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ABSTRACT

Skeletal muscle wasting has gained interest as a primary consequence of chronic kidney disease (CKD) due to the relationship
between skeletal muscle mass, mortality and major adverse cardiovascular events in this population. The combination of
reductions in physical function, skeletal muscle performance and skeletal muscle mass places individuals with CKD at greater risk
of sarcopenia. Therefore the monitoring of skeletal muscle composition and function may provide clinical insight into disease
progression. Dual-energy X-ray absorptiometry and bioelectrical impedance analysis are frequently used to estimate body
composition in people with CKD within clinical research environments, however, their translation into clinical practice has been
limited. Proxy measures of skeletal muscle quality can be obtained using diagnostic ultrasound, providing a cost-effective and
accessible imaging modality to aid further clinical research regarding changes in muscle composition. Clinicians and practitioners
should evaluate the strengths and limitations of the available technology to determine which devices are most appropriate given
their respective circumstances. Progressive resistance exercise has been shown to improve skeletal muscle hypertrophy of the
lower extremities, muscular strength and health-related quality of life in end-stage renal disease, with limited evidence available
in CKD predialysis. Fundamental principles (i.e. specificity, overload, variation, reversibility, individuality) can be used in the
development of more advanced programs focused on improving specific neuromuscular and functional outcomes. Future research
is needed to determine the applicability of skeletal muscle monitoring in clinical settings and the feasibility and efficacy of more
advanced resistance exercise approaches in those with CKD predialysis.
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INTRODUCTION

Chronic kidney disease (CKD) is a major health concern
highlighted by the reported increased risks of mortality and
comorbidities [1, 2]. Worldwide it is estimated that 10–15% of
the general population is affected by CKD [1]. Mounting evi-
dence shows loss of skeletal muscle mass and decrements in
skeletal muscle performance as primary consequences of CKD
[3–6]. The implications of skeletal muscle atrophy associated
with CKD include increased risk for adverse cardiovascular
events [7], dysregulation of glucose homeostasis [8], decreased
force-generating capacity [9] and reductions in physical func-
tion and balance [10]. Moreover, reductions in skeletal muscle
mass are strongly associated with the progression of CKD [6].
Given this relationship, assessment of skeletal muscle morphol-
ogy and performance may provide valuable clinical insights
into the pathophysiology of CKD and the potential risk for CKD
progression.

Resistance exercise has garnered interest as a potential
countermeasure for skeletal muscle impairments in CKD [9, 11–
13]. Positive effects on skeletal muscle strength have been ob-
served following resistance exercise in CKD, with equivocal
effects on skeletal muscle hypertrophy [12, 13]. Despite a greater
proportion of individuals with CKD being predialysis, the major-
ity of evidence comes from studies in patients with end-stage
renal disease (ESRD). This has left a paucity of evidence regard-
ing the effects of resistance exercise in those with CKD predialy-
sis [14]. Due to the multiplicity of variables to consider,
fundamental principles (i.e. specificity, progressive overload
and variation) should be used to increase the likelihood that
specified outcomes are achieved when prescribing resistance
exercise for CKD [15]. The objectives of this brief review are to (i)
describe skeletal muscle consequences associated with CKD, (ii)
discuss the importance of monitoring changes in skeletal mus-
cle health and (iii) briefly present principles of exercise physiol-
ogy and programming strategies to inform the design of
resistance exercise to address neuromuscular impairments in
CKD predialysis.

SIGNIFICANCE OF CKD

CKD is defined most commonly by decreased kidney function
for a duration of at least 3 months as measured by an estimated
glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 [2]. The
chances of developing CKD are increased in those �50 years of
age and are most common in those �70 years of age [16]. The
most common risk factors for CKD include diabetes and high
blood pressure followed by other factors such as cardiovascular
disease, obesity, high cholesterol, lupus and family history [16].
The pathophysiology of CKD manifests in glomerulosclerosis,
tubular atrophy and interstitial fibrosis, leading to reduced fil-
tration capabilities of the kidneys [2]. This results in the accu-
mulation and retention of uremic solutes thought to contribute
to inflammation, immune dysfunction, vascular disease, plate-
let dysfunction and increased bleeding risk, reduced bone min-
eral density, altered drug metabolism, metabolic acidosis and
skeletal muscle wasting [2, 4, 17].

The economic costs associated with CKD are significant, es-
pecially in patients with ESRD [18]. It is estimated that the
socioeconomic burden is likely to continue to increase as a re-
sult of the aging population, prolonged survival among people
with chronic diseases and the rising prevalence of frailty among
other factors [19]. However, high economic costs have been
reported as a result of CKD alone. Baumeister et al. [20] found

that the high economic costs related to CKD were mainly due to
excess inpatient care and drug costs and were independent of
important comorbidities. Dialysis treatment is a major factor
contributing to the high financial costs of CKD treatment. The
average annual direct costs of dialysis treatment in Stage 5 CKD
per patient has been reported to range between $30 000 and
$60 000, with significantly higher costs associated with early di-
alysis initiation (10–14 mL/min/1.73 m2 versus 5–7 mL/min/
1.73 m2) [21]. Thus, in addition to potential health and quality of
life benefits, treatments capable of maintaining kidney function
or delaying the onset of dialysis treatment would provide sub-
stantial socioeconomic benefit.

SKELETAL MUSCLE WASTING AND
DYSFUNCTION IN CKD

Skeletal muscle wasting has gained interest as a primary conse-
quence of CKD due to the relationship between skeletal muscle
mass, mortality and major adverse cardiovascular events [3–5,
7, 22–26]. Carrero et al. [24] reported a 30% incident rate of mus-
cle atrophy in patients starting dialysis with a hazard ratio of
death of 2.62. Significant associations between loss of lean mass
and kidney disease severity and physical function have also
been reported [6, 27]. Maintenance of lean mass is dependent
on the relationship between protein synthesis and protein deg-
radation. In CKD, this relationship is altered favoring protein
degradation and thus accelerating the rate at which skeletal
muscle mass is lost [3, 4, 22]. The upregulation of the ubiquitin–
proteasome system (UPS) is suggested to contribute to this pro-
cess given its role in regulating protein degradation [3, 4, 22].
Other potential mechanisms include metabolic acidosis,
insulin/insulin-like growth factor 1 (IGF-1), inflammation, appe-
tite regulation and microRNA expression [4]. For example, dec-
rements in microRNA 29a (miR-29a) and miR-29b levels, which
are suggested to contribute to decreased muscle myogenesis
and CKD-induced muscle atrophy through an upregulation of
Yin Yang 1 (YY1), were observed in a CKD rodent model [28].

Decrements in physical function are also commonly ob-
served in individuals with CKD concomitant to losses in skeletal
muscle mass [10, 29–32]. For example, patients with CKD pre-
dialysis were shown to experience reductions in strength, bal-
ance and gait speed, suggesting compromised physical function
early in the disease process [31]. Further, physical function of
patients with CKD not treated with dialysis is shown to be a
stronger predictor of 3-year mortality than kidney function or
commonly measured serum biomarkers [33]. Upon the initia-
tion of dialysis, rapid and sustained declines in physical func-
tion are known to occur [29, 34]. For example, younger
individuals on dialysis experienced poorer physical function
compared with older individuals not on dialysis [29]. The reduc-
tions in physical function in the younger individuals with CKD
on dialysis occurred independent of skeletal muscle mass loss
[29]. Determining which factors contribute to declines in physi-
cal function will inform future treatment options to be intro-
duced prior to or following dialysis initiation.

Individuals with CKD (both predialysis and ESRD) may be at
greater risk of sarcopenia given the combined reductions in
physical function, skeletal muscle performance and skeletal
muscle mass [5, 6, 35–39]. While several definitions of sarcope-
nia exist, sarcopenia has been most recently defined as a syn-
drome classified by reductions in skeletal muscle mass plus
a loss of physical function and/or skeletal muscle strength
[40, 41]. Foley et al. [42] reported that the prevalence of
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sarcopenia, defined as the proportion of muscle mass to total
body mass, increased with decreasing kidney function. Using
the European Working Group on Sarcopenia in Old People
(EWGSOP) criteria, elderly patients with ESRD demonstrated a
high prevalence of sarcopenia (37% in men and 29.3% in
women) [42, 43]. Similarly, Souza et al. [37] reported the preva-
lence of sarcopenia ranging between 11.9% and 28.7% using the
EWGSOP and the Foundation for the National Institutes of
Health Sarcopenia Project criteria in patients with CKD predialy-
sis. The increased risk for sarcopenia further highlights the
need for valid and reliable screening methods across the CKD
spectrum. Additionally, the effects of exercise on sarcopenia in
CKD are currently unknown.

CLINICALLY VIABLE APPROACHES TO
ASSESSING CHANGES IN SKELETAL MUSCLE
IN CKD

Monitoring skeletal muscle composition and function may pro-
vide clinical value given the concerns of skeletal muscle wasting
and neuromuscular dysfunction in CKD and its relationship
with mortality [23]. Dual-energy X-ray absorptiometry (DXA),
computed tomography (CT), magnetic resonance imaging (MRI)
and bioelectrical impedance analysis (BIA) are frequently used
to estimate skeletal muscle morphology and body composition
in people with CKD within clinical research environments.
However, the translation of these imaging modalities into clini-
cal practice for the purpose of body or tissue composition analy-
sis has been limited [44, 45].

CT and MRI both allow for the assessment of skeletal muscle
volume and cross-sectional area (CSA) [44, 45]. CT imaging
allows for the differentiation of tissues in vivo based on
attenuation characteristics, whereas MRI allows for tissue seg-
mentation via water and fat proton resonance frequencies and
relaxation times [44–46]. Advantages to these methods include
their high-resolution, three-dimensional construction, regional
and CSA assessments and the ability to provide measures of
muscle quality [44, 45]. Previous studies using both CT and MRI
have documented changes in skeletal muscle in patients with
CKD [47–49]. For example, in a natural history study examining
changes in skeletal muscle and fat CT imaging showed a greater
loss of skeletal muscle CSA in predialysis CKD as compared
with those receiving hemodialysis or peritoneal dialysis [47].
Similarly, MRI of the lower leg has been used to detect signifi-
cant skeletal muscle atrophy in patients on hemodialysis [48].
Despite the valuable information obtained from CT and MRI,
the high equipment cost, subject size restrictions and radiation
exposure (i.e. CT) associated with these devices pose a chal-
lenge to their clinical application [44]. Moreover, the inherent
difficulty of obtaining whole body estimates of skeletal muscle
mass with CT and MRI confers distinct clinical advantages to
DXA and BIA for body composition analysis.

DXA has been identified by sarcopenia consensus groups as
the reference standard for whole body and regional estimates of
fat mass and fat-free mass (FFM) [50, 51]. Renal disease, age, sex
and nutritional status may alter states of hydration, imposing dif-
fering degrees of influence on DXA body composition estimate
values of FFM [52]. Hydration status may exert a nominal effect
on DXA FFM estimates in overweight and obese people [53] but
result in significant differences in repeated measures involving
lean individuals [54]. The analysis of body composition in com-
munity clinical settings often relies on BIA due its affordability,
relatively safe usage and general portability. Electrical impedance
generated via BIA provides the means to estimate body cell mass

through the reactance (Xc) and total body water through the re-
sistance (R) [55, 56]. Importantly, the calculation of FFM using BIA
requires the use of validated equations that account for age,
health status and racial/ethnic background [52, 55, 57]. Given that
BIA is dependent on tissue-specific conductivity, altered states of
hydration and chronic fluid imbalances adversely affect the accu-
racy and reliability of the body composition estimates [55, 58].
Therefore limitations to using BIA to assess post-exercise adapta-
tions in people with CKD may be associated with peripheral
edema, changes in diuretic use and the timing of hemodialysis
procedures in those with ESRD. Promising alternate approaches
to standard BIA include using the derived Xc and R for vector
analysis or phase angle (/) measurement. BIA phase angle has
some prognostic utility for people with CKD and may reflect di-
minished muscle composition or lower body cell mass as a func-
tion of age or pathology [45, 59].

A wide range of methods are used to estimate postexercise
changes in skeletal muscle. The selected assessment method is
governed by cost, accessibility, testing burden and measurement
capabilities, as well as test analytics such as accuracy, reliability
and responsiveness. Skeletal muscle adaptations in people with
CKD have been characterized using DXA following low-intensity
strengthening exercises featuring calisthenics and ankle weights
[60], measuring total body potassium upon completion of a pro-
gressive resistance exercise (PRE) regimen during a period of re-
stricted protein intake [61] and estimating muscle mass using CT
scanning after a high-intensity PRE regimen [9]. Methods of body
composition and muscle tissue analysis beyond DXA and BIA
confer some advantages concerning the assessment of muscle
morphology and morphemetry [62]. Changes in muscle morphol-
ogy attributable to high levels of intramuscular adipose tissue
have been associated with impaired lower extremity muscle per-
formance and declines in functional performance [63, 64].
Estimates of intramuscular adipose tissue measured via CT scan-
ning may be a responsive measure of skeletal muscle adaptations
to strengthening exercise in people with CKD—even in the ab-
sence of muscle hypertrophy [9]. However, this observation is
equivocal and requires additional study to better understand the
usefulness of postintervention CT attenuation values regarding
PRE program efficacy in those with kidney disorders [65].

Diagnostic ultrasound has been utilized to obtain proxy
measures of skeletal muscle quality providing a cost-effective
and accessible imaging modality to aid further clinical research
regarding postexercise changes in muscle composition [66–70].
Skeletal muscle quality via computer-aided gray-scale analysis
of echogenicity is shown to be independently associated with
muscle strength [69, 70]. In addition, echogenicity has demon-
strated the potential for a greater magnitude of associations
with scaled peak force when compared with age [69]. Figure 1
depicts diagnostic ultrasound images of the mobile wad com-
partment acquired over the surface of the brachioradialis in a
patient with CKD Stage 3 predialysis (Figure 1A) and CKD Stage
4 predialysis (Figure 1B). Gray-scale histogram analysis of the
axial view scans was calculated using ImageJ (version 1.48;
National Institutes of Health, Bethesda, MD, USA). The histo-
gram in Figure 1A is shifted to the left and the gray-scale values
are lower compared with Figure 1B. These ultrasound features
suggest that the muscle tissue of the brachioradialis in the pa-
tient with CKD Stage 3 may have a better composition profile
compared with the muscle tissue of the patient with CKD Stage
4. These examples demonstrate the potential clinical applica-
tion of diagnostic ultrasound for assessing muscle quality with
CKD progression. Further investigations are needed to confirm
the validity and reliability of such measures.
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Postexercise changes in muscle morphology may differ based
on exercise program elements such as mode of muscle action,
movement velocity, relative workload, exercise volume and pro-
gram duration [71]. Diagnostic ultrasound allows for the analysis
of postexercise changes in muscle thickness and area, fascicle
length and pennation angle [72]. Additionally, specialized diag-
nostic ultrasound modes such as Doppler may characterize focal
muscle blood flow, and quantitative image acquisition and analy-
sis techniques allow for muscle volume estimates [73–77].
Imaging modalities also allow for the assessment of nonuniform
adaptations involving skeletal muscle architecture that vary
based on the dominant mode of muscle action used during a PRE
regimen [71, 72]. Clinicians and practitioners alike should evalu-
ate the strengths and limitations of the available technology to
determine which devices are most appropriate.

RESISTANCE EXERCISE IN CKD

Aerobic and resistance exercise, both alone and in combination,
have shown beneficial outcomes on health and function in those
with CKD [78]. Specifically, regular exercise is seen to improve
physical fitness, walking capacity, cardiovascular outcomes,
some nutritional parameters and health-related quality of life

(HRQoL) [78]. According to the findings from a systematic review
and meta-analysis, PRE significantly improved skeletal muscle
hypertrophy of the lower extremities, muscular strength and
HRQoL [12]. These findings were corroborated in a systematic re-
view of patients with ESRD that reported skeletal muscle hyper-
trophy, increased lower-body strength and improved aspects of
HRQoL in response to resistance exercise [13]. However, to date,
limited evidence exists on the effects of resistance exercise in
patients with CKD predialysis [11, 79]. The available evidence in
this subpopulation of CKD posits the potential for PRE to increase
skeletal muscle hypertrophy [80, 81] and strength [61, 81] with no
indication of exacerbated inflammatory responses [82].

Despite promising findings of the effects of resistance exer-
cise on neuromuscular health and function in CKD, large varia-
tions exist among the protocols investigated. Differences in
exercise program design and exercise mode make it difficult to
decipher which elements of the exercise regime are most essen-
tial. For example, the type of external load applied has included
free-weight dumbbells [9], weight machines [80, 81], ankle cuffs/
weights [9, 60, 83], elastic bands [9, 84] and pneumatic equip-
ment [85]. The duration of interventions has ranged from
8 weeks to 6 months. Regarding workload assignment, exercise
intensity has been defined and monitored according to ratings
of perceived exertion and relative exercise intensity (i.e.

FIGURE 1: Exemplar musculoskeletal ultrasound images and gray-scale histograms of the proximal forearm in men with CKD. (A) The ultrasound scan and gray-scale

histogram of a 65-year-old man with Stage 3 CKD with a grip strength value of 0.53 (scaled to body weight) and a Short Physical Performance Battery score of 11. (B) The

ultrasound measures of a 71-year-old man with Stage 4 CKD with a grip strength value of 0.15 and a Short Physical Performance Battery score of 7.

Considerations for monitoring skeletal muscle health and prescribing resistance exercise | 825

Deleted Text: ,
Deleted Text: 72
Deleted Text: ,
Deleted Text: 73
Deleted Text: image 
Deleted Text: 74
Deleted Text: 72
Deleted Text: 4. 
Deleted Text: 79
Deleted Text: ,
Deleted Text: 79
Deleted Text: 81
Deleted Text: 62
Deleted Text: 83
Deleted Text: 81
Deleted Text: ,
Deleted Text: 86


percentage repetition maximum), while training volume has
typically been prescribed at 3 sets of 8–15 repetitions [13]. The
lack of standardization across studies complicates data inter-
pretation, limiting the understanding of the potential benefit of
resistance exercise for those with CKD.

PRACTICAL CONSIDERATIONS FOR THE
DESIGN OF RESISTANCE EXERCISE
Recommendations for maintaining or enhancing
skeletal muscle fitness

The American College of Sports Medicine (ACSM) recommends
that resistance exercise be performed using 1–4 sets of 8–12 repeti-
tions (2–3 days/week), at loads between 60% and 80% of an individ-
ual’s 1-repetition maximum (1-RM), for improving general or
overall muscular fitness (Table 1) [86–88]. The current recommen-
dations for resistance exercise specific to CKD are in accordance
with the ACSM guidelines [89–92]. These guidelines propose the
use of 8–10 multijoint exercises per session performed two times
per week. Exercise intensity is encouraged to range between 60%
and 70% of a person’s 1-RM or 5-RM with a minimum of 1 set of
10–15 repetitions completed. A gradual increase in volume (i.e.
progressing to 2–4 sets per exercise) is also encouraged with
2–3 min of rest between sets and at least 48 h rest between exer-
cise sessions (Table 2). While such recommendations seem to be
sufficient for enhancing overall muscular fitness, the inclusion of
advanced exercise program designs may be necessary when
attempting to target specific neuromuscular characteristics. Such
programs may also allow for individualization of exercise pro-
grams based on personal factors and CKD severity.

Guiding principles for resistance exercise prescription

Fundamental principles can be used to guide resistance exercise
prescription. These principles include specificity, progressive
overload, variation, reversibility and individuality [15].
Specificity refers to the similarities between the training stimu-
lus being applied and the physiological adaptation of interest.

This includes (i) muscle actions involved, (ii) speed of the mus-
cle contraction, (iii) range of motion, (iv) muscle groups empha-
sized, (v) bioenergetic requirements and (vi) training load (i.e.
intensity and volume) [15]. Progressive overload describes grad-
ual, planned increases in training stimuli to promote continued
gains in health and performance. Variation describes the sys-
tematic manipulation of one or more training variables at speci-
fied times throughout the training process [15]. Variation differs
from traditional progressive overload in that certain training
variables may be reduced or removed within a given period of
the training cycle. Reversibility describes the loss of exercise-
induced adaptations following the secession of exercise and in-
dividuality refers to the unique individual responses to a given
exercise stimulus. By using such principles, informed decisions
can be made during the planning and design of exercise inter-
ventions to ensure the safety of the participant while maximiz-
ing health and functional benefits.

Considerations for targeting specific neuromuscular
outcomes

The prescription of workload assignment is dictated by the neu-
romuscular or functional outcomes of interest. For example, a
resistance exercise regime may aim to improve skeletal muscle
hypertrophy, strength or power, as well as functional outcomes
such as gait speed or walking distance. Due to the lack of infor-
mation on resistance exercise programming in CKD, evidence
concerning older adults is often used to guide the exercise pre-
scription for this patient population [58, 89–91]. For enhancing
muscular strength and hypertrophy it is recommended that 1–3
sets per exercise be performed using a slow to moderate lifting
velocity with loads corresponding to 60–80% 1-RM for 8–12 repe-
titions with rest periods of 1–3 min [86]. Further, dose–response
relationships have been identified for training period, intensity,
time under tension (i.e. the duration of each repetition) and rest
between sets, highlighting the importance of these variables for
promoting muscular strength and morphological (i.e. CSA, vol-
ume, thickness) adaptations in older adults [87, 93–95]. For

Table 1. Resistance exercise recommendations for older adults

Neuromuscular target

Hypertrophy Strength Power

Modality Free weights;
machines

Machine-based Free weights;
machines

Machine-based Free weights;
machines

Frequency 2–3 days/week on
nonconsecutive days

3 days/week on
nonconsecutive days

2–3 days/week on
nonconsecutive days

2 days/week on
nonconsecutive days

2–3 days/week on
nonconsecutive days

Intensity 60–80% 1-RM 51–69% 1-RM 60–80% 1-RM 70–79% 1-RM 30–60% 1-RM
Training volume 1–3 sets/exercise;

8–12 repetitions/set
2–3 sets/exercise;

7–9 repetitions/set
1–3 sets/exercise;

8–12 repetitions/set
2–3 sets/exercise;

7–9 repetitions/set
1–3 sets/exercise;

6–10 repetitions/set
Contraction

velocity
Slow to moderate N/A Slow to moderate N/A High

Rest intervals 1–3 min between sets 120 ss between sets 1–3 min between sets 60 ss between sets 1–3 min between sets
Duration N/A 50–53 weeks N/A 50–53 weeks N/A
Additional

comments
Multiple- and

single-joint
exercises

6 s time under tension
per repetition; 2.5 s rest
between repetitions

Multiple- and
single-joint
exercises

6 s time under tension
per repetition; 4 s rest
between repetitions

Should be conducted
in combination with
training to improve
strength; multiple- and
single-joint exercises

Resistance exercise recommendations for enhancing muscular hypertrophy, strength, and power for older adults as proposed by the American College of Sports

Medicine (ACSM) [90] and a systematic review and meta-analysis performed by Borde et al. [92].

1-RM, 1 repetition maximum; min, minute; N/A, data not available.
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enhancing lean body mass, programs consisting of higher vol-
ume were associated with the greatest increases, [93] while
maximal strength favors training at higher intensities (i.e. 60–
80% 1-RM) [87, 94, 95].

Power training (i.e. resistance exercise using low loads per-
formed at high contraction velocities) has been appealing to re-
habilitation and exercise professionals given the strong
relationship between muscular power and functional outcomes
in older adults [96]. To improve muscular power, it is recom-
mended that training include 1–3 sets per exercise performed
using high lifting velocities with loads corresponding to 30–60%
1-RM for 6–10 repetitions with rest periods of 1–3 min [86].
However, no consensus regarding optimal loading for the maxi-
mization of muscular power in older adults currently exists [95,
97]. In mobility-limited elderly adults, high-velocity resistance
training using light loads (i.e. 40% 1-RM) on pneumatic devices
resulted in similar improvements in power output and physical
performance compared with power training using heavy resis-
tance (i.e. 70% 1-RM) [97]. Therefore, training both the force and
velocity components of the force–velocity curve seems benefi-
cial for improving muscular power in older adults as proposed
by the ACSM [86]. Contraction velocity and volume were found
to be critical factors for increasing muscular power [98]. High-
velocity contractions were superior to slow and moderate
velocities while lower training volume was associated with
greater improvements in muscular power [98]. Currently the
available evidence on the effects of resistance exercise for im-
proving muscular power in CKD is scarce. Therefore studies in-
vestigating power training interventions in those with CKD are
warranted.

A major challenge working with clinical populations is the
safety and tolerability of increasing workloads. As seen in
Table 2 [89–91], exercise intensities between 50% and 80% of 1-
RM are most effective for eliciting gains in muscle hypertrophy
and strength [88]. Depending on disease severity, comorbidities,
age, fitness level, genetics, and social and psychological factors,
such intensities may not be feasible for those with CKD when
initiating a resistance exercise program. Sequencing exercise

intensity in a manner that focuses on the development of neu-
romuscular capacity may overcome this challenge. The applica-
tion of periodized exercise has been used in clinical and
rehabilitation settings as a way to manage exercise intensity
[99, 100]. Periodization models provide a conceptual basis de-
scribing the systematic manipulations of exercise stimuli in an
attempt to account for the accumulation of fatigue and stagna-
tion in training adaptations [15, 101]. Resistance exercise inter-
vention design informed by a block periodization model is
presented in Table 3. Training parameters are prescribed in ac-
cordance with the neuromuscular outcome of interest and
assumes translation of adaptations from one training block to
the next (i.e. phase potentiation) [101]. The concept of block pe-
riodization aims to develop muscular work capacity, strength
and power during different periods of training in a sequential
manner (Figure 2). While this provides one example of the orga-
nization of workload based on specified outcomes, future re-
search is required to determine the feasibility, efficacy and
effectiveness of such approaches in this subpopulation of CKD.

SAFETY CONSIDERATIONS FOR RESISTANCE
EXERCISE

It is recommended that exercise prescription for clinical popula-
tions should involve a multidisciplinary approach to ensure the
safety of the participant while maximizing potential benefits
[58]. This may include a team of medical experts, rehabilitation
professionals and exercise specialists. Due to the high risk of
cardiovascular disease associated with CKD, patients should
consult with their physician prior to engaging in exercise. For a
complete list of absolute and relative contraindications to resis-
tance exercise and testing see Smart et al. [90] and the ACSM’s
Guidelines for Exercise Testing and Prescription [92]. All resistance
exercise programs should be individually tailored for each per-
son by a multidisciplinary team. Lower training intensities and
volumes and longer exposure to given workloads may be re-
quired at the initiation of training. Furthermore, training should

Table 2. Resistance exercise recommendations for Chronic Kidney Disease

Neuromuscular target

Muscular fitness

Modality Weight-bearing activity, thera-bands,
machines and free weights

N/A N/A

Frequency 2 days/week on nonconsecutive days � 2 days/week on
nonconsecutive days

2 days/week

Intensity 60–70% 1-RM N/A 60–70% 1-RM or 5-RM
Training volume 1 set/exercise;

8–12 exercises;
10–15 repetitions/set

8–10 exercises involving major
muscle groups;
10–15 repetitions/exercise

Minimum of 1 set of 10–15 repetitions;
gradually increase to 2–4 sets;
choose 8–10 different exercises to
work major muscle groups

Contraction velocity N/A N/A N/A
Rest intervals N/A N/A 2–3 minutes between sets;

� 48 hours between sessions
Duration N/A N/A N/A
Additional comments Flexibility exercise can be performed

5–7 days/week for a duration of
10 min/session

N/A Multijoint exercises affecting
more than one muscle group and
targeting agonist and
antagonist muscle

Resistance exercise recommendations for Chronic Kidney Disease (CKD) as proposed by Johansen & Painter [87], Smart et al. [88], and Roshanravan et al. [89].

1-RM, 1 repetition maximum; min, minute; N/A, data not available.
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be progressed cautiously and informed by individualized
responses [92]. The principles outlined above provide additional
guidance to ensure patient safety through appropriate exercise
progression while still promoting specific adaptations to meet
the desired goals.

CONCLUSIONS

CKD is a complex condition that poses a severe threat to skele-
tal muscle health and function. Monitoring changes in skeletal
muscle health might provide critical information regarding the
overall health status of patients with CKD regardless of stage.
Several options for monitoring skeletal muscle in clinical set-
tings are currently available. Most notably, BIA and diagnostic
ultrasound offer promising approaches due to the mobility and
minimal space requirements for such technology. Inclusion of
skeletal muscle assessments during routine appointments may
aid in the understanding of disease progression following the
diagnosis of CKD.

Currently, limited information is available regarding the appli-
cation of resistance exercise in CKD predialysis. While resistance
exercise has been shown to be beneficial for combating decre-
ments in skeletal muscle health and function, questions remain
concerning the responsiveness of skeletal muscle to various load-
ing stimuli and the feasibility of such schemes in this patient popu-
lation. Periodization models may offer a useful framework for the
planning exercise regimes based on CKD stage and functional abili-
ties to ensure patient safety through appropriate progression while
still working towards achieving patient goals. Future research
should seek to better understand the impact of resistance exercise
to improve muscular power and the relationship between long-
term resistance exercise and disease progression.
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