECG parameters have 
been reported [6–10] that are based on the concept that 
abnormal ECG changes represent serious comorbidities 
that increase the risk of all-cause death. These models 
have used one or a few parameters, mostly categorical, 
and were limited to a specific ECG lead [6–10]. Very 
recently, reported studies have applied machine learning 
algorithms to large populations and a large numbers of 
parameters [11].

In this study, we developed predictive models for all-
cause death using the 12-lead ECG parameters. Notably, 
we selected parameters for the models in a stepwise man-
ner from among hundreds of automatically measured 
ECG parameters. In addition, to prioritize the generaliza-
bility of the study focusing on aging, we excluded patients 
with structural heart diseases to avoid the strong effects 
these conditions have on mortality.

Methods
Study population
The Shinken Database is a single hospital-based database 
that was established in June 2004 and includes data on 
all patients newly visiting the Cardiovascular Institute, 
Tokyo, Japan, excluding foreign travelers and patients 
with active cancer. Details of this database have been 
described elsewhere [12].

In the present study, a database of ECG results was 
used, which has been available since February 2010. From 
a total of 32,570 patients in the Shinken Database, 19,170 
patients registered between February 2010 and March 
2018 were extracted. After excluding patients with struc-
tural heart diseases (n = 4,915); patients aged < 20  years 
or > 90  years (< 20 or > 90  years; n = 168); and patients 
with index ECG showing indeterminate axis (R 
axis > 180°) (n = 76), pacing beats (n = 102), and atrial or 
ventricular tachyarrhythmia (n = 1,763), 12,837 patients 
were included in the present study. The structural heart 
diseases were defined as follows: valvular heart disease, 
moderate or severe stenosis or regurgitation on echo-
cardiography; coronary artery disease; hypertrophic and 
dilated cardiomyopathy; and symptomatic heart failure 
[13].

Patient follow‑up
The health status and incidences of cardiovascular events 
and all-cause death were obtained once per year from the 
medical records or the postal prognosis documents. In 
the present study, we included the follow-up data until 
March 2019 and excluded follow-up data from > 3  years 
after the initial visit to avoid an imbalance in the follow-
up periods as a result of the different registration years 
(between 2010 and 2018) [13].

Parameters obtained from ECG
The 12-lead ECG was recorded by a GE ECG machine 
(GE CardioSoft V6.71 and MAC 5500 HD; GE Health-
care, Chicago, IL), and data were stored using the MUSE 
data management system [13]. Of the 639 parameters 
that had been automatically measured, 201 parameters 
(of which 9 were not lead-specific and 192 [16 × 12 leads] 
were lead-specific), including the relative coordinate 
points (i.e., the start point of P-wave), were excluded 
from the analysis [13]. Accordingly, the remaining 438 
parameters (of which 6 were not lead-specific and 432 
[36 × 12 leads] were lead-specific) were used in the analy-
sis (Table 1).

Evaluation and statistical analysis
Statistical analysis was carried out using SPSS version 
26.0 and SPSS Modeler version 18.2 (IBM, Chicago, IL). 
In all analyses, P < 0.05 was taken to indicate statistical 
significance. Categorical and consecutive data are pre-
sented as number (%) and mean ± SD.

Table 1  ECG parameters used in this study

P′, R′, S′, and T′ indicate the second components of P, R, S, and T wave, 
respectively, which could be positive or negative polarity

Parameters available in MUSE database system: 639 parameters

Parameters used for analysis: 438 parameters

(1) Non-lead-specific parameters: 6 parameters
P-R Interval, P axis, QRS Duration, QTc Calculation (QTc Bazett), R axis, T 

axis
(2) Lead-specific parameters: 432 [36 × 12 leads] parameters
ST at J Point, P Area, P′ Area, P Area (Full), P Peak Time, P′ Peak Time, P 

Peak Amplitude, P′ Peak Amplitude, P Duration, P′ Duration, QRS Area, 
Q Area, Q Peak Amplitude, Q Duration, R Area, R′ Area, R Peak Time, R 
Duration, R′ Duration, S Area, S′ Area, S Peak Time, S Duration, S′ Dura-
tion, T Area, T′ Area, T Area (Full), T Peak Time, T Peak Amplitude, T′ Peak 
Amplitude, T Duration, T′ Duration, Minimum ST level, Max R Amplitude, 
Maximum ST level, Max S Amplitude

Parameters excluded: 201 parameters

(1) Non-lead-specific parameters: 9 parameters
P Onset, P Offset, QRS Count, QTc Framingham, QTc Fridercia, Q-T Interval, 

Q Onset, Q Offset, T Offset
(2) Lead-specific parameters: 192 [16 × 12 leads] parameters
P Onset Amplitude, QRS Balance, QRS Deflection, QRS Intrinsicoid, Q Peak 

Time, R′ Peak Time, R Peak Amplitude, R′ Peak Amplitude, S′ Peak Time, 
S Peak Amplitude, S′ Peak Amplitude, T′ Peak Time, T End, ST at End ST, 
ST at Mid ST, Special T
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We developed a predictive model for all-cause and 
cardiovascular (CV) death using 438 ECG parameters 
according to the following steps. Step 1: Univariable 
logistic regression analysis was performed for 438 ECG 
parameters (Fig.  1a, b; Wald statistics for each param-
eter are presented). Step 2: The Spearman’s coefficient 
of correlation was evaluated all combinations of the 438 
parameters (438 × 437 = 191,406 combinations, exclud-
ing the pairing of A vs. A). The parameters combinations 
with correlation coefficients ≥ 0.9 (defined as “strong 
correlation”) were identified. Among them, those that 
demonstrated higher Wald statistics in Step 1 compared 
with any counterparts were selected for the next step. 
Parameters were also selected for the next step when 
they were not included in any pairs with “strong cor-
relation”. Step 3: Among the ECG parameters selected 
in Step 2, parameters with statistical significance in the 
univariable logistic regression analysis (Wald statis-
tics > 3.841458 [corresponding to P < 0.05] in Step 1) 
were selected for the final model. Step 4: Using the ECG 
parameters selected in Step 3, a prediction model was 
developed by a support vector machine (SVM) algorithm. 
For robust evaluation, a tenfold cross-validation method 
was employed, in which the study patients were divided 

into 10 similarly-sized groups according to the last digit 
of their study number (0 to 9), and the model was run 10 
times using different combinations of training and testing 
datasets. For the first run, the testing dataset comprised 
the group with study numbers ending in 0, and the train-
ing dataset comprised the remaining nine groups; for 
the second run, the testing dataset comprised the group 
with study numbers ending in 1, and the training dataset 
comprised the remaining nine groups. The modelling was 
repeated like so for each of the 10 groups until the testing 
dataset comprised the group with study numbers ending 
in 9. The average values of permutation importance [14, 
15] for each parameter and the average values of c-sta-
tistics were calculated, which evaluated the parameter 
importance and the model predictive ability, respectively.

For the final results, the following two values were 
described: (1) Relative importance of ECG parameters. 
The top 30 values of relative importance (%) were pre-
sented, which were calculated using the following equa-
tion: [average permutation importance of a parameter] 
/ [average permutation importance of the top 1 param-
eter] × 100 (%), where the average permutation impor-
tance was the average of 10 permutation importance 
values obtained in the 10 training datasets. The full list of 

Fig. 1  Weighting of predictive capability for all-cause and cardiovascular deaths with 438 ECG parameters. Wald statistics in the univariable logistic 
regression models for all-cause death (a) and cardiovascular death (b) with ECG parameters are presented in the order of time-phases. The gray bars 
indicate the parameters obtained with the MUSE system (438 parameters) and red bars indicate the parameters selected for the final prediction 
models (109 and 70 parameters for all-cause and cardiovascular death, respectively). The labels under the bars were represented as follows; 1 
PR-interval and P axis, 2 P Area, 3 P′ Area, 4 P Area (Full), 5 P Peak Time, 6 P′ Peak Time, 7 P Peak Amplitude, 8 P′ Peak Amplitude, 9 P Duration, 10 P′ 
Duration, 11 QRS duration and R Axis, 12 QRS Area, 13 Q Area, 14 Q Peak Amplitude, 15 Q Duration, 16 R Area, 17 R′ Area, 18 R Peak Time, 19 Max R 
Amplitude, 20 R Duration, 21 R′ Duration, 22 S Area, 23 S′ Area, 24 S Peak Time, 25 Max S Amplitude, 26 S Duration, 27 S′ Duration, 28 QTc and T Axis, 
29 ST at J Point, 30 Minimum ST level, 31 Maximum ST level, 32 T Area, 33 T′ Area, 34 T Area (Full), 35 T Peak Time, 36 T Peak Amplitude, 37 T′ Peak 
Amplitude, 38 T Duration, 39 T′ Duration. The order of the lead specific parameter was I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6
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permutation importance values is presented in the Addi-
tional file  1: Tables S2 and S3. (2) Predictive capability: 
the c-statistics represented the predictive capability of 
the SVM models. C-statistics were separately evaluated 
for 10 training and 10 testing datasets, and their overall 
average values with standard deviation were described.

Results
Patient characteristics
The characteristics of 12,837 patients are shown in 
Table  2. The patients in the study included 6,897 
males (53.7%), and the mean age of all patients was 
55.5 ± 15.0 years.

Incidence of all‑cause and CV death
During the mean follow-up period of 320.4  days, all-
cause deaths occurred in 55 patients (0.5 per 100 patient-
years), among which 23 were cardiovascular deaths (0.2 
per 100 patient-years).

Predictive models for all‑cause and CV death
Step 1: The Wald statistics of 438 ECG parameters in 
the univariable logistic regression analysis for all-cause 
death and CV death are shown in the order of ECG time 
phases (P, QRS, and ST-T) in Fig. 1a, b, respectively (gray 
and red bars; the full list is shown in Additional file  1: 
Table  S1). Step 2: Spearman’s coefficient of correlation 
was evaluated for any pairs in the 438 ECG parameters. 
Among the 438 ECG parameters, 276 parameters did not 
have combinations with a correlation coefficient ≥ 0.9, 

thus, they did not have counterparts with a strong cor-
relation. The remaining 162 had combinations with cor-
relation coefficients of ≥ 0.9. Among them, we selected 54 
and 52 parameters that had higher Wald statistics com-
pared with any counterparts in Step 1 for all-cause and 
CV death, respectively. Accordingly, a total of 330 param-
eters (276 + 54) for all-cause death and 328 parameters 
(276 + 52) for CV death were selected for the next step. 
Step 3: Among the 330 and 328 parameters selected in 
Step 3, 109 and 70 parameters with statistical significance 
in the univariable models for all-cause and CV death, 
respectively, in Step 1 (Wald statistics > 3.841458) were 
selected for the final model (Fig. 1a, b, red bars). Step 4: 
Using the respective 109 and 70 parameters, the predic-
tion models for all-cause and CV death were developed 
by an SVM algorithm. The results are shown below.

Relative importance of ECG parameters
The permutation importance of the 109 and 70 ECG 
parameters for all-cause and CV death, respectively, were 
analyzed in 10 patterns of training datasets by SVM, and 
their mean values were calculated (Additional file 1: Tables 
S2 and S3). The top 30 parameters based on the mean 
permutation importance for all-cause death are listed 
in Table 3, where T Peak Amplitude in II (100%) demon-
strated the highest value, followed by T Peak Amplitude 
in aVR (60%), T′ Peak Amplitude in aVL (52%), T Peak 
Amplitude in aVL (50%), and R Peak Time in aVL (50%). 
The top 30 parameters for CV death are listed in Table 4, 
where Maximum ST level in I (100%) showed the highest 

Table 2  Patient characteristics

Consecutive values are presented as mean ± standard deviation

Total Male Female

n = 12,837 Total
n = 6897

Alive
n = 6863

Deceased
n = 34

Total
n = 5940

Alive
n = 5919

Deceased
n = 21

Age, years 55.5 ± 15.0 54.2 ± 14.4 54.1 ± 14.4 70.9 ± 12.1 57.0 ± 15.6 56.9 ± 15.6 70.1 ± 14.1

Male, n (%) 6897 (53.7) – – – – – –

Body mass index, kg/m2 23.4 ± 27.0 24.2 ± 4.5 24.2 ± 4.5 23.3 ± 4.1 22.5 ± 39.3 22.5 ± 39.4 22.5 ± 3.5

Systolic blood pressure, mmHg 125.8 ± 18.5 127.5 ± 16.7 127.5 ± 16.7 125.0 ± 16.9 124.0 ± 20.2 124.0 ± 20.2 131.3 ± 22.0

Diastolic blood pressure, mmHg 75.3 ± 13.8 77.1 ± 11.5 77.1 ± 11.5 71.0 ± 14.0 73.2 ± 15.8 73.2 ± 15.8 74.3 ± 10.3

Heart rate, beats/minute 71.1 ± 12.9 71.2 ± 13.5 71.2 ± 13.4 73.8 ± 17.8 71.0 ± 12.3 71.0 ± 12.3 74.3 ± 17.0

Estimated glomerular filtration rate, mL/
min/1.73 m2

74.9 ± 17.7 74.3 ± 17.0 74.5 ± 16.9 57.6 ± 23.0 75.5 ± 18.5 75.6 ± 18.4 62.7 ± 29.2

Left ventricular ejection fraction, % 67.8 ± 6.8 66.3 ± 6.6 66.3 ± 6.6 62.8 ± 13.6 69.5 ± 6.5 69.5 ± 6.5 66.1 ± 8.4

Hypertension, n (%) 4484 (34.9) 2628 (38.1) 2607 (38.0) 21 (61.8) 1856 (31.2) 1845 (31.2) 11 (52.3)

Dyslipidemia, n (%) 2855 (22.2) 1497 (21.7) 1488 (21.7) 9 (26.5) 1358 (22.9) 1353 (22.9) 5 (23.8)

Diabetes, n (%) 923 (7.2) 640 (0.9) 631 (9.2) 9 (26.5) 283 (4.8) 278 (4.7) 5 (23.8)

Hyperuricemia, n (%) 1362 (10.6) 1160 (16.8) 1149 (16.7) 11 (32.4) 202 (3.4) 199 (3.4) 3 (14.3)

Chronic kidney disease, n (%) 1100 (8.6) 617 (8.9) 603 (8.8) 14 (41.2) 483 (8.1) 475 (8.0) 8 (38.1)

Anemia (hemoglobin < 11 g/dL), n (%) 186 (1.4) 55 (0.8) 46 (0.7) 9 (26.5) 131 (2.2) 127 (2.1) 4 (19.0)



Page 5 of 8Hirota et al. BMC Cardiovasc Disord           (2021) 21:83 	

value, followed by S Area in V1 (82%) and Q Duration in 
V1 (80%).

Predictive capability
The predictive capability of c-statistics (the mean ± SD of 
10 model runs) was 0.881 ± 0.027 in the training dataset 
and 0.927 ± 0.101 in the testing dataset for all-cause death, 
and 0.862 ± 0.029 in the training model and 0.897 ± 0.069 
in the testing model for CV death. The full list of the 10 
combinations of training and testing datasets are provided 
in Additional file 1: Table S4.

Discussion
Major outcomes
The major outcomes of the present study were as fol-
lows: (1) We developed a predictive model for all-
cause death, in which the mean c-statistics of 10 
model runs were 0.881 ± 0.027 for the training data-
set and 0.927 ± 0.101 for the testing dataset. (2) The 
mean c-statistics of 10 model runs for CV death were 
0.862 ± 0.029 for the training dataset and 0.897 ± 0.069 
for the testing dataset. (3) ECG parameters with high 
permutation importance for both all-cause and CV 
death were concentrated in the QRS complex and ST-T 
segment.

Table 3  The top 30 relative importance (%) for  all-cause 
death

Ranking Parameter Relative 
importance 
(%)

1 T Peak Amplitude in II 100

2 T Peak Amplitude in aVR 60

3 T′ Peak Amplitude in aVL 52

4 R Peak Time in aVL 50

5 T Peak Amplitude in aVL 50

6 Maximum ST level in V1 48

7 Maximum ST level in V3 48

8 Max R Amplitude in aVL 48

9 QRS Duration 47

10 S Duration in III 47

11 Minimum ST level in aVL 47

12 Max S Amplitude in V1 46

13 S Duration in I 46

14 S Area in aVF 44

15 S Duration in V5 43

16 T′ Area in II 42

17 Maximum ST level in I 42

18 P Area (Full) in V1 40

19 T′ Duration in V5 40

20 S Area in V6 40

21 R Area in V6 39

22 Max R Amplitude in II 39

23 P Peak Time in I 39

24 P′ Peak Time in aVF 38

25 S Area in V5 38

26 T Peak Time in V3 38

27 R Area in V5 38

28 T Peak Time in I 38

29 Minimum ST level in V2 38

30 P Peak Amplitude in aVR 37

Table 4  The top 30 relative importance for cardiovascular 
death

Ranking Parameters Relative 
importance 
(%)

1 Maximum ST level in I 100

2 S Area in V1 82

3 Q Duration in V1 80

4 Max R Amplitude in V1 79

5 Maximum ST level in II 77

6 R Area in V6 77

7 Q Duration in V2 76

8 T Peak Amplitude in aVL 75

9 R Area in V5 74

10 Maximum ST level in V3 74

11 S Area in V4 73

12 P Area (Full) in V1 73

13 QRS Area in V2 73

14 P′ Duration in V1 72

15 S Duration in V4 72

16 T Duration in V4 72

17 T axis 72

18 QRS Area in V3 72

19 T Peak Time in I 72

20 T Peak Time in V6 71

21 T′ Area in V1 71

22 P Duration in V1 71

23 QTc Calculation (QTc Bazett) 71

24 Max S Amplitude in V4 71

25 S Duration in V3 71

26 T′ Area in V2 71

27 T Peak Time in V3 71

28 T Peak Amplitude in V6 71

29 T Peak Amplitude in II 70

30 T Peak Time in III 70
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Comparison with previous studies and clinical implications 
of our model
Several studies have investigated the feasibility of using 
visible ECG parameters, including P wave characteristics 
[8, 16, 17], QRS morphologies [18, 19], ST-T segments, 
[9, 10] or QT duration, to predict mortality [20]. In a 
previous study, several ECG parameters, including heart 
rate > 75  bpm, QRS transition zone > V4, left ventricu-
lar hypertrophy, frontal QRS-T angle > 90°, prolonged 
QTc interval, and prolonged Tpeak-to-Tend interval, 
were identified as predictors of sudden cardiac death 
[6]. Our data were partially consistent with this previ-
ous study because the ECG parameters that potentially 
contributed to the prediction of all-cause and CV death 
were widely distributed among the P, QRS, and ST-T seg-
ment. However, when we comprehensively analyzed the 
ECG parameters contributing to the prediction of all-
cause and CV death based on Wald statistics or param-
eter importance, the most important parameters were 
concentrated in the QRS complex and ST-T segment for 
both outcomes. Although the risk models in our study 
and the previous study [6] were similar to some extent, 
it is natural that the studies had different findings, as 
the former predicted all-cause and CV death in patients 
without structural heart diseases, whereas the latter pre-
dicted sudden cardiac death and included patients with 
structural heart diseases [6].

There have been many studies demonstrating the asso-
ciation between abnormal findings in the QRS complex 
and ST-T segment and CV mortality. Left ventricular 
hypertrophy [6] and fragmented QRS [19] have been 
demonstrated to be risk factors for CV death. The QRS 
complex is affected by electrophysiological impulse gen-
eration and propagation through the ventricles. [21] The 
pathology underlying QRS abnormality, such as ventric-
ular fibrosis, inflammation, edema, fatty inflammation, 
ischemic cellular changes, or abnormal myocardial depo-
sition of substances [21], can affect the current or future 
cardiac function, which may lead to a worse prognosis. 
The electrocardiographic strain pattern is associated 
with left ventricular concentric remodeling and scarring. 
Therefore, it is associated with the future development of 
various CV events, including heart failure or myocardial 
infarction, which result in increased mortality, even for 
patients free from CV diseases at baseline [9].

Our models demonstrated better predictive capa-
bility for all-cause death (the mean c-statistics of 10 
models was 0.881 ± 0.027 for the training dataset and 
0.927 ± 0.101 for the testing dataset) and CV death 
(0.862 ± 0.029 for the training model and 0.897 ± 0.069 
for the testing model) than previous studies that used a 
few ECG parameters, in which the c-statistics for predict-
ing death were 0.58 (maximal P wave duration) [22], 0.64 

(minimal P′ amplitude in lead V1 and V2) [22], 0.61 (QRS 
area) [23], 0.55 (QRS morphology) [23], 0.51 (QRS dura-
tion) [23], 0.727 (QRS-T angle), [24] and 0.759 (model 
including clinical variables, such as age, sex, hyperten-
sion, diabetes, and ECG parameters) [6]. Not surpris-
ingly, the high predictive capabilities of our models are 
due to the use of a large number of ECG parameters as 
consecutive values and the application of machine learn-
ing, which may sacrifice simplicity but prioritize the pre-
dictive capability  [11].

Clinical implications of this study
In this study, we used hundreds of ECG parameters with 
automatic measurement. Such analysis would have sense 
when we excluded patients with heart diseases, because 
the characteristics in ECG with heart diseases are visu-
ally apparent. We intended to concentrate on the dif-
ferences which are visually difficult to be distinguished. 
We thought small differences in numerical measurement 
of ECG parameters are affected by age, which should 
include the atherosclerotic changes in aorta, remodeling 
in heart, or simply the change of body shapes. For this 
purpose, we excluded patients with heart diseases, and 
consequently, the number of the endpoints in the present 
study (all-cause death or cardiovascular death) became 
very small.

Further, we should discuss the advantages and dis-
advantages of using machine learning approach in such 
prognostic studies. Initially, we intended to develop the 
clear and practical predictive model or risk score by 
Cox regression analysis. However, considering the small 
number of events, the multivariate analysis was clearly 
oversized in view of the number of events and raised the 
problem of statistical power. As we could not increase 
the statistical power (i.e., increase the incidence num-
ber of endpoints), we abandoned to use the statistical 
model like Cox regression analysis. Instead, we employed 
the machine learning algorithm which can work with a 
small number of events and a relatively large number of 
parameters.

Considering the possibility of overfitting by machine 
learning algorithm, we do not emphasize the differences 
in the effect of the individual ECG parameters on mortal-
ity. However, we believe our data provided a panoramic 
viewpoint and suggested that the ECG parameters affect-
ing mortality were mostly concentrated in the QRS com-
plex and the ST-T segment.

Limitations
This study had several limitations. First, all participants 
in this study were Japanese patients who visited a spe-
cialized cardiovascular hospital. Therefore, the results 
should be interpreted carefully when applied to other 
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populations. Second, we used the parameters measured 
with a GE ECG machine. The approaches or algorithms 
to measure the waves may be slightly different between 
manufacturers of ECG machines, and validation with 
other ECG machines may be necessary. Third, patient 
characteristics, such as age, sex, cardiac anatomical infor-
mation, or concomitant diseases, were not included in 
our models. Fourth, in the present study, we excluded 
patients with structural heart diseases. When patients 
with structural heart diseases are included, the predictive 
models are more complex and the weight of each ECG 
parameter for the risk of all-cause death changes. Fifth, 
we separated the entire cohort into training dataset and 
testing dataset for developing the models for the pur-
pose of internal validation. However, our model was not 
validated in an external cohort. Finally, our data did not 
identify the cutoff values of each parameter nor provide a 
clear and practical prediction model due to a nature of a 
machine learning method.

Conclusion
Parameters acquired from 12-lead resting electrocardiog-
raphy could be applied to the prediction of all-cause and 
CV death in patients without structural heart diseases. 
ECG parameters that greatly contributed to the predic-
tion were concentrated in the QRS complex and ST-T 
segment.
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