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ABSTRACT: Animal blood and semen analysis plays a significant role in national biological resource management, wildlife
conservation, and customs security quarantine. Traditional blood analysis methods have disadvantages, such as complex sample
preparation, time consumption, and false positives. Therefore, proposing a rapid and highly accurate analysis method is highly
valuable. Raman spectroscopy has been widely used in blood analysis, and efficient and accurate analysis results can be obtained
through the machine learning algorithm feature extraction. Recently, the transformer network structure was applied to Raman
spectroscopy recognition. However, the multihead self-attention mechanism does not perform well in extracting local feature peaks,
although it obtains global feature relations. This paper proposes a neural network based on the combination of one-dimensional
convolution and multihead self-attention mechanism (Raman ConvMSANet) to identify 52 species of blood and semen Raman
spectra. The network can achieve reliable identification effects in multiclassification and sample imbalance situations, and the average
identification accuracy of blood and semen can reach more than 98.5%. The proposed network model can be applied not only to
blood and semen identification but also to other biological fields.

■ INTRODUCTION
Interspecies blood and semen identification has played a
crucial role in analytical chemistry, forensics, biochemistry,
customs inspection, and wildlife preservation. Illegal hunting
and the slaughter of wild animals seriously damage biodiversity
and cause the mass extinction of rare animals.1 Animal blood
and semen contain a large amount of genetic material and
genetic resources, and the blood of some precious species has
great medicinal value.2 Animal semen contains genetic material
that can be used for artificial insemination, breed improve-
ment,3 and other purposes. The theft and loss of biological
resources will cause serious consequences, such as invading
alien species and losing genetic property rights. A rapid,
accurate, and nondestructive detection method is the key to
preventing the loss of biological resources. The present
techniques for interspecies blood identification are high-
performance liquid chromatography (HPLC),4 mass spectro-
metric analysis (MS),5,6 quantitative PCR,7 and the genome
profiling method (GP method).8 Inouel et al.4 used the HPLC
method to identify human, primate, and nonprimate blood.
Espinoza et al.5 used the MS method to identify differences in

blood and blood composition in 62 different species. Five body
fluids were differentially analyzed using the quantitative PCR
method by Sauer et al.7 Human blood samples were
distinguished from the other nine animal blood samples
using the GP method by Suwa et al.8 However, all of these
methods require a complex sample preparation process, which
not only destroys the sample but also poses a risk of infection
to the experiment operator due to the need to contact the
sample, and the experiment is a time-consuming process.
Hence, it is of great practical value to propose a new method of
blood species identification. Vibrational spectroscopy is a rapid
and noninvasive method for identifying the composition of
chemicals and functional groups in solid, liquid, and gaseous
forms. Raman spectroscopy is one of them that is frequently
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used to analyze structural information about substances.
Raman spectroscopy has the advantages of nondestructive,
rapid and label-free. At present, Raman spectroscopy has been
applied to many technical fields, including food safety,9,10

clinical laboratory,11−13 petrochemicals,14 etc.
Raman spectroscopy is currently being used in blood species

identification studies. The interaction of laser photons with
molecules in the blood sample creates vibrational modes that
lead to Raman scattering. The information provided by this
scattering includes vibrational information about molecules
such as hemoglobin, proteins, lipids, and sugar molecules in
the blood, which can be used to determine the concentration
and composition of these molecules in the blood and to
analyze and identify the blood. With the development of
machine learning, Raman spectroscopy has achieved better
identification results with machine learning algorithms. Partial
least-squares discriminant analysis (PLS-DA)15−17 and princi-
pal component analysis (PCA)18,19 are widely used in blood
spectral analysis. The first successful study of blood
identification using near-infrared Raman spectroscopy was
carried out by Virkler and Lednev18 in 2009. They used PCA
to extract three principal component features and plotted 3D
maps to distinguish human, feline, and canine blood visually.
To distinguish between human and nonhuman blood from the
Raman spectra of 10 blood species, Bian et al.16 constructed a
pairwise double PLS-DA model, significantly improving single
PLS-DA identification. Wang et al.20 used the support vector
machine (SVM) method to identify four poultry species’ blood
and analyze the presence of food additives in the blood.
However, while classical machine learning methods provide
better identification results for small data samples, they still
have certain limitations for large data samples. As a branch of
machine learning, artificial neural networks extract data
features through multilayer neural networks. Deep convolu-
tional neural networks (CNNs) have achieved excellent results
in image classification.21,22 In contrast, recurrent neural

networks (RNNs) have shown promising effects in feature
extraction in audio and other sequence data.23 Therefore,
applying deep neural networks to Raman spectroscopy feature
extraction is worth exploring, and multilayer artificial neural
networks have been used for spectral blood identification
analysis. Dong et al.24 constructed a two-layer CNN for Raman
spectra to perform denoising and baseline correction
preprocessing, and two fully connected layers were used for
human and animal blood identification. The method achieved
better results than the SVM and PLS-DA methods. Huang et
al.25 constructed a multilayer CNN based on Raman
spectroscopy to identify 20 animal blood species, and the
average accuracy of blind detection is more than 97%. The
network models proposed by the scholars mentioned above
have shown excellent performance in Raman spectroscopy
identification. However, CNN models have limitations in
Raman spectroscopy identification. First, they can only extract
local feature information and not capture the relationship
between local and global feature information, leading to
suboptimal identification results. Second, CNN models have a
large number of training parameters and high model
complexity, resulting in slow training and prediction speeds.
In order to solve the problem of insufficient global feature
extraction by the convolutional network, the transformer
model structure has been proposed.26 It computes the
correlation between local features to obtain global feature
relations. The first Raman spectroscopy classification network
based on the transformer network structure has been proposed
to identify deep-sea cold seep microorganisms at the single-cell
level.27 However, the transformer network structure also has
shortcomings. It focuses too much on the correlation between
local features and lacks detailed extraction of local feature
information. Therefore, designing a network that can both
extract local spectral peak features and effectively capture the
relationship among global features is the key to our research.

Figure 1. Schematic diagram of Raman spectra measurements.
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This paper proposes a Raman spectra feature extraction
neural network called Raman ConvMSANet, which combines
one-dimensional convolution and multihead self-attention
mechanisms. The network is trained on both reflection and
transmission Raman spectra data sets to verify its classification
performance, which contains information on two types of
biological resources, blood and semen of 52 national precious
animal species such as panda, kangaroo, golden monkey, plum
deer, and animal species common to our daily lives, with a total
of 10,314 Raman spectra data. Experimental results show that
Raman ConvMSANet has significantly improved identification
accuracy and more stable classification performance than pure
one-dimensional convolution and multihead self-attention
mechanism neural networks. This confirms that our proposed
network model can extract local and global features effectively.
Our research is divided into three parts. First, we introduce the
process of sample data collection, the training data set, and
data preprocessing procedures and propose the network
structure and training process. Second, we discuss the
network’s performance in identification, comparing it with
existing networks that exhibit excellent identification perform-
ance and discussing the effectiveness of multihead self-
attention. Finally, we summarize the research conclusions
presented in this paper.

■ MATERIALS AND METHODS
Equipment and Instrument. Blood and semen samples

were collected and diluted ten times with 0.9% NaCl water
solution. The composite AgNP and AuNP test strips were used
for surface-enhanced Raman spectroscopy. In this study, the
surface-enhanced composite test paper was selected, which has
the material applicability of both AgNPs and AuNPs and can
produce significant enhancements to materials that can be
enhanced by either AgNPs or AuNPs, which improves the
convenience of surface-enhanced Raman detection. The

detailed process for preparing the test strips was described in
a previous work.28 The test strips were taken out of the
enhancement reagent and rapidly dried in a microheater at 65
°C. After drying, the test strip is dipped into the blood and
semen samples for 5 s and then rapidly dried in a microheater
at 65 °C. Raman spectra data of the blood and semen samples
on the test strips were collected using a Raman spectrometer
(HT-NOVA Co., Ltd.). Both reflection and transmission
Raman spectra were acquired using a wavelength of 785 nm, 5
mW micropower laser with an integration time of 1 s to avoid
destroying the internal components of the sample. The spectral
range of the reflection Raman signals was 200−2998 cm−1 and
that of the transmission Raman signals was 166−2084 cm−1,
with a spectral resolution of 4−6 cm−1. The schematic diagram
of the Raman spectral data collection process is shown in
Figure 1. All collected blood and semen samples were stored in
a −20 °C refrigerator with trisodium citrate as the
anticoagulant. During the sample collection process, it was
ensured that the animals were healthy and that they had not
taken any medication. All of the sources of the spectra and the
collection methods were approved and complied with the
safety quarantine standards.

Data Set. In this study, two sets of Raman spectra data of
blood and semen were constructed based on different
collection methods, namely, reflection and transmission. The
data sets included 10,314 Raman spectra from 52 species of
animals, including rare animals such as pandas, kangaroos,
golden monkeys, spotted deer, and common animals in our
daily lives. The reflection data set consisted of 5229 spectra
from 40 species while the transmission data set contained 5085
spectra from 42 species, with some species being inconsistent
between the two data sets. Due to the difficulty of sample
collection for rare and protected animal species with limited
population, some species had only 10 spectra. In contrast,
common animals were easier to obtain, with some having up to

Figure 2. Distribution of animal blood and semen Raman spectral data sets. The top subgraph shows the distribution of the reflection spectrum
data set, and the bottom subgraph shows the distribution of the transmission spectrum data set. The blue histograms are the classes where the
number of samples is not less than 150, the orange histograms are the classes where the number of samples is less than 150 and not less than 50,
and the red histograms are the classes where the number of samples is less than 50.
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400 spectra. As a result, the data sets were imbalanced,
presenting a challenge to the classification network. The data
sets were divided into two independent sets to test the
proposed network model’s classification performance under
different Raman spectral information collection methods. The
distribution of the reflection and transmission blood Raman
spectral data sets is shown in Figure 2.

Data Preprocessing. Effective preprocessing of Raman
spectra data can remove invalid information, such as
instrument noise and fluorescence background, during data
acquisition and mitigate the impacts on the spectral data. The
preprocessing operations applied to the spectral data include
denoising, baseline correction, removing negative values,
normalization, and down-sampling. Denoising can remove
sharp spectral peaks caused by noise during acquisition,
resulting in smoother data. The Savitzky−Golay29 filter with a
3rd order polynomial is used for data smoothing to achieve
denoising. The drift of the baseline can blur the signal and
deteriorate the analysis results, affecting model training. To
correct the baseline, the airPLS30 algorithm is used. Negative
data values are replaced with 0 to avoid the impact of
normalization in subsequent processing steps. Normalization
of the data can increase the speed of the model computation.
Finally, due to differences in the equipment and measurement
methods used to acquire the data, down-sampling is necessary
to ensure that the Raman shifts at the same position in
different spectra are the same and that the dimensions of all
Raman spectra in the same data set are consistent. From 200 to
2998 cm−1, sampling every 2 cm−1, a total of 1400 spectral
points in the reflection spectrum data set. From 166 to 2084
cm−1, sampling every 2 cm−1, a total of 960 spectral points in
the transmission spectrum data set. The missing spectral points
are filled in with 0. A comparison of the raw and preprocessed
spectral data is shown in Figure 3, where the solid line
represents the blood Raman spectra and the dashed line
represents the semen Raman spectra. The characteristic peaks
that are visible to the naked eye are marked prominently, with
the blood and semen characteristic peak regions indicated in
light salmon and light sky blue, respectively. The reflection

Raman spectra of the blood samples show several specific
peaks, such as at 250, 698, and 1568 cm−1, and the semen
samples show several specific peaks, such as at 490, 1132, 1280,
and 1628 cm−1. The transmission Raman spectra of the blood
samples show several specific peaks, such as at 246, 703, 1578
cm−1, and the semen samples show several specific peaks, such
as at 496, 1130, 1274, and 1632 cm−1. The data set is divided
into a training set, a validation set, and a test set in an 8:1:1
ratio, and 10-fold cross-validation is used to ensure that all
spectra are used for training and testing, evaluating the model’s
generalization performance.

One-Dimensional Convolution Combined with Multi-
head Self-Attention Mechanism (Raman ConvMSANet).
Raman spectroscopy is one-dimensional data, and it is typically
used to extract features from spectra using one-dimensional
convolution. Convolution operations have outstanding per-
formance in extracting local feature peaks in spectra but due to
the limitation of convolution kernel size increasing the network
layer is necessary to expand the receptive field when the kernel
is small. When the kernel is large, the number of parameters
increases and the computational complexity increases. The
shortcomings of the convolutional calculation are thus evident.
Although local information is extracted well, it is not sensitive
to global information and it is insufficient to use convolutional
calculations for feature extraction in the network. The
transformer structure has been proposed recently and has
achieved excellent results in natural language processing
(NLP) and computer vision (CV). Liu et al.27 have proposed
the first Raman spectroscopy classification network based on
the transformer structure. However, although the transformer
structure relies on internal multihead self-attention mecha-
nisms to solve the problem of convolutional networks being
insensitive to global information, it is still weaker than
convolutional networks in extracting local information. There-
fore, we consider combining these two structures, which can
finely extract spectral feature peaks while also linking the
correlation between each feature peak. We propose a Raman
spectroscopy classification network (Raman ConvMSANet)

Figure 3. Comparison of raw and preprocessed Raman spectra; the two subgraphs on the left are reflection spectral data and the two subgraphs on
the right are transmission spectral data. The solid line indicates blood, the characteristic peaks are marked in light salmon, the dashed line indicates
semen, and the characteristic peaks are marked in light sky blue.
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that combines one-dimensional convolution and multihead
self-attention mechanisms.
The design of the network structure was inspired by Park

and Kim.31 The one-dimensional convolution and multihead
self-attention mechanisms are complementary, and it is
proposed to place the multihead self-attention after each
convolution calculation. First, the input spectrum is down-
sampled to reduce the data dimension. The network is mainly
divided into four stages. The first stage consists of two layers of
one-dimensional convolution, which does not change the
length of the spectrum. The latter three stages consist of two
layers of one-dimensional convolution and one layer of
multihead self-attention. In each stage, the length of the
spectrum is reduced by half and the channel number is

doubled. A residual connection is used between each stage to
prevent information loss and gradient explosion. A normal-
ization layer and ReLU activation function are added between
every two layers of one-dimensional convolution. In the
multihead self-attention mechanism, the convolutional features
extracted from the spectra are divided into several patches of
equal size. Each patch is added with relative position encoding
to record the position information on each spectral block (eq
1). Here, XPN represents the N-th convolutional feature vector
of size P, Epos is the corresponding position information, and D
is the number of convolutional feature channels. For
integrating the feature patches to obtain Z and dot-multiplying
with the initialized Uqkv weight vector based on the number of
attention heads, the resulting vector is divided into a number

Figure 4. Schematic diagram of computing the multihead self-attention mechanism.

Figure 5. Schematic diagram of Raman ConvMSANet.
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of Q, K, and V pairs, with Q, K, and V being the trainable
weight vectors for each feature patch, and the network is
adjusted according to the loss function after training iterations
(eq 2). The dot product between different Q and K vectors is
calculated to obtain their correlation. The correlation is scaled
to the range of (0, 1) using Softmax (eq 3) and then the final
weights of the correlation between different patches are
calculated by a dot product with different V vectors (eq 4).
The higher the correlation between the two patches, the larger
the weight. The calculation process of multihead self-attention
is shown in Figure 4, where “b” is the final calculated
correlation weight (eq 5). Finally, adaptive average pooling is
used to reduce the dimensions of the spectral data, and a fully
connected layer is used to output the final classification result.
The overview of the network structure is shown in Figure 5,
and the training parameter details for the reflection spectra are
shown in Table 1. The training parameter details for the
transmission spectra are shown in the mentary file. The
network is built using PyTorch (version: 2.0.0) and Python
(version: 3.9.16) in the NVIDIA 2080Ti graphics card
environment for training acceleration.

= [ ] + ×

×

Z X X X E X R

E R

; ; . . . ; ,P P P
N P D

N D

1 2
pos

pos (1)

[ ] = ×Q K V ZU U R, , QKV QKV
D D3 h (2)

=A QK DSoftmax( / )T
h (3)

=SA z AV( ) (4)

= [ ]MSA z SA z SA z SA z( ) ( ); ( ); . . . ; ( )h1 2 (5)

Network Model Training. The network was trained on
reflection and transmission Raman spectra data sets using
AdamW as the optimizer. The learning rate decreased
gradually with training epochs using an exponential strategy
with γ = 0.98 and an initial learning rate 0.0003. The
CrossEntropyLoss function evaluated the difference between
the predicted and true values. The maximum number of
training epochs was set to 200, and when the validation set
classification accuracy did not improve within 10 epochs,
training was stopped early to prevent overfitting. On average,
the network was trained for 80 epochs. The loss and accuracy
curves of the trained models on both data sets are shown in
Figure 6.

■ RESULTS AND DISCUSSION
Model Evaluation and Classification Performance.

The network model evaluates classification performance and
generalization ability using 10-fold cross-validation. In the
classification network model, the most intuitive evaluation
metric is the accuracy of classification, which is the ratio of the
number of correctly classified samples to the total number of
test samples (eq 6). Precision, recall, and F1 score are also used
as evaluation metrics for the model. In this study, because the
two data sets have an imbalanced sample size, with more
spectral data of common animal species than of rare national
animals, we used weighted average precision, recall, and F1
score. Assuming that for class i in the test set, the number of
samples is Ni, then the weight is Wi (eq 7). Precision evaluates
the proportion of true positive data among all data predicted as
positive (eq 8). Recall evaluates the proportion of positive data
correctly predicted among all positive data (eq 9). F1 score
evaluates the overall performance of model precision and recall
(eq 10). The model accuracy, precision, recall, and F1 score
are shown in Figure 7, where it can be seen that the model
achieves an average accuracy of 98.6 and 98.5% on the two
data sets, demonstrating excellent performance in the case of
multiclassification and imbalanced samples. The average
weighted precision is 99.7 and 99.8%, indicating the model’s
high accuracy in predicting positive samples. The average
weighted recall is 98.6 and 98.5%, showing that the model
correctly identifies a high proportion of positive samples
among all samples. The model’s average weighted F1 score is
99.1 and 99.2%, indicating that the model has achieved a
favorable balance between precision and recall.
After training the network, confusion matrices were plotted

for the predicted results of the test samples in the two data
sets, as shown in Figure 8, providing a clear and intuitive
visualization of the model’s classification performance on each
class. In the matrices, the vertical axis represents the correct
class labels in the data set, while the horizontal axis represents
the predicted classes by the model. The receiver operating

Table 1. Parameter Details of Raman ConvMSANet during
Training on Reflection Raman Spectraa

layers type numbers output shape parameters

input input 1 (batch, 1,
1400)

stem Conv1D 1 (batch, 1,
700)

(16, 7, 2)

Maxpool1D 1 (batch, 16,
350)

(3, 2)

stage 1 Conv1D 2 (batch, 16,
350)

(32, 3,
1/1)

BatchNorm1D 1
ReLU 1

stage 2 Conv1D 2 (batch, 32,
350)

(64, 3,
2/1)

MSA 1 (batch, 64,
175)

(1, 35)

BatchNorm1D 1
ReLU 1

stage 3 Conv1D 2 (batch, 64,
175)

(128, 3,
2/1)

MSA 1 (batch, 128,
88)

(2, 44)

BatchNorm1D 1
ReLU 1

stage 4 Conv1D 2 (batch, 128,
88)

(256, 3,
2/1)

MSA 1 (batch, 256,
44)

(4, 22)

BatchNorm1D 1
ReLU 1

classifier AdaptiveAvgpool1D 1 (batch, 256,
44)

(7)

BatchNorm1D 1
ReLU 1
flatten 1 (batch,

256*7)
output linear 1 (256*7,

#classes)
(#classes)

aThe parameters of the Conv1D represent (filters, kernel_size,
stride), the Maxpool1D represent (kernel_size, stride), the MSA
represent (head_numbers, patch_size), the AdaptiveAvgpool1D
represent (output_size), and the Linear represent (out_features).
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characteristic (ROC) curve was utilized to assess the sensitivity
and specificity of classification results, and the area under the
curve (AUC) is a common evaluation metric for models. The
vertical axis of the ROC curve represents the true positive rate
(TPR), and the horizontal axis represents the false positive rate
(FPR). An effective model is demonstrated by a ROC curve
that is closer to the upper-left corner (0, 1) of the graph, which
implies a larger area under the curve (AUC value) formed by
the curve and the horizontal axis and the vertical line at FPR =

1, signifying higher TPR and lower FPR. The ROC curves for
each class in the test samples of the two data sets are shown in
Figure 9. These model evaluation metrics demonstrate that our
proposed Raman ConvMSANet performs well in multi-
classification tasks of Raman spectra and has high credibility.

= +
+ + +

= +
N

Accuracy
TP TN

TP TN FP FN
TP TNtotal total

total
(6)

Figure 6. Training loss and accuracy curves of the network are shown in the two left subplots for the reflection spectral data set and in the right two
subplots for the transmission spectral data set.

Figure 7. Boxplots of evaluation metrics for Raman ConvMSANet are presented, with the left subplot displaying the 10-fold cross-validation results
for the reflection spectral data set and the right subplot displaying the 10-fold cross-validation results for the transmission spectral data set.
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Model Performance Comparison. In order to verify the
better feature extraction capability of Raman ConvMSANet,
comparative experiments were conducted to compare the
classification performance with other state-of-the-art Raman
spectroscopy classification models proposed by other scholars,
including pure 1D convolutional networks, pure multihead
self-attention networks, and recurrent neural networks. These
network structures proposed by Huang et al.,25 Bratchenko et

Figure 8. Confusion matrix results for Raman ConvMSANet are depicted, with the left subplot illustrating the confusion matrix for the reflection
spectral data set and the right subplot illustrating the confusion matrix for the transmission spectral data set.

Figure 9.Multiclass ROC curves of Raman ConvMSANet are shown, with the left subplot displaying the ROC curve for the reflection spectral data
set and the right subplot displaying the ROC curve for the transmission spectral data set.
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al.,13 Al-Shaebi et al.,32 Chen et al.,33 Sang et al.,34 and Liu et
al.27 were constructed and trained and tested on two data sets
to evaluate their classification performance using 10-fold cross-
validation. Each network was pretuned based on the two data
sets to ensure the network was trained with the optimal
parameters. The comparison results are shown in Table 2. The
results show that Raman ConvMSANet classification perform-
ance was slightly improved in both data sets under the same
model parameter size and computational complexity level.
Compared to the UNet Raman spectroscopy classification
network proposed by Al-Shaebi et al., Raman ConvMSANet
exhibited slightly lower accuracy on both data sets but with a
favorable advantage in terms of model parameters and
computational complexity.

Multihead Self-Attention Classification Performance
Analysis. After the Raman spectra are fed into the network, a
series of one-dimensional convolutions are applied to extract
local spectral peak features. In order to verify the effectiveness
of adding the multihead attention mechanism after the
convolution operation, the multihead self-attention is removed,
and only the convolution operation is retained. The model
classification performance is shown in Table 3. Although
adding multihead self-attention increases the model parameters
and computational complexity, it also improves the classi-
fication performance compared to the pure convolutional
network. Regarding the parameters of patch size and number
of heads in the multihead self-attention, their impact on the
final classification performance is relatively small. When the
patch size is too small and the number of heads is too large, the
model parameters and computational complexity increase due
to the generation of more (Q, K, V) pairs. In this study, for the
reflection Raman spectra data set, the patch sizes and numbers
of heads in the last three stages of the network were chosen as

(35, 44, 22) and (1, 2, 4), respectively, while for the
transmission Raman spectra data set, the patch sizes and
numbers of heads were chosen as (15, 10, 5) and (2, 4, 8),
respectively. The influence of patch size and the number of
heads’ parameter selection on the classification performance is
shown in Table 4.

■ CONCLUSIONS
The illegal hunting of endangered species seriously endangers
ecological balance and biodiversity, and the analysis of the
blood and semen of these species plays an essential role in
customs quarantine. Deep learning methods can effectively
identify the corresponding species of blood and semen by their
Raman spectra, reducing the phenomenon of illegal smuggling
of endangered species. This paper proposes a high-accuracy
neural network model for Raman spectra identification of
species in blood and semen. To address the problem that one-
dimensional convolution is insensitive to global spectral
features and that multihead self-attention mechanisms are
insufficient for extracting local feature peaks in spectra, we
propose a solution that effectively combines one-dimensional
convolution and multihead self-attention mechanisms. The

Table 2. Comparative Results between the Methods Proposed by Previous Scholars and Raman ConvMSANeta

Top_1 Acc. Top_5 Acc. weighted precision weighted recall weighted F1 score
parameters
(M)

FLOPs
(G)

Huang et al.25b 0.9691 (0.9553−
0.9805)

0.9990 (0.9980−
1.0000)

0.9966 (0.9904−
0.9990)

0.9691 (0.9515−
0.9806)

0.9824 (0.9703−
0.9896)

14.5767 2.211255

Bratchenko et
al.13b

0.9712 (0.9611−
0.9786)

0.9996 (0.9980−
1.0000)

0.9966 (0.9929−
0.9990)

0.9712 (0.9612−
0.9786)

0.9836 (0.9770−
0.9875)

2.4716 0.0304

Al-Shaebi et
al.32b

0.9871 (0.9844−
0.9902)

0.9992 (0.9961−
1.0000)

0.9976 (0.9949−
1.0000)

0.9871 (0.9825−
0.9903)

0.9923 (0.9898−
0.9951)

1.5840 0.1220

Chen et al.33b 0.9778 (0.9728−
0.9825)

0.9992 (0.9980−
1.0000)

0.9964 (0.9934−
0.9990)

0.9778 (0.9728−
0.9825)

0.9869 (0.9830−
0.9895)

1.1433 0.1320

Sang et al.34b 0.9798 (0.9747−
0.9844)

0.9992 (0.9980−
1.0000)

0.9970 (0.9946−
1.0000)

0.9798 (0.9748−
0.9845)

0.9882 (0.9850−
0.9921)

18.2450 1.0819

Liu et al.27b 0.9825 (0.9708−
0.9922)

0.9984 (0.9941−
1.0000)

0.9975 (0.9915−
1.0000)

0.9825 (0.9709−
0.9922)

0.9898 (0.9842−
0.9941)

8.0162 0.0878

ConvMSANetb 0.9860 (0.9786−
0.9902)

0.9990 (0.9961−
1.0000)

0.9969 (0.9897−
1.0000)

0.9860 (0.9786−
0.9903)

0.9914 (0.9841−
0.9951)

0.9476 0.0553

Huang et al.25c 0.9794 (0.9740−
0.9920)

0.9976 (0.9920−
1.0000)

0.9982 (0.9970−
1.0000)

0.9794 (0.9700−
0.9920)

0.9886 (0.9841−
0.9950)

10.9674 1.5142

Bratchenko et
al.13c

0.9824 (0.9700−
0.9900)

0.9986 (0.9940−
1.0000)

0.9987 (0.9980−
1.0000)

0.9824 (0.9700−
0.9940)

0.9904 (0.9841−
0.9970)

2.4432 0.0268

Al-Shaebi et
al.32c

0.9870 (0.9740−
0.9940)

0.9992 (0.9960−
1.0000)

0.9991 (0.9952−
1.0000)

0.9870 (0.9740−
0.9940)

0.9929 (0.9866−
0.9960)

1.5601 0.0899

Chen et al.33c 0.9756 (0.9560−
0.9880)

0.9980 (0.9960−
1.0000)

0.9988 (0.9970−
1.0000)

0.9756 (0.9560−
0.9880)

0.9869 (0.9758−
0.9934)

1.0261 0.0910

Sang et al.34c 0.9824 (0.9700−
0.9920)

0.9990 (0.9960−
1.0000)

0.9995 (0.9971−
1.0000)

0.9824 (0.9700−
0.9920)

0.9907 (0.9845−
0.9960)

14.8381 0.7432

Liu et al.27c 0.9840 (0.9760−
0.9920)

0.9992 (0.9960−
1.0000)

0.9986 (0.9953−
1.0000)

0.9840 (0.9760−
0.9920)

0.9912 (0.9876−
0.9960)

7.9839 0.0874

ConvMSANetc 0.9850 (0.9760−
0.9920)

0.9986 (0.9940−
1.0000)

0.9987 (0.9973−
1.0000)

0.9850 (0.9760−
0.9920)

0.9917 (0.9869−
0.9939)

1.2952 0.0515

aThe error range of the 10-fold cross-validation is indicated in brackets. bReflection data sets. cTransmission data sets.

Table 3. Effectiveness of the MSA Structure on the
Classification Performance in Both Data Setsa

case Top_1 Acc. parameters (M) FLOPs (G)

MSA w/b 0.9860 (0.9786−0.9902) 0.9476 0.0533
MSA w/ob 0.9827 (0.9708−0.9941) 0.5153 0.0298
MSA w/c 0.9850 (0.9760−0.9920) 1.2952 0.0515
MSA w/oc 0.9802 (0.9720−0.9880) 0.5188 0.0204
aThe error range of the 10-fold cross-validation is indicated in
brackets. bReflection data sets. cTransmission data sets.
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proposed method achieves better classification performance
and more comprehensive feature extraction by comparing pure
one-dimensional convolution and multihead self-attention
neural networks. The average identification accuracy of blood
and semen reflection Raman spectra reaches 98.6%, and the
average identification accuracy of blood and semen trans-
mission Raman spectra reaches 98.5%. Finally, the Raman
ConvMSANet network structure can be applied not only to
species blood and semen identification analysis but also to
other biological fields.
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