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Abstract

Fertilization and seed development is a critical time in the plant life cycle, and coordinated

development of the embryo and endosperm are required to produce a viable seed. In the

endosperm, some genes show imprinted expression where transcripts are derived primarily

from one parental genome. Imprinted gene expression has been observed across many

flowering plant species, though only a small proportion of genes are imprinted. Understand-

ing how imprinted expression arises has been complicated by the reliance on single nucleo-

tide polymorphisms between alleles to enable testing for imprinting. Here, we develop a

method to use whole genome assemblies of multiple genotypes to assess for imprinting of

both shared and variable portions of the genome using data from reciprocal crosses. This

reveals widespread maternal expression of genes and transposable elements with pres-

ence-absence variation within maize and across species. Most maternally expressed fea-

tures are expressed primarily in the endosperm, suggesting that maternal de-repression in

the central cell facilitates expression. Furthermore, maternally expressed TEs are enriched

for maternal expression of the nearest gene, and read alignments over maternal TE-gene

pairs indicate that these are fused rather than independent transcripts.

Author summary

While parents contribute equally to the DNA of offspring, some genes are imprinted, or

differentially expressed depending on which parent the allele is passed from. In plants,

imprinted genes are expressed in the endosperm, and prior studies have missed many

imprinted genes. Here, we present a new method which identifies imprinted genes and

transposable elements using all parental differences in sequence, including presence-

absence variation between parents, rather than single nucleotide polymorphisms alone.

We find that the majority of imprinted genes with maternal expression are genes and

transposable elements that are present in only one genome and that are not shared with

other grass species. These transcripts are often expressed primarily in the endosperm
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where epigenetic marks on the maternal alleles are distinct from the rest of the plant. We

also find evidence of fused transcripts with transposable elements upstream of genes,

implicating common regulation for imprinted transposable elements and some nearby

genes.

Introduction

Imprinted genes showing parent-of-origin based patterns of expression were first identified in

maize [1] and have since been identified in a variety of flowering plants [2–6]. In plants,

imprinted expression is primarily observed in the endosperm, which is a nutritive tissue of the

seed that is formed when the diploid central cell is fertilized by one of the two sperm cells

delivered by the pollen tube. The central cell is epigenetically distinct from most vegetative

cells in the plant due to DNA demethylation targeted primarily to Transposable Elements

(TEs) [7–9]. This demethylation acts as a primary imprint that distinguishes the female and

the male alleles in the endosperm. Maternal and paternal alleles are further distinguished

through differential accumulation of histone modifications such as H3K27me3 [10,11] which

often marks the maternal allele of paternally expressed genes (PEGs) while maternally

expressed genes (MEGs) often show differences in DNA methylation alone [12].

Imprinting has been studied at the genomic level in many plant species [2–6]. While some

important genes have conserved imprinting in many species [13], several studies have

observed variable imprinting for other genes, with inconsistent imprinting within genotypes

of a single species or across species [14,15]. However, understanding the rate of turnover and

the origins of imprinted expression patterns has been challenging due in part to methodologi-

cal inconsistencies across studies and the limitations of available SNPs for allele calls. In Arabi-

dopsis, applying consistent methods and cutoffs across studies reduces apparent variability in

imprinting calls [16,17], however many genes cannot be assessed due to a lack of informative

SNPs. A lack of SNPs can be due to identical sequence or unalignable regions resulting from

large structural changes or presence-absence variation (PAV) of whole genes or features. In

maize, many genes and TEs exhibit PAV among genotypes [18–20]. This limits the ability to

use SNP-based allele-specific expression analyses to study imprinting, especially for transpo-

sons and variable genes. In this study, we develop an alternative approach that relies upon

comparisons of expression in reciprocal crosses to assess the imprinting of both conserved and

variable genes and TEs across maize genotypes with whole genome assemblies, revealing

imprinting for many transposable elements and variable genic sequences.

Results and discussion

Reciprocal crosses for every pairwise contrast between three maize genotypes with whole

genome assemblies (B73 [21], W22 [22], and PH207 [23]) were performed, and 14 days after

pollination, endosperm was isolated in triplicate for RNA-sequencing (S1 Table). Two

approaches were applied to identify imprinted expression (Fig 1A). The traditional approach

for calling imprinting uses Single Nucleotide Polymorphisms to call Allele Specific Expression

(SNP-ASE) followed by comparison of biases across reciprocal crosses (methods). The

SNP-ASE ratio is calculated by assigning SNP-containing reads to one allele and determining

the proportion of informative reads from each allele, providing an estimate of the expression

of two alleles within a single sample. This approach can be applied to a single sample and the

assessment of imprinting is typically based on consistent bias for the SNP-ASE value in both

reciprocal crosses. We developed and implemented an alternative approach where reads are
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aligned to concatenated genome files composed of the two parental genotypes and the Recip-

rocal Expression Ratio (RER) was calculated to describe the ratio of expression for features in

each genome when inherited maternally versus paternally. Unlike SNP-ASE, the RER is a com-

parison of expression of a feature in reciprocal crosses and cannot be calculated for a single

sample. Calculations of RER rely on the ~15% of reads that map uniquely to a single location

in the concatenated genomes (S1 Table). While many reads map equally well to both genomes

and are therefore discarded, unique mapping reads are only found in places of the genome

with variants distinguishing the alleles (SNPs or indels) or in regions unique to one genome.

After assigning unique reads to features including genes and TEs using HTseq, RER was calcu-

lated by dividing the expression level (RPM) when inherited maternally by the sum of expres-

sion when maternally or paternally inherited. Given that endosperm is composed of two

copies of the maternal genome and one copy of the paternal genome, the null expectation for a

transcript’s expression is that it will be twice as highly expressed when inherited from the

Fig 1. Assessing imprinted expression pattern in maize. A) The method for defining imprinting using SNP-ASE

versus RER illustrating an example of an imprinted gene distinguishable by SNPs (Case 1), a non-imprinted gene (Case

2), and an imprinted PAV gene (Case 3). In SNP-ASE, reads mapping to a SNP-corrected reference genome are

assigned to alleles based on the SNP supported. In RER, reads are assigned to a concatenated reference genome and

retained at unique positions. Both methods can be used to assess imprinting for shared genes distinguished by SNPs,

but only RER can assess imprinting for PAV features. B) Comparison of SNP-ASE and RER for B73 alleles assessable

with at least 10 unique (RER) and informative (SNP-ASE) reads in the B73 x W22 crosses. The values plotted showi the

averages across three biological replicates. SNP-ASE is calculated separately for the B73 x W22 cross (left) and

reciprocal W22 x B73 cross (right), while RER is calculated with information from both reciprocals and plotted as the

y-axis in both plots. The heat represents the number of genes in each pixel of the plot, and red dots indicate the

expected ratios for non-imprinted expressed genes. C-D) Expression patterns of known MEGs (C) and PEGs (D) in

this dataset using mapping from concatenated genomes. X-axis shows the source of the gene model and the genome

contrast (where B = B73, W = W22, and P = PH207), and bars are colored based on whether the allele plotted is

inherited maternally (maroon) or paternally (navy). The y-axis shows the mean expression calculated from unique

mapping reads using the mapping strategy used for RER. RER values are calculated by dividing the expression when

inherited maternally by the sum of expression from both directions of the cross. Error bars represent standard error,

and gene IDs for the orthologs in each genome are listed in S2 Table. E) The distribution of RER values for different

features across contrasts. RER cutoffs for strong maternal and strong paternal are> 0.9 and< 0.1, respectively, and

cutoffs for moderate maternal and paternal are> 0.8 or< 0.2, respectively The total number of features across all

expression categories are shown on each bar.

https://doi.org/10.1371/journal.pgen.1009491.g001
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maternal parent compared to the paternal parent. For both SNP-ASE and RER, the average

value representing a biparentally expressed gene is 0.67, allowing direct comparison of the

methods. A comparison of SNP-ASE and RER reveals general agreement between these two

approaches for genes that could be analyzed with SNPs, with the majority of genes expressed

at the ratio expected by 2:1 dosage (Fig 1B). Many of the genes showing disagreement between

methods in Fig 1B result from genotype-biased expression which exhibits a strong bias in

SNP-ASE for a single sample but doesn’t result in bias for RER (S1 Fig). Inaccuracies in

SNP-ASE can also arise from erroneous mapping of paralogs when mapping to a single refer-

ence genome. To further assess accuracy of RER, expression patterns for three MEGs and

three PEGs with conserved imprinting status in maize, rice, and Arabidopsis [4] were assessed

(Fig 1C, S2 Table). In most cases with informative reads, clear parental bias in the expected

direction was observed for all genes (Fig 1C).

While both methods can be used to define imprinting for shared genes distinguishable by

SNPs, only the RER method can capture imprinting for portions of the genome that exhibit

PAV. This provides new opportunities to study parent-of-origin biased gene expression for

TEs and variable genes. The distribution of RER values was assessed across contrasts for differ-

ent feature types (S2A Fig), and the proportion of each set that showed parentally-biased

expression was summarized based on RER (Figs 1E, S2B and S2C). This revealed that across all

contrasts, genes conserved within maize rarely exhibit parent-of-origin biased expression (Figs

1E and S2). On average, < 3% of expressed genes that are present in all three maize genotypes

in this study show a strong parental bias (Fig 1E). For genes that exhibit presence/absence vari-

ation among maize lines, a higher proportion (> 6%) of expressed genes show high parental

bias, with this set representing genes that are accessible using RER but not SNP-ASE. Strik-

ingly, > 11% of expressed TEs show a strong parental bias, with the majority of strongly biased

TEs expressed maternally (Fig 1E).

In order to identify imprinted transcripts, we applied the lfcThreshold option within

DESeq2 to test for significance (adjusted p-value < 0.05) over the expected 2:1 gene dosage

across reciprocals using three biological replicates. To increase the stringency of imprinting

calls, significant hits were further filtered by RER values. Maternally Expressed Genes (MEGs)

and Maternally Expressed TEs (matTEs) were filtered for RER> 0.9, while Paternally

Expressed Genes (PEGs) were filtered for RER< 0.1. It can be difficult to remove all maternal

tissues when isolating endosperm tissue and therefore it is important to limit potential false-

positive calls of maternal expression that may result from genes expressed in the maternal seed

coat [24]. Previously published RNA-seq data [25] was used to filter out genes whose maternal

expression could result from seed coat contamination rather than maternal expression in the

endosperm. Pericarp-preferred genes were defined where the mean expression in pericarp was

>2-fold higher than the expression in endosperm (S3 Fig). After implementing these criteria

and filters, we identified an average of 182 total imprinted genes across all hybrid combina-

tions, with an average of 112 MEGs and 70 PEGs in each (Fig 2A, S1–S3 Data).

Since RER considers alleles from each genotype independently, comparative genomic

approaches were used to compare the consistency of imprinting for genes discovered in each

genome. A comparison of imprinted features in the B73 x W22 reciprocal hybrid endosperm

tissue identifies 17 MEGs, 39 PEGs, and 4 matTEs that were consistently imprinted in both

genomes (Figs 2B and 3B). A subset of the genes that do not exhibit consistent imprinting are

shared between the two genomes. For example, there are 26 MEGs observed only in B73 and

11 only observed in W22 despite the fact that both genomes retain a syntenic ortholog for

these genes. For the majority of these shared genes with variable imprinting, the lack of overlap

is due to cutoff stringency or lack of coverage rather than true gain or loss of imprinting (S4

Fig). There are many additional cases where imprinted genes are only present in one genome.
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For PEGs, variable genes represent the minority of non-conserved imprinted genes, with only

13 of 34 B73 PEGs that are not imprinted in W22 variable across genomes. In contrast, for the

majority of MEGs with inconsistent imprinting (i.e. 107 of 133 B73 genes in the B73 by W22

contrast), the genes themselves are absent from the other genome. Similar patterns are

observed for the B73 by PH207 contrast, though a higher proportion of genes are shared in

this contrast. The large number of maternally expressed transcripts with variability in maize

suggests that imprinting of non-conserved elements may be far more prevalent than previously

detected due to the limitations of SNP-based allele calls.

To understand additional features of imprinted genes, we focused on the B73 genes that

were called imprinted in at least one contrast, which included 202 MEGs and 111 PEGs. B73

was selected as the central genotype because it has substantially more expression datasets, syn-

tenic gene information, and functional gene annotations than other genomes. For the genes

identified as imprinted, we compared several characteristics relative to genes that were

expressed but were not classified as imprinted (S4 Data). First, genes were assessed for variabil-

ity across maize inbred lines by defining conserved genes as those with syntenic orthologs in

B73, W22, and PH207 and variable genes as those without a corresponding gene in at least one

genome [26]. This revealed a clear enrichment for variable genes among MEGs (p-

value < 0.001, chisq test), but not PEGs, compared to genes that are not imprinted but have

enough unique reads to be assessed for imprinting (Fig 2C). We then expanded our evolution-

ary distance and assessed how many genes in each set are syntenic with other grasses as

defined by having a syntenic ortholog in sorghum, rice, foxtail millet, and brachypodium. For

genes without imprinting, the majority (62%) are syntenic with other grasses. However, MEGs

are highly depleted for syntenic genes (19%) and PEGs show a minor depletion (50%, p-

value < 0.05, chisq test). Next, the expression pattern across B73 development was assessed

using published RNA-seq data [25]. Since imprinting can arise from either silencing of one

parental allele specifically in the endosperm or de-repression of one parental allele in the endo-

sperm, the pattern of expression across tissues was defined as either constitutive or

Fig 2. Imprinting of genes defined by RER. A) The number of imprinted genes identified across contrasts using the

RER method (see Materials and Methods). MEGs are shown in magenta and PEGs are shown in blue. B) The overlap

between imprinted genes across pairwise contrasts. Genes that are shared between genotypes that could be assessed for

imprinting are shown in black above the line while imprinted genes unique to one genome are shown in gray below

the line. C) Comparison of features for MEGs, PEGs, and non-imprinted B73 genes. Genes are defined as conserved

when they are shared with all genotypes present in this study, syntenic when a syntenic ortholog exists in sorghum,

rice, foxtail millet, and brachypodium, and endosperm-preferred if expression is primarily restricted to the endosperm

(S5 Fig). Asterisks denote significance relative to the Not Imprinted set (chi-squared test).

https://doi.org/10.1371/journal.pgen.1009491.g002
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endosperm-preferred (see Materials and Methods, S4 Fig). While only 3% of non-imprinted

genes are expressed preferentially in the endosperm, 77% of MEGs and 32% of PEGs show this

expression pattern (Fig 2C, p-value < 0.001, chisq test). Many of the MEGs (38%) have no

assigned GO term, a 2.8-fold enrichment compared to genes that are not imprinted (p-

value < 0.001, chisq test). Since TEs are a common source of new genes and a driver of gene

content variation among maize lines, we intersected our imprinted genes with annotated TEs,

identifying 26 MEGs and 1 PEG completely within an annotated transposable element. While

MEGs and PEGs are annotated as genes in the B73v4 annotation, transcription of a locus does

not imply the production of a functional gene product and many “genes” annotated in B73

have TE origins. Evolutionarily conserved genes with synteny to other grasses may be the best

candidates for functional genes capable of conferring phenotypes [27], there are certainly

some examples of non-conserved genes that can be important for functions such as disease

resistance [28].

To further investigate the imprinting of TEs themselves, the RER method was used to define

imprinted TEs, with an average of 95 matTEs identified across contrasts (Fig 3A). There are a

very small number of paternally expressed TEs, however these were excluded from further

analyses due to the low number detected and potential technical complications (Figs 3A and

S2). Consistent with the large amount of TE variability among genotypes, the majority of

imprinted TEs were unique to one genome (Fig 3B). There are 145 maternally expressed TEs

in B73 relative to at least one other genotype, including 72 LTR retrotransposons, 52 Helitrons,

9 TIR transposons, and 2 LINEs (Fig 3C). The vast majority of these TEs (93%) represent spe-

cific TE insertions that are polymorphic among the three maize genotypes [20]. Given the high

tissue-specificity of TE expression observed previously [29], the tissue-specific expression

Fig 3. Imprinted TEs defined by RER. A) The number of imprinted TEs across contrasts. matTEs are marked in

magenta and paternally expressed TEs are marked in navy. Asterisks denote contrasts where paternally expressed TEs

could not be defined (S2 Fig). B) The overlap between matTEs across pairwise contrasts. TEs that are shared between

genotypes that could be assessed for imprinting are shown in black above the line while imprinted TEs unique to one

genome are shown in gray below the line. C. Features of matTEs in B73. TE orders are abbreviated: DHH = Helitron,

TIR = terminal inverted repeat transposon, LTR = LTR retrotransposon, and LINE = long interspersed nuclear

element. TE variability is defined by prior work (Anderson et al. 2019). Endosperm-preferred expression is described

by patterns across development (S5 Fig). D) Imprinting status of closest gene to matTEs. Expected number is based on

the number of MEGs and PEGs that were assessed for imprinting. �� p-value< 0.001 (binomial test) E) IGV view

showing a representative example of reads aligning to a matTE near a MEG. Reads are colored by the strand of

alignments, where blue = forward strand. Green line shows primer positions for RT-PCR, with positive result shown in

gel image.

https://doi.org/10.1371/journal.pgen.1009491.g003
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patterns for matTEs were also assessed. We found that 92% of matTEs are expressed preferen-

tially in the endosperm, suggesting that imprinting is established through de-repression of the

maternal allele preferentially in the endosperm and that this is the only stage of development

for expression of these elements (Figs 3C and S5). We also assessed some features of these

matTEs, finding that matTEs are closer to the nearest gene than non-imprinted genes (p.

value < 0.0001, t-test), with a mean distance of 15kb for matTEs vs. 35 kb for non-imprinted

genes. For LTR retrotransposons, we are able to confidently assess TE age using LTR similarity

as a proxy, where younger elements have more similar LTRs. We find that maternal LTRs are

on average older than non-imprinted LTRs (p.value < 0.0001, t-test), with an average of 93%

and 95% similarity, respectively.

Since TE families have the potential for coordinated expression responses among members,

the families for matTEs were assessed. matTEs are in 84 families, with only one Helitron family

containing more than 5 imprinted elements. This family, DHH00002 (DHH2), contains 44

maternally expressed members and is the only Helitron family in B73 that is predicted to have

autonomous members. Since prior work has suggested that Helitrons are responsible for creat-

ing imprinting by moving PHE1 binding sites around the genome [30], the proportion of

DHH2 Helitrons with predicted PHE1 motifs was assessed (S6 Fig). We found that matTEs of

this family more frequently have a binding site than elements that are not detected in our anal-

ysis (p-value < 0.001, chi square test). However, the proportion with binding sites is similar

for imprinted and non-imprinted expressed family members (p.value = 0.38, chi square test),

so it is unlikely that PHE1 sites alone are sufficient to confer imprinting of DHH2 Helitrons.

TEs have been proposed as a source of imprinted gene expression [7,31] and coordinate

expression of genes and TEs has been observed in other reproductive tissues [32], so we inves-

tigated the relationship between imprinted genes and nearby TEs. For every matTE in B73, the

closest gene was identified and assessed for imprinting. For 13% of matTEs, the nearest gene is

a MEG, which is a significant enrichment (p-value< 0.001, binomial test) and 11.6 times

more common than expected based on the proportion of expressed genes that are called

MEGs (Fig 3D). In contrast, there were no identified examples of matTEs where the closest

gene is a PEG. There were 19 matTEs where the closest gene is one of 15 MEGs (S3 Table).

Since TE and gene annotations can overlap and some annotated genes code for TE proteins,

we carefully inspected these loci to understand the relationship between these annotated fea-

tures. In all but one case, the genes overlap (N = 7) or are downstream of the nearest TE

(N = 7). In addition to the seven genes overlapping TEs, two downstream genes

(Zm00001d046395 and Zm00001d041755) have helicase domains consistent with helitron ori-

gin. None of the 15 genes have syntenic orthologs in another grass species, and most (N = 13)

exhibit variable presence within maize genotypes. To understand the nature of transcripts,

read alignments for matTE-MEG pairs were visualized with IGV. In all cases, reads aligning to

both the matTE and corresponding MEG mapped to the same strand without clear separation

in read alignments, suggesting that many of these clusters may actually represent single tran-

scripts overlapping multiple features (Figs 3E and S7) rather than clusters of independently

imprinted transcripts [33]. To test this experimentally, we performed RT-PCR using primers

aligning to the gene and TE, confirming fused transcripts for 4 of 5 loci tested (Figs 3E and

S7). Combined with the stranded RNA-seq confirming that the TEs are upstream of the genes

within the transcripts, this suggests that some imprinted promoters can drive expression of

transcripts overlapping features annotated as TEs and genes.

In summary, we developed the RER method to use information from shared and variable

portions of maize whole genome assemblies to identify imprinted expression of genes and TEs

in maize. This revealed imprinting of many genes that were undetectable by traditional meth-

ods that rely on diagnostic SNPs between parental alleles. The majority of maternally expressed

PLOS GENETICS Widespread imprinting of transposable elements and variable genes in the maize endosperm

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009491 April 8, 2021 7 / 14

https://doi.org/10.1371/journal.pgen.1009491


features (genes and TEs) represent young portions of the genome that are variable within

maize and non-syntenic with other grasses. It is worth noting that while matTEs are not neces-

sarily younger than non-imprinted TEs, all TE insertions accumulated after the divergence of

maize from other grasses. We also observe strong enrichment for MEGs near maternally

expressed TEs, suggesting a connection between imprinted TEs and transcripts containing

open reading frames. In particular, this may suggest that polymorphic TE insertions can gener-

ate novel imprinted expression patterns for nearby sequences, highlighting a potential mecha-

nism for the birth of imprinting. Notably this could occur for an existing gene or could result

in imprinting of a novel transposed sequence resulting in a novel “gene.” The observation that

many MEGs and matTEs are sequences that have variable presence in different maize genomes

is interesting. Imprinting has been proposed to be a phenomena intended to silence TEs in the

germline, and maternal expression of TEs and TE-like genes is perhaps an unsurprising out-

come of this study. While it is tempting to speculate that the variability in sequence content

itself could imply a mechanistic tie between variable sequence and imprinted expression, fur-

ther studies would be required to better understand the nature of these transcripts and poten-

tial cross-talk between parental genomes to create imprinting in a subset of cases.

We previously hypothesized that TE demethylation could result in either MEGs or PEGs

[34], however our results suggest that the majority of imprinted TEs are MEGs. The mechanis-

tic bias for this enrichment of MEG TEs is unclear. We speculate that this could arise as a con-

sequence of many PEGs requiring H3K27me3 to silence the demethylated maternal alleles

[11,12,35]. In general, H3K27me3 is rarely found over TEs [10,36] and most TEs may lack the

sequences necessary for recruitment of H3K27me3 even when they lose DNA methylation. In

mammals, imprinting in the placenta has been proposed to result from different defense

mechanisms used by male and female germlines to reduce retrovirus proliferation in the germ

line [37], and turnover of imprinting could have similar host defense explanations in plant

endosperm and animal development [38]. In plants, there are genes with conserved imprinting

across plant species that support theories of parental conflict [39] or dosage [40], however the

majority of imprinted loci are variable within and across species. By studying imprinting using

whole genome assemblies, we are able to better understand the imprinted expression of both

shared and variable portions of the maize genome.

Materials and methods

Materials

Three maize inbred lines, B73, W22, and PH207, were grown in the field in Saint Paul, MN in

the summer of 2018. These genotypes are available through the US National Germplasm Sys-

tem (GRIN). Reciprocal crosses between each pair of genotypes were performed. Ears were

collected 14 days after pollination and endosperm was isolated using manual dissection, with

approximately 10 kernels per ear pooled for each biological replicate. Paired-end, stranded

RNA-seq libraries were created using the Illumina TruSeq Stranded mRNA kit and PE125

sequencing was performed on the Illumina HiSeq 2500 at the University of Minnesota Geno-

mics Center. On average, > 45 million reads were generated per library (S1 Table).

Sequence alignments for RER

Concatenated genome files were created for each pairwise contrast of parental genomes and

assemblies used included B73v4 [21], W22 [22], and PH207 [23]. When necessary, chromo-

some designations were altered to ensure non-redundant sequence names across parents.

Hisat2 index files were created using genome sequences only for each contrast. Gene annota-

tions and disjoined filteredTE annotations available at https://github.com/SNAnderson/

PLOS GENETICS Widespread imprinting of transposable elements and variable genes in the maize endosperm

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009491 April 8, 2021 8 / 14

https://github.com/SNAnderson/maizeTE_variation
https://doi.org/10.1371/journal.pgen.1009491


maizeTE_variation were combined by first subtracting exon regions from the TE annotations

and then combining full gene and TE annotations for each genome. This resulted in a file

where reads aligned to exon regions of gene annotations are assigned to genes while reads

aligned to TE-containing introns are assigned to TEs. Ambiguous reads are not counted to

either feature. Concatenated annotation files were then created for each pairwise contrast

using the same chromosomal designation as for the genome files. RNA-seq reads were

trimmed using cutadapt [41] and aligned to the concatenated genomes corresponding to the

parents using hisat2, using default parameters [42]. Unique-mapping reads to the

concatenated genome files were then assigned to features (genes and TEs) using HTseq [43].

Counts to each feature were normalized as reads per million using library size estimates

derived from the SNP-ASE method (described below). RER for each annotation (gene and TE)

was calculated by dividing the mean expression when inherited maternally by the sum of the

expression when inherited maternally and paternally. RER itself does not include any informa-

tion about the corresponding locus in other genomes.

Sequence alignments for SNP-ASE

In parallel to the above method of mapping reads, we also ran the standard, SNP-based allele

specific expression pipeline by mapping reads to the B73 AGPv4 reference assembly using a

variant-aware aligner HiSat2 trained with a set of known SNPs as described in [44]. The num-

ber of reads supporting each parental genotype were used to calculate the proportion of mater-

nal reads for each gene. For comparison across mapping methods, genes were filtered for only

those with at least 10 informative reads in both methods. SNP-ASE ratios were calculated for

each gene in each direction of the reciprocal cross separately by dividing the number of reads

matching the maternal allele by the total number of informative reads. Genes with parent-spe-

cific expression were defined as those with a SNP maternal ratio > 0.85 in one direction

and< 0.15 in the reciprocal direction.

Defining imprinting

To define imprinted features using RER, count tables for genes and TEs in each library were

loaded into R. For each of the three reciprocal crosses performed in triplicate, DESeq2 [45]

was applied using the lfcThreshold = 1 and altHypothesis = "greaterAbs" options to identify

features with significant deviations from the 2:1 expected expression difference based on dos-

age. Each contrast includes features from both parental genomes, so maternal and paternal

expression was determined by the direction of the differential expression plus the genome

where the feature was annotated. Significant features were further filtered to only strong cases

of imprinting where RER was > 0.9 for MEGs and matTEs and< 0.1 for PEGs. To create the

final list of imprinted features, maternal features with pericarp-preferred expression were fil-

tered out (see Tissue Dynamics).

Tissue dynamics

The expression profile of genes and TEs was analyzed for B73 features using previously pub-

lished analysis [29] using data from [25]. To filter out genes where expression is higher in the

pericarp than the endosperm and could thus result in inaccurate imprinting calls [24], expres-

sion was compared for 14 dap seeds (the time point used in this study) and 18 dap pericarp.

Genes with expression over twice as high in the pericarp over the endosperm were excluded

from MEG calls. W22 and PH207 genes corresponding to genes expressed higher in the peri-

carp were also excluded from MEG calls. No matTEs were identified as potential contaminants

using this method. Expression data across all tissues was also used to identify endosperm-

PLOS GENETICS Widespread imprinting of transposable elements and variable genes in the maize endosperm

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009491 April 8, 2021 9 / 14

https://github.com/SNAnderson/maizeTE_variation
https://doi.org/10.1371/journal.pgen.1009491


preferred expression. Endosperm-preferred expression was defined as genes and TEs where

the sum of expression in endosperm and wole seed libraries (26% of libraries) was more than

60% of the sum of expression across all libraries.

Descriptors

To identify genes that are shared between genome assemblies and annotations, the file gen-

e_model_xref_v4.txt was downloaded from MaizeGDB [26] on 2020/01/22. This file is

B73-based and genes with a single corresponding gene in either the pairwise contrast (for

venn diagrams) or in both W22 and PH207 (all other analyses) were defined as conserved in

maize while remaining genes were defined as variable. This file was also used to define

genes that are syntenic with other grasses, with syntenic genes being defined as any gene

with a syntenic ortholog in foxtail millet, rice, brachypodium, and sorghum. To identify the

nearest gene to each matTE, bedtools closest was used and distances between TE and gene

were reported relative to the orientation of the gene.

RT-PCR

RT-PCR was used to identify cases where TE and gene annotations contribute to a fused

imprinted transcript. RNA from B73 x PH207 replicates 1 and 2 along with unsequenced repli-

cate 4 of B73 x W22 was cleaned with the Monarch RNA cleanup kit (T2030L, NEB) and con-

verted into cDNA using the ProtoScript First Strand cDNA synthesis kit using oligo-dT

primers (E6300S, NEB). RT-PCR was performed using primers aligning to both the TE and

the gene. These sequences were: TGGACATCTTACATTGCTCCAC and CGGGCTTCAAAC

CAAAAGA for DHH00002Zm00001d02687, GTTGATCTCTGGAACACCAACA and

ATGCCCTTGTGCACCTAGTAGT for DHH00002Zm00001d02512, ATACAGCGTGACAT

TCATTTGC and TATTGAAGTTGGCAGGAAAGGT for RLX11772Zm00001d00001, AATT

TCAGTTTCGCCCTATTCA and CCACTGAGCTCCCTCAGTATAAA for RLC00002

Zm00001d00679, and AGCTTTCTCCTCCCTTCCTCTA and CGCAGTATTCATCGTCATC

ATC for DHH00002Zm00001d01432.

Code availability

Scripts and data files used to process results are available at https://github.com/SNAnderson/

Imprinting2020 and https://github.com/kmhiggins/Imprinting_2020. There are no restric-

tions on code availability.

Supporting information

S1 Fig. Comparison of SNP-ASE and RER for B73 genes accessible using both methods in

the B73 x W22 cross. A) The SNP-ASE method applied across both directions of reciprocal

crosses, with points colored based on imprinting calls using RER (magenta and blue) or incon-

sistency across reciprocals using SNP-ASE (green and purple). Colors are consistent across

panels. B-C) Comparison of the two SNP-ASE values to RER. Plots are the same as shown in

Fig 1B but colored to indicate imprinted genes and genes with genotype-biased expression

using SNP-ASE. Genotype bias does not impact RER since the calculation is performed across

reciprocals instead of across genotypes. For all panels, values plotted show the average across

three biological replicates. Genes are color-coded based on expression pattern, with

magenta = MEG, blue = PEG, green = B73 biased, and purple = W22 biased. Genotype bias

was defined by SNP-ASE ratios > 0.85 in one direction and< 0.15 in the other direction of
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reciprocal crosses.

(TIFF)

S2 Fig. Distribution of RER for genes and TEs across contrasts. A) Most genes and TEs are

expressed near the expected ratio given genome dosage (horizontal line, 0.67), with maternal

and paternal expression approaching 1 or 0, respectively. TEs have a more pronounced peak of

maternal expression than genes. For TEs, a bimodal peak near 0.67 and 0.33 in contrasts with

PH207 suggests that some PH207 TEs may be mapping better to B73 or W22 assemblies due

to poor assembly quality of PH207 in intergenic space. For this reason, paternal TEs were not

counted in contrasts with PH207 in Fig 3A. B-C) The proportion of parentally biased RER val-

ues for different features across contrasts. RER cutoffs for strong maternal and strong paternal

are> 0.9 and< 0.1, respectively, and cutoffs for moderate maternal and paternal are> 0.8

or< 0.2, respectively.

(TIFF)

S3 Fig. Expression profile of B73 MEGs and matTEs in the endosperm and pericarp using

RNA-seq data from Stelpflug et al. Genes with mean expression in the pericarp > 2x the

mean expression in the endosperm were filtered from the MEG list due to the potential for

seed coat contamination. W22 and PH207 genes corresponding to B73 pericarp-preferred

genes were also removed from MEG counts. There were no matTEs filtered out using this

method. Heat of each pixel represents the expression value compared to the max in the row.

(TIFF)

S4 Fig. RER bias for genes with inconsistent imprinting in Fig 2B. For both MEGs (right)

and PEGs (left), the majority of genes do not overlap due to low coverage or have RER values

in the same direction as imprinted genes but failed to meet our strict statistical and/or RER

threshold. X-axis labels denote the genotype where the gene is imprinted, the type of imprint,

and the cross where the imprinting is variable (B = B73, W = W22, P = PH207).

(TIFF)

S5 Fig. Expression pattern of imprinted B73 genes and TEs across development using data

from Stelpflug et al. Endosperm and seed tissues are shown on the left side of the break, and

all other tissues sampled are shown on the right of the break. Endosperm-preferred expression

was defined where the sum of the expression across endosperm and seed libraries were more

than 60% of the sum of the expression across all libraries. For each plot, endosperm-preferred

features are shown above the break and constitutive features are shown below the break. Heat

of each pixel represents the expression value compared to the max in the row.

(TIFF)

S6 Fig. Presence of PHE1 binding sites within DHH2 family helitrons. Binding motifs from

Batista et al. 2019 were identified in all DHH2 helitrons, and the distribution of members with

zero, one, or both of the sites were determined. A similar distribution of motifs were found for

matTEs and non-imprinted family members, with a lower proportion of elements with at least

one motif identified in the not detected set. TEs in the not detected set include TEs that are not

expressed and TEs without unique sequence that could be assessed for imprinting.

(TIFF)

S7 Fig. IGV views showing examples of reads aligning to matTEs (magenta) near or overlap-

ping MEGs (cyan). Reads are colored by the strand of alignments, where blue = forward strand

and red = reverse strand. Green bars show primer positions for the RT-PCR amplifications

shown below each example.

(TIFF)
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S1 Table. Reads and mapping statistics for RNA-seq libraries in this study.

(PDF)

S2 Table. Gene IDs for conserved imprinted genes plotted in Fig 1C.

(PDF)

S3 Table. IDs and features of matTEs near MEGs.

(PDF)

S1 Data. RER output table for B73 and W22 contrast.

(XLSX)

S2 Data. RER output table for B73 and PH207 contrast.

(XLSX)

S3 Data. RER output table for W22 and PH207 contrast.

(XLSX)

S4 Data. Summary table for features of B73 genes and TEs used in this study.

(XLSX)
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