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Abstract

Speech audiometry in noise based on sentence tests is an important diagnostic tool to assess listeners’ speech recognition
threshold (SRT), i.e., the signal-to-noise ratio corresponding to 50% intelligibility. The clinical standard measurement pro-
cedure requires a professional experimenter to record and evaluate the response (expert-conducted speech audiometry).
The use of automatic speech recognition enables self-conducted measurements with an easy-to-use speech-based interface.
This article compares self-conducted SRT measurements using smart speakers with expert-conducted laboratory measure-
ments. With smart speakers, there is no control over the absolute presentation level, potential errors from the automated
response logging, and room acoustics. We investigate the differences between highly controlled measurements in the
laboratory and smart speaker-based tests for young normal-hearing (NH) listeners as well as for elderly NH, mildly and
moderately hearing-impaired listeners in low, medium, and highly reverberant room acoustics. For the smart speaker setup,
we observe an overall bias in the SRT result that depends on the hearing loss. The bias ranges from +0.7 dB for elderly
moderately hearing-impaired listeners to +2.2 dB for young NH listeners. The intrasubject standard deviation is close to the
clinical standard deviation (0.57/0.69 dB for the young/elderly NH compared with 0.5 dB observed for clinical tests and 0.93/
1.09 dB for the mild/moderate hearing-impaired listeners compared with 0.9 dB). For detecting a clinically elevated SRT, the
speech-based test achieves an area under the curve value of 0.95 and therefore seems promising for complementing clinical
measurements.
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Speech intelligibility, especially in noisy conditions, is a
crucial factor of successful social interaction and is often
limited for hearing-impaired (HI) listeners, which poten-
tially reduces their quality of life. Early supply with hear-
ing aids can ease this limitation (Arlinger, 2003) but
requires an early and reliable diagnosis of hearing loss.
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However, hearing aid adoption rates are low, especially
for mild-to-moderate hearing loss, and typically 1 to
7years pass between becoming aware of a hearing loss
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and being provided with hearing aids (EuroTrack
Germany 2018).

A reliable measurement tool with a high accuracy for
quantifying speech intelligibility in noise is internation-
ally available through matrix sentence tests (Kollmeier
et al., 2015). Due to the closed-vocabulary construction
of this test with a vocabulary size of 50 words, it allows
for an unsupervised measurement with a graphical user
interface (the so-called closed response format).
Nevertheless, a graphical interface excludes subjects
who cannot read, such as children, visually impaired,
and illiterate people. As an example, 12% of the popu-
lation aged between 18 and 64 years in Germany is func-
tionally illiterate  (Grotliischen et al.,, 2019).
Furthermore, finding the correct words in a 50-word
matrix might increase the effort for the subject to con-
duct the measurement, which could increase the influ-
ence of cognitive skills on the result. For elderly
subjects, it is often not possible to conduct the measure-
ment with a graphical user interface in a reasonable time
(Brand et al., 2004; Brand & Wagener, 2017).

To overcome these limitations, we explore systems
based on human-machine interaction using a speech
interface. A similar approach was used for the automat-
ically conducting the Dutch LIST sentence test with the
goal of quantifying intelligibility of patients with cochle-
ar implants (Deprez et al., 2013). In our own previous
work, we developed a speech-controlled automated
matrix (SAMT) test that uses automatic speech recogni-
tion (ASR) for response logging. The system has been
evaluated in a clinical setting with well-controlled acous-
tics settings in the laboratory (Ooster et al., 2018): This
system was built to be used in a sound-isolated hearing
booth where it is possible to record clean audio from the
subjects’ responses. With an ASR system fine-tuned for
the vocabulary of the matrix sentence test, very low error
rates below 1% deletion errors and 3% insertion errors
could be achieved using responses from 20 normal-
hearing (NH) subjects and 7 mildly HI subjects. With
such low error rates, the measurement reliability using
ASR was not significantly different from the clinical test.
Furthermore, detailed Monte—Carlo simulations of the
measurement procedure and potential ASR errors
showed that up to 7% deletion errors and 15% insertion
are acceptable for an accurate measurement (i.e., in the
range of the normal test-retest accuracy of the test when
it is conducted by a human supervisor).

Speech-controlled automated matrix test uses an
ASR-based setup for clinical environments, but it has
not been designed for use at home. One example of a
speech-in-noise test which already has been successfully
implemented for screening purposes via telephone or
headphones is the digit triplet test (De Sousa et al.,
2020; Smits et al., 2006, 2013; Vlaming et al., 2011;
Zokoll et al.,, 2012), which is also available as a

smartphone-based measurement (Potgieter et al., 2016).
The limitation to digits enables automated telephone
testing since the subjects’ responses can be logged
using the keypad of the telephone. However, it also
limits the ecological validity of the test results as the
words are not phonetically balanced and the linguistic
variety is small.

Smart speakers, i.e., voice-controlled audio devices
connected to a virtual assistant such as Amazon’s
Echo, Apple’s HomePod, or Google Home also have
the potential of increasing the accessibility of speech
intelligibility tests by performing self-measurements at
home, since they provide a good audio quality and
have a built-in dialogue management system including
an ASR component. There have been several approaches
to use smart home systems for medical purposes, for
example, to provide acoustic cues to support dementia
patients’ memory (Boumpa et al., 2019) or to support
elderly people in their physical therapy (Vora et al.,
2017). The Apple ResearchKit (Apple Inc., 2016) fea-
tures a speech-in-noise test that is similar to our
approach but has not been compared with a standard
audiological test in a clinical setting.

In this article, we present a smart speaker application
for measuring the speech recognition threshold (SRT), i.
e., the signal-to-noise ratio corresponding to 50% intel-
ligibility, with the matrix sentence test.' Due to the
increasing availability of smart speakers, an accurate
screening procedure for hearing deficits could potentially
lower the threshold for conducting tests for a large
number of users and therefore have a positive effect on
early provision of assistive hearing devices. In a previous
pilot study, the smart speaker-based measurement was
evaluated in a single office room with six young, NH
listeners, where a similar performance to clinical labora-
tory results was found (Ooster et al., 2019). However,
the reliability for HI subjects was not part of the previ-
ous study although this aspect is crucial for speech audi-
ometry. Furthermore, in a real use case, the acoustic
conditions in which the test is conducted can exhibit
large variability which could also influence reliability.

To explore automated at-home hearing screening for
such use cases, this study therefore compares clinical
SRT measurements with SRTs obtained with a smart
speaker application. Specifically, we analyze the errors
and the resulting measurement reliability from the ASR
system of a smart speaker in comparison to a calibrated
clinical setup conducted by an expert; we also investigate
potential decision thresholds for providing simple feed-
back to the user. These analyses are conducted for users
with different degrees of hearing loss (HL) (ranging from
young normal hearing to elderly, moderately HI listen-
ers), performing the test in different acoustic conditions
with the aim of quantifying the interaction of test accu-
racy, user group, and environment. Room acoustics are
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taken into account by simulating three different acoustic
environments with different reverberation times which is
realized through a room acoustic simulator.

Methods

This section presents an overview of the underlying prin-
ciples of the matrix sentence test that are used in the
smart speaker measurement as well as in the clinical ref-
erence measurement. We describe the implementation of
this test as an application for the smart speaker and
conclude with a description of the evaluation measure-
ments as well as the data analysis performed on the mea-
surement results.

Matrix Sentence Test

The speech audiometric test used in this study is the
German matrix sentence test OLSA (short for its
German name: OLdenburger SAtztest, English:
Oldenburg sentence test; Wagener et al., 1999). The
words of the stimulus sentences are randomly selected
from a 5-by-10 word matrix in order to create sentences
with the structure Name Verb Numeral Adjective Object.
The stimulus material is arranged in lists of sentences
with the aim of providing phonetically balanced listening
tasks with similar intelligibility. This design choice
results in a low test-to-retest standard deviation of
0.9dB for HI subjects (Wagener & Brand, 2005) and
0.5dB for NH subjects (Brand & Kollmeier, 2002).
The NH reference values are (—7.1+£1.1) dB with the
male stimulus speaker (Wagener et al., 1999) and
(=9.4+1.0) dB with the female stimulus speaker
(Wagener et al., 2014). The influence of a hearing loss
on the SRT value measured with the matrix sentence test
can be found in Wardenga et al. (2015). The standardi-
zation of how to construct, record, and optimize the test
across languages (Akeroyd et al., 2015) also yields a high
comparability across different languages (Kollmeier
et al., 2015; Zokoll et al., 2013). During testing, the sub-
ject repeats the words he or she has recognized from the
noisy sentence. Based on this response, the number of
correctly recognized words N (referred to as sentence
score) is calculated. Since the target value is the SRT,
the signal-to-noise ratio (SNR) is dynamically adapted:
It is increased for a word error rate below 50% and
decreased otherwise (Brand & Kollmeier, 2002). The
final measurement outcome is estimated by a maximum
likelihood fit to all the data points from the complete
measurement list with 20 sentences where the underlying
data distribution is given by a psychometric function, i.
e., a logistic sigmoid.
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Figure |. Overview of the Smart Speaker Measurement
Application.

The Smart Speaker Application

An overview of the elements of the smart speaker appli-
cation for the automated SRT measurement is shown in
Figure 1 (adopted from Ooster et al., 2019). The setup
differs from established clinical setups in several ways: (a)
It uses synthesized speech instead of the original speech
test recordings (which are protected by copyright), (b)
when used at home, the sound is presented via the speaker
in a reverberant environment, (c) the presented audio files
are stored with lossy audio formats, and (d) the listener’s
response is transcribed via ASR and not logged by an
audiometrist. The application was implemented with the
Alexa Skill Developer Kit in Python (Amazon Inc., 2018,
version 1.10.2) and executed on an Amazon Echo loud-
speaker (second generation). When the measurement
application is started, the listener hears an instruction
about the general measurement procedure and the struc-
ture of the hearing test. These instructions are based on
the guidelines for the clinical application of the matrix
sentence test (HorTech gGmbH, 2019). Since the subjects
who participated in this study had no previous experience
with smart speakers, they were told that the smart speaker
is only listening when its optical indicator is active.
During the measurement, the dialogue manager of the
smart speaker uses the so-called intents. These define the
intended actions a user wants to take with their spoken
command and are defined by lexical patterns within our
application that are matched to the ASR transcript. These
intents trigger the next action when they are detected by
the ASR component. The core intent of the measurement
application is the response to a matrix stimulus sentence.
The lexical patterns to invoke this intent are based on real
responses obtained in previous work (Ooster et al., 2018),
and the ASR engine of the smart speaker generalizes to
variants of these responses. Based on this intent, the
matrix test keywords in the subject’s response are
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collected, and the SNR for the next presentation is
adapted based on the resulting score.

We used a synthesized version of the sentences from
the female German matrix sentence test, which was eval-
uated in a previous study (Nuesse et al., 2019). In that
study, the same 150 sentences from the original female
stimulus speaker (Wagener et al., 2014) were synthe-
sized, and the commercial synthesis provided by the
Acapela Group was found to produce the best results
(in terms of naturalness as well as SRT results when
compared with the original speaker). After checking
the SNR of the smart speaker output by re-recording
stimuli with known SNR and analyzing them, all syn-
thesized sentences were premixed with the speech-shaped
noise at steps of 0.1dB and converted to the MP3 data
format (MPEG version 2, 48 kbps, 16 kHz) as required
for playback through the smart speaker. The noise signal
was generated in the same way as for the original test by
superimposing the synthesized speech material.

Evaluation Measurements

The goal of the evaluation measurements is to investi-
gate two major factors that could influence the measure-
ment reliability of speech audiometry conducted with a
smart speaker: The first is the degree of hearing loss since
the measurement application on the smart speaker
should produce valid test results for all users. The
second is the influence of different room acoustics that
might considerably vary for at-home measurements.

Subject Groups. The listener groups differ by their degree
of hearing loss, and the listeners’ age was also taken into
account to explore age-related effects. In total, four sub-
ject groups were considered: Groups 1 to 3 covered age-
matched elderly listeners categorized according to their
Pure Tone Average (PTA) criterion from 0.5 to 4kHz
(Mathers et al., 2001): (a) normal hearing (<25 dB HL),
(b) mildly HI (26—40 dB HL), and (c) moderately HI
(41—60 dB HL). Group 4 consists of young NH listeners
who satisfied a stricter definition of normal hearing, i.e.,
their hearing loss did not exceed 15dB at any frequency
with one possible exception: A hearing loss of 20 dB was
allowed at one frequency from 250 Hz to 8 kHz. In total,
46 listeners participated in the study, with 9 to 16 sub-
jects in each of the aforementioned groups (cf. Table 1).

All subjects were paid for participating in this study.
The audiogram of the better hearing ear for each of the
subjects is shown in Figure 2. The hearing loss was sym-
metrical (10dB HL difference in the PTA) for 43 lis-
teners. Three listeners had an asymmetric hearing loss:
One subject with a mild HL with 32.5dB difference and
two subjects with moderate HL with 12.5dB and 15dB
difference, respectively. Three subjects in the elderly NH
group showed hearing losses above 50dB in the high
frequencies, but still reached a PTA below 25dB HL.

Test Conditions. The smart speaker measurements were
conducted in a room referred to as Communication
Acoustic  Simulator (CAS) at the Horzentrum
Oldenburg. This room has a size of 12m by 7m by
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Figure 2 Individual Audiograms of the Better Hearing Ear of Our
Subjects (Gray Lines) Together With the Average Audiogram for
the Respective Subject Group (Black Lines). Note the different
y-axis for the young normal-hearing listeners. The two dashed lines
in the moderately hearing-impaired panel describe the audiogram
from two subjects which had to be discarded from data analysis as
explained in the Results section.

Table I. Statistics of the Four Subject Groups Who Participated in the Evaluation.

Young normal-hearing
Max. one frequency at 20dB HL

Normal-hearing
PTA <=25dB HL

Mild hearing loss
PTA =26—-40 dB HL

Moderate hearing loss
PTA =41-60 dB HL

N (f/m) 16 (12/4) 9 (5/4)
Age 23 +4years 61 +6years
PTA 0+£5dB HL 10+9dB HL

11 (5/6) 10 (3/7)
63 + 6years 62 + [0years
31+5dB HL 46 £ 6dB HL

Note. PTA =Pure Tone Average.
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2.8 m and uses 16 distributed microphones and 24 loud-
speakers (12 flat wall-speakers and 12 two-way ceiling
speakers) and a sound-regenerative Variable Room
Acoustics System with a programmable microphone-
to-speaker transfer function matrix to simulate different
room acoustics. The subjects were seated at the center of
the CAS with the smart speaker in front of them at a
distance of 2 m. Before the actual measurement, the sub-
jects were asked to adjust the volume of the speaker to a
comfortable level with high intelligibility of the speech
assistant’s voice; subjects were also allowed to change
the volume of the speaker during the measurement.

To account for different acoustic conditions, rooms
with different reverberation times 75, were simulated:
Living  Room (T3 =0.51s),  Poor  Classroom
(T30 = 1.12s), and Concert Hall (T3 = 1.52s). With the
assumption of a spherical sound source, this results in
critical distances of 0.88m, 0.59m, and 0.51 m for the
three simulated rooms, respectively. Hence, regardless of
the simulated acoustic condition, the subjects were
always in the far-field.

The clinical reference measurements were performed in
a soundproof room at the Horzentrum Oldenburg using
speech signals from the original German female matrix
sentence test speaker (Wagener et al., 2014). After D/A
conversion (converter ADI-8 Pro by RME, Haimhausen,
Germany), the speech and speech-shaped noise signals
were amplified (HB7 by Tucker-Davis) and both presented
to the subjects from the frontal direction via a loudspeaker
(Mackie HR 824 by LOUD technologies). The distance
between the subject and the loudspeaker was 1.4m. The
level of the speech-shaped noise was calibrated to 65dB
SPL in the absence of the listener using a measurement
microphone (type 4189 by Briiel and Kjzar) at the position
of the listener and a sound level meter (Modular Precision
Sound Analyzer; model 2260 by Briiel and Kjar). The
speech test was performed using the Oldenburg
Measurement Applications (HorTech; version 2.0.1.0).
Responses of the speech intelligibility test were given
orally by the listeners and marked by the (human) exper-
imenter on a touch screen not visible to the listener.

Before conducting the main measurements, the audio-
gram was recorded with an audiometer (Aurical by
Natus) with Sennheiser HDA200 headphones in a
sound isolated booth using the ascending method.

Measurement Procedure. The subjects were invited for two
measurement sessions each with nine SRT measurement
lists with 20 presented matrix sentences, as described in
Table 2. The first two measurement lists from each ses-
sion were used as training due to the strong training
effect of up to 2dB in the first two measurement lists,
which results from the limited vocabulary of the stimulus
material of only 50 different words (Wagener et al.,
1999). To make training more efficient, the first ten

5
Table 2. Measurement Sequence During One of the Two
Sessions for Each Subject.
Room settings A Training list |
Training list 2
Test list |
Test list 2
Room settings B Test list 3
Test list 4
Room settings C Test list 5
Test list 6
Isolated booth Reference

Note. While the reference measurement with the clinical setup was always
performed at the end of each session, the order of the room characteristics
of the CAS during the smart speaker measurement was randomly chosen for
each subject, i.e., each setting (Living Room/Poor Classroom/Concert Hall) cor-
respond to A, B, or C. CAS = Communication Acoustic Simulator.

sentences of the first list of each session were presented
without additional noise, so that each subject heard and
understood each possible word of the matrix test at least
once before the adaptive procedure started. After the
respective training, each subject conducted two measure-
ment lists in each of the three room settings, resulting in
twelve measurement lists in total with the smart speaker
application as well as two clinical reference measurement
lists (one at the end of each of the two measurement
sessions). Whenever the room acoustic settings were
changed, the subjects heard four random sentences at
different SNRs so they could adapt to the new room
characteristics and could adjust the speaker volume if
needed.

The young NH subjects only conducted one measure-
ment session with four measurement lists (plus two train-
ing lists and the clinical reference) with the Living Room
settings, since the results from the elderly subjects
showed only a minor influence of the room acoustic set-
tings on the measurement results.

At the end of each measurement session, all recorded
audio files in the cloud of the smart speaker were deleted
to avoid speaker adaptation of the ASR system. During
the ASR-based measurements, a human supervisor
recorded the subjects’ responses to obtain the ground
truth of responses (assuming that the experienced
human supervisor produced no errors when logging the
reported words). This human transcript was later used to
determine ASR errors as reported in the next section.

Data Analysis

The data from the measurements are evaluated in three
different ways: First—in order to evaluate the SRT mea-
surement reliability of the smart speaker-based
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measurement system—the SRT results from the meas-
urements with the smart speaker (SRTsmarispeaker) are
directly compared with the SRT geference measured with
the clinical setup at the end of the respective measure-
ment session. Second, the ASR transcription errors of
the smart speaker system are analyzed, and third, by an
analysis of the collected data we find criteria for passing/
failing the test.

SRT Measurement Accuracy. The main measures of reliabil-
ity in this study are the intrasubject standard deviation
and the bias between SRTsuqrspeaker a0d SRT goference-
The intrasubject standard deviation is obtained by cal-
culating the standard deviation within each of the sub-
jects and by averaging these standard deviations over the
respective subject groups.

Performance of the ASR System. The ASR transcription
errors are estimated by comparing the transcript from
the ASR system with the labels generated in parallel to
the measurement by the human supervisor. Errors are
quantified by two measures, the Score Insertion Rate
(SIR) and the Score Deletion Rate (SDR), which only
take into account the errors that could actually have an
influence on the SRT scoring (either by inserting or
deleting a matrix word). Out-of-vocabulary words are
ignored with this metric (as they are in the clinical mea-
surement). The SDR and the SIR that quantify the per-
formance of the ASR system are defined by

SIR:M,SDR:W W

i.e., the number of errors Nswreinsertian and Nscore deletion»
which are normalized by the number of correctly repeat-
ed matrix sentence test words in the subject’s response N
(ignoring nonmatrix words). This metric is evaluated on
the list level, i.e., using responses to 20 stimuli with an
average of 50 correctly repeated matrix sentence test
words. Note that the order of the words is neglected in
this error metric, since the order of the words is also
ignored during scoring in the clinical tests. The full
error rates in the classical sense of an ASR system
were not calculated since the full transcript (including
words that are not relevant for the score) was not created
in parallel to the measurements.

SRT Decision Threshold for Providing User Feedback. To eval-
uate the performance of a decision threshold in terms of
sensitivity and specificity, a potential value for a bound-
ary is compared with three different reference decision
criteria: (a) A deviation of the reference SRT measured
with the clinical setup more than 1.96 standard devia-
tions above the mean NH SRT, i.e., results outside the

95% percentile (which is the common approach for ana-
lyzing the result with the clinical setup), (b) a non-NH
PTA (> 25dB HL) based on the World Health
Organization rules (Mathers et al., 2001), and (c) an
audiogram-based indication for a hearing aid, which is
in Germany given by a hearing loss of at least 30dB in
one of the audiogram frequencies between 500 Hz and
4kHz (Gemeinsamer Bundesausschuss der Arzte und
Krankenkassen, 2012). In addition, the Youden-Index
is derived which describes the ability of a decision
threshold to separate the respective groups of data
when sensitivity and specificity are equally weighted.
To quantify how well the measure SRTSnarspeaker 18
suited to determine one of the three reference criteria,
we use the area under the curve (AUC) value, which
describes the area under the receiver operating charac-
teristic curve which is obtained by plotting the sensitivity
over (1-specificity).

Results

SRT Measurement Accuracy

Figure 3 describes the SRT measurement accuracy with
the smart speaker application compared with clinically
acquired reference estimates. This figure shows the dif-
ference in the SRT outcome obtained with the smart
speaker application to the reference measurement
against the average of these two values for all of the
subjects. The data from two moderately HI subjects
have been removed from the analysis since their spread
of SRT results was exceptionally high (intrasubject stan-
dard deviation of 3.46 dB) and they reached SRTs above
10dB. For the first excluded subject, the ASR errors
were very high (=25% on average); the second excluded
listener spoke very softly during the first session, which
resulted in several terminations of the measurement
application. The second measurement sessions for the
two subjects were performed both normally (presumably
due to a certain familiarization to the speech interface of
the speaker) but were also excluded from further analy-
sis. While the zero-line in Figure 3 indicates a perfect
match between the clinically measured value and the
value estimated with the smart speaker application,
most of the data points are above this line. This bias is
highly significant (paired-sample ¢ test, p < 107%) and
amounts to 1.40dB on average (+2.63dB 95% confi-
dence interval, solid- and dashed-gray lines in
Figure 3), i.e., the SRT measured with the clinical refer-
ence setup is lower than for the smart speaker condition.
The different acoustic conditions are spread across a
wide range of SRT differences, which is also reflected
by the bias that is mostly constant over the three acous-
tic conditions (cf. Figure 4), and the only significant dif-
ference was the 0.38 dB between the poor classroom and
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the concert hall (paired-sample ¢ test, Bonferroni-
adjusted,

pliving room/poor classroom — 0917
Pliving room/concert hall — 015>

Ppoor classroom/concert hall = 002) The data analyzed in this
section are measured after presenting two training lists
which compensates most of the training effect (Wagener
et al., 1999). We did not observe any additional signifi-
cant training effect over the course of the measurement

sessions nor interactions with the room characteristics of
the CAS with a two-way analysis of variance
(Interaction:  F(10,318) = 1.50, p=.14, training:
F(5,318) = 0.81, p=.54). The differences between the
subject groups are shown in Figure 5. The intrasubject
standard deviation is increasing with increasing HL,
reaching 1.09 dB for the elderly moderately HI listeners.
On the other hand, the bias between the two measure-
ment methods is decreasing for stronger HL from
2.21dB for young NH listeners down to 0.67dB for
elderly moderately HI listeners. The bias from the
young listeners is significantly higher than from the
elderly subjects (two-sample 7 test, p < 107%). Within
the elderly listener group, the moderately HI listeners
differ significantly from the other subgroups (two-
sample ¢ test, Bonferroni-adjusted,

078a PNH /moderate < 0017 Pmild/moderate = 002)

PNH/mild =

Performance of the ASR System

The ASR performance of the smart speaker for all sub-
jects is shown in Figure 6. The SIR is quite low with an
overall average of 1.9% (£1.0% intersubject
standard deviation) regardless of the subject group. We
did not observe a significant difference between the
elderly listener groups nor between the young and
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Figure 5. Bias and Intrasubject Standard Deviations in the Living
Room-Settings for the Different Subject Groups. Since the young
NH subject group only conducted one measurement session with
one reference measurement, the intrasubject standard deviation
for this subject group in the reference setup cannot be estimated.
NH = normal-hearing; HL = hearing loss; SNR = signal-to-noise
ratio.

30

[score deletion rate

25 - [ score insertion rate

20

error rates [%]
&
T

young NH moderate HL

Figure 6. Violin Plot of the ASR System’s Performance From the
Smart Speaker. The individual data points denote error rates of
single measurement lists, each with 20 presented sentences; the
width of the violin denotes the normalized histogram of the error
rates. The median value and the interquartile range are denoted by
white dots and the gray line, respectively. NH = normal-hearing;
HL = hearing loss.

elderly listener groups (two-sample ¢ test, Bonferroni-
adjuSteda DPNH/mild = PNH/moderate = Pmild/moderate =
Pyoung/eiderty = 1.0).  Among 424 single measurement
lists, only two SIR outliers are observed in the group
of elderly NH listeners (with an S/R above 11%). The
SDR is higher than S/R (with an average of 6.1%
[£3.4% intersubject standard deviation]), and larger
SDR differences between the subjects were observed,
which was positively correlated with the subjects’ age:
The score deletion errors of elderly subjects (average
SDR = (6.7+5.6)%) are significantly elevated compared
with SDRs of young NH subjects (SDR = (4.2+3.8)%)
based on a two-sample ¢ test and with the assumption of
different variances (p < 107°). We did not find any sig-
nificant differences between the different levels of

hearing loss within elderly listeners (two-sample ¢ test,
Bonferroni-adjusted,
0.683, Pmild/moderate = 100)
Furthermore, no significant difference was found in
the SIR for different acoustic scenarios (two-sample ¢
test, Bonferroni-adjusted,

PNH/mild = 1.0, PNH/moderate =

Pliving room/poor classroom =

Pliving room/concert hall = Ppoor classroom/concert hall = 100)
The only significant room-related difference for SDR

was observed between concert hall and poor classroom
with a difference of +2.1% (two-sample ¢ test,

Bonferronl'adjuSte(L Pliving room/poor classroom = 008a

Pliving room/concert hall — l-oappoor classroom/concert hall = 001)

SRT Decision Thresholds for User Feedback

Figure 7 compares a potential decision threshold based
on the SRTsuarspeaker for the three reference criteria in
terms of sensitivity, specificity, and the Youden-index.
The 95% percentile decision threshold of —5.2dB SNR,
directly calculated from the young NH subjects data
measured with the smart speaker, is marked as the
dashed black line. The maximum of the Youden-index,
i.e., the statistical optimal decision boundary (when sen-
sitivity and specificity are weighted equally) is always
below this threshold—(a) —6.0dB, (b) —5.7dB, and (c)
—6.0dB. At this threshold, the sensitivities for criteria
(a) and (c) are higher than specificities—criterion (a)
0.93 versus 0.74 and criterion (c) 0.82 versus 0.70. For
criterion (b), sensitivity and specificity have similar
values at the threshold (0.75 vs. 0.73).

Discussion

In this study, we investigated the SRT measurement reli-
ability with a smart speaker-based application in three
different acoustic conditions and with four different sub-
ject groups. First, we discuss the influence that errors
made by the ASR system have on the measurement reli-
ability. This is followed by the discussion of the overall
SRT measurement reliability with the smart speaker
application.

Effect of ASR Errors

In our previous study that investigated automated tests
in a clinical setting (Ooster et al., 2018), we did not
observe any significant decrease of the measurement reli-
ability conditioned by the errors from the ASR system.
Simulations regarding the overall influence of ASR
errors on the SRT measurement accuracy in Ooster
et al. (2018) matched well with the experimental findings.
Even though these simulations are only based on NH
SRT distributions, they are in principle valid for the
smart speaker system explored in this study as well,
since the tests are structurally identical and the same
SNR adaptation scheme was used. On the one hand,
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Figure 7. Sensitivity and Specificity for Analyzing How Well a
Potential SRT4r5peaker Decision Threshold Is Suited for Providing
a Binary Screening Decision. The curves shown here are derived
from criteria that are used to quantifying hearing loss.

(@): SRTgeference > —7.3 dB SNR (the 95% percentile boundary
from the young NH data measured with the reference setup).
(b): PTA>25 dB HL.

(c): A hearing loss of 30 dB or higher in at least one audiogram
frequency between 500 Hz and 4 kHz (which is an indication for a
hearing aid in Germany). The dashed black line shows the 95%
percentile boundary from the young NH data measured with the
smart speaker. AUC =area under the curve; SRT = speech rec-
ognition threshold; SNR = signal-to-noise ratio.

the insertion errors are generally low (with an S/R of
(1.941.0)%) and consequently it can be concluded that
these errors barely influenced the measurement accuracy.
On the other hand, the SDR is relatively high
(6.1£3.4)% which results in an elevated intrasubject
standard deviation and an SRT bias (Figure 5), which
is in line with the simulations from Ooster et al. (2018).

Even though extreme settings in the CAS were select-
ed to evaluate the influence of different room acoustics,
we did not observe strong differences in terms of ASR
errors for different acoustic conditions (error rates for
concert hall and poor classroom was the only significant
difference in terms of SDR). We assume that the simu-
lated acoustics resulted in a reduced diffuseness com-
pared with real room acoustics, which could result in
an underestimation of SRTs in that environment (i.e.,
SRT could appear as too good), although the simulated
rooms appear to be very convincing.

For the best-performing group of young, NH listen-
ers, average error rates up to 4% are obtained, which is
quite high given the simple vocabulary. This can presum-
ably be attributed to the missing fine tuning of the
Alexa-based ASR back end and the overall challenging
acoustic conditions with a distance of 2 m between sub-
ject and smart speaker. Compared with these younger

subjects, the error rates for elderly listeners are signifi-
cantly elevated (Figure 6). However, the degree of
hearing-impairment does not affect the ASR compo-
nent, i.e., there is no significant difference in the ASR
errors between the different groups of hearing-
impairment within the elderly listeners in our data. We
speculate the experience in human—machine interaction
to be the underlying reason for the contrast between
young and old participants and for the generally elevat-
ed intrasubject standard deviations: For instance, longer
pauses in responses triggered the end-point detection of
the smart speaker, and the remainder of the response will
be ignored, which in turn could result in an undesired
SNR increase for the next test item. Experienced users of
speech-based interfaces would probably adapt to the
machine listener (as we already observed to some
extent during the measurements of this study), and
therefore our scoring results could represent a conserva-
tive estimate with respect to errors through user behav-
ior. Long-term measurements with the same group of
listeners should be conducted to test this hypothesis.
Furthermore, we observed a few terminations of the
measurement application when the next action was not
triggered although the subject responded with words
from the matrix sentence test, since the ASR system
from the smart speaker did not recognize any of the
words in the subject’s response correctly as matrix sen-
tence words. This happened in about nine measurement
lists from six different elderly listeners (one NH, four
with mild HL, and one with moderate HL) among the
overall 424 conducted measurement lists with the smart
speaker. In that case, the subjects had to restart the mea-
surement from the beginning.

Major companies that develop and sell smart speak-
ers use distributed data processing, i.e., the ASR is per-
formed in the cloud, in this case on servers from
Amazon. These companies regularly update the ASR
back end, over which developers and end users have
no control. In theory, such an update could have a
huge negative impact on the recognition of the matrix
words, and the measurement accuracy described with the
current setting could not be reached. However, changes
to the back end are generally driven by the desire to
increase the robustness and reliability of the system; it
therefore seems unlikely to us that changes to the back
end would reduce recognition performance; it appears to
be more likely that future optimizations will improve
ASR and therefore reduce the test bias and its standard
deviation. Similarly, the smart speaker’s synthesized
voice is used to describe the testing procedure to the
listener, and developers also have no control over this
component of the speech interface. For the actual test
conduction described in this article, this does however
not play a role since we used synthesized clean and noisy
speech samples that were uploaded as part of the
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application, so this part remains unaltered even when the
server-side synthesis is changed.

Bias and Reliability of SRT Measurements

The young NH subjects average SRTRgeference Of
(=9.3£1.0) dB using a female natural voice matches
well the results from the literature with the female speak-
er, which was reported to be (—9.4+1.0) dB Wagener
et al. (2014) and -9.1dB Nuesse et al. (2019). When
using synthetic speech in a clinical setup, a mean SRT
of —8.5dB was obtained for young NH subjects in a
related study (Nuesse et al., 2019). This is on average
1.4dB lower than the (—7.1£1.0) dB SRT for the
young NH subjects measured with the smart speaker
using synthetic speech, i.e., a bias exists between the
two measurement methods (clinical vs. automated)
even when using the same stimulus material. This bias
is varying with the different levels of HL from 2.2dB
(young NH) down to 0.7dB (elderly moderate HL)
and therefore this main limitation to obtain accurate
SRT results with the smart speaker. Nevertheless, the
SRT results itself are reliable since the intrasubject stan-
dard deviation is independent from the simulated room
acoustics and in the same range as with the clinical setup:
The young NH intrasubject standard deviation with the
smart speaker of 0.57 dB matches well with findings from
other studies (0.5dB in Brand & Kollmeier, (2002);
Ooster et al., (2018)). Compared with this, the elderly
NH listeners have a slightly elevated intrasubject stan-
dard deviation (0.69 dB) when using the smart speaker.
The mild/moderate HI listeners’ intrasubject standard
deviation of 0.93dB/1.09dB is slightly higher than the
0.9dB found with 10 HI subjects (Wagener & Brand,
2005). The estimated intrasubject standard deviation
values with the reference setup are smaller compared
with the smart speaker measurement, but they only
rely on two values from each listener before averaging
over all respective listeners so these values might not be
very reliable.

For the smart speaker measurements, the presenta-
tion level is not calibrated to a specific level, and the
individual noise and speech levels could not be con-
trolled for at all (as explained in the Methods section),
which seems not to be crucial and is in line with previous
studies: Wagener and Brand (2005) did not measure a
significant influence of the presentation level on the SRT
result (for levels that are clearly above the hearing
threshold).

Note that all measurement reliability results are based
on the measurement list after two training lists and there
can be a training effect of up to 2dB in the first two
measurement lists (Wagener et al., 1999). This training
effect can be a drawback for a screening procedure, as it
increases the required measurement time to reach the

optimal result. However, training will always reduce
the SRT, i.e., an SRT result below the decision threshold
is already valid after the first measurement. If the result
exceeds the threshold, the system will therefore recom-
mend to repeat the measurement up two times, so test
users will learn the matrix test vocabulary while they are
performing the screening.

Deriving User Recommendations from SRT Values

The 95% percentile criterion derived from the young
NH data is used to analyze the recommendation out-
come of the smart speaker-based measurement. The cor-
responding threshold is compared with different
reference criteria based on the reference SRT measured
with the clinical setup or the audiogram (which is only
indirectly related to the measured SRT).

Overall, the smart speaker measurement shows a
good classification performance with an AUC of 0.85
for predicting a PTA>25dB HL and an AUC value
of 0.86 for predicting a hearing aid indication (cf.
Figure 7(b) and (c)). This is slightly higher than the
observed prediction performance of the telephone-
based German digit triplet test for which an AUC
value of 0.82 was observed on 1903 listeners for predict-
ing a PTA>25dB HL and an AUC value of 0.76 for
predicting a hearing aid indication (von Gablenz et al.,
2014). For the computer-based headphone conduction
of the English digit triplet test, an AUC value of 0.95
was found for 20 NH and 20 HI listeners (Folmer et al.,
2017) for predicting a PTA >25dB HL, whereas De
Sousa et al. (2020) could increase the AUC from 0.78
with diotic stimuli in a smartphone-based headphone
presentation to 0.94 with antiphasic stimuli on 145
listeners.

The prediction performance reported in this article
can also be compared with other speech audiometric
tests: Smits et al. (2004) found an AUC of 0.97 with
the digit triplet test in comparison to the Plomp sentence
test (Plomp & Mimpen, 1979) with 38 subjects tested
with headphones, and von Gablenz et al. (2014) mea-
sured an AUC of 0.70 when comparing the digit triplet
test over telephone to the Gottinger sentence test
(Kollmeier & Wesselkamp, 1997) in a clinical setup.
Therefore, the overall classification performance of the
smart speaker-based measurement can be rated high
with an AUC of 0.95 (cf. Figure 7(a)) for detecting a
clinical elevated SRT.

Limitations of This Study

An important limitation of this study is that experiments
were conducted in a laboratory environment with simu-
lated room acoustics. Even though the small influence of
the different simulated acoustics seems promising, future
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evaluations should take into account environments such
as the private homes of the listeners with their respective
real room acoustics for capturing the full variability of
real-life scenarios. Furthermore, even though all the
instructions for the test were given by the smart speaker
application, a human supervisor was always present
during the measurement which could have influenced
the behavior of the listeners. The listeners who partici-
pated in this study were naive users of such a smart
speaker. Experienced users potentially can profit from
two training effects, i.e., adaptation of the speaker to
its main user (which would decrease ASR errors) and
secondly a training of the user, since long-term users
of speech assistance presumably learn how to best inter-
act with a virtual assistant (thereby avoiding incorrect
end-point detection). Finally, the threshold defined in
this article was obtained from measurements performed
after training. For untrained listeners, the number of
false positives should be higher compared with the pre-
sented values, and at the same time the number of false
negatives should be lower. It is therefore important to
note that the decision boundaries derived from our
experiments are valid for trained listeners only. In the
smart speaker application, this is considered by recom-
mending a repetition of the test (which effectively trains
the users).

Conclusions

This article introduced smart speaker-based speech audi-
ometry with the matrix sentence test. We presented
results for young and older listeners with different
degrees of hearing loss in three different simulated
room acoustic conditions. For the different simulated
room acoustics, we observe only small differences in
the measured SRTs and the performance of the smart
speaker’s ASR system. The different listener groups
showed a slightly decreased measurement reliability in
terms of intrasubject standard deviation in comparison
to results with the clinical version in the literature. The
ASR performance is significantly worse for elderly lis-
teners, which appears to be the main source of the
reduced reliability. However, the main limitation for
obtaining accurate SRT results is a varying bias between
the listener groups, which ranges from + 0.7 dB for elder-
ly moderately HI listeners up to +2.2dB for young NH
listeners. Nevertheless, the data presented in this article
support the conclusion that smart speaker-based speech
audiometry can reliably detect a deviating SRT in a self-
guided manner at home since the receiver operating
characteristic analysis showed an AUC of 0.95 for
detecting a deviating clinical SRT, where the 95% per-
centile threshold based on the young NH data results in
93% sensitivity and 74% specificity. The smart speaker-
based speech audiometric testing therefore seems

promising for complementing clinical tests with the
advantage of at-home screenings.
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