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Abstract

A number of studies have demonstrated that the Sirtuin family member, Sirt1, is a key inte-

grator of growth, metabolism, and lifespan. Sirt1 directly interacts with and deacetylates key

regulators of the circadian clock, positioning it to be an important link between feeding and

circadian rhythms. In fact, one study suggests that Sirt1 is necessary for behavioral anticipa-

tion of limited daily food availability, a circadian process termed food anticipatory activity

(FAA). In their study, mice overexpressing Sirt1 had enhanced FAA, while mice lacking

Sirt1 had little to no FAA. Based on the supposition that Sirt1 was indeed required for FAA,

we sought to use Sirt1 deletion to map the neural circuitry responsible for FAA. We began

by inactivating Sirt1 using the cell-type specific Cre-driver lines proopiomelanocortin, but

after observing no effect on body weight loss or FAA we then moved on to more broadly

neuronal Cre drivers Ca2+/calmodulin-dependent protein kinase II and nestin. As neither of

these neuronal deletions of Sirt1 had impaired FAA, we then tested 1) a broad postnatal

tamoxifen-inducible deletion, 2) a complete, developmental knockout of Sirt1, and 3) a gene

replacement, catalytically inactive, form of Sirt1; but all of these mice had FAA similar to con-

trols. Therefore, our findings suggest that FAA is completely independent of Sirt1.

Introduction

The ability to anticipate resource availability plays a crucial role in survival. When rodents are

fed a limited amount at the same time daily, they demonstrate increased locomotor activity

and body temperature prior to the regularly scheduled feeding time [1], suggesting that food

can serve as a circadian regulator. There is a rich history of attempts to study the neural basis

of food anticipatory activity (FAA); both brain lesions and genetic manipulations have yielded

inconsistent results and there is no widespread agreement on which neurons mediate FAA [2–

7]. Given the difficulty in finding the neural substrate(s) of FAA, it has been suggested that

there is no discreetly localized food entrainable oscillator (FEO) that can be inhibited through

lesions or single gene deletion [2, 8]. That being said, one study implicates the nicotinamide

adenine dinucleotide (NAD+)-dependent deacetylase, Sirt1, as being required for FAA [9].
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Since this study was done with widespread transgenic overexpression and complete deletion of

Sirt1, using more refined deletion methods presents an excellent opportunity to map the cir-

cuitry behind FAA.

Indeed, Sirt1 is known to physically interact with key components of the core circadian

clock and is also regulated by metabolism, which is highly circadian in nature [10,11]. The cir-

cadian clock is encoded by a transcription-translation feedback loop that synchronizes behav-

ior and metabolism with the light-dark cycle and feeding. The rate-limiting enzyme in

mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis, nicotinamide phos-

phoribosyltransferase (NAMPT), and levels of NAD+ display circadian oscillations that are

regulated by the core clock machinery in mice. Inhibition of NAMPT promotes oscillation of

the clock gene Per2 by releasing CLOCK:BMAL1 from suppression by Sirt1. In turn, the circa-

dian transcription factor CLOCK binds to and up-regulates NAMPT, thus completing a feed-

back loop involving NAMPT/NAD+ and Sirt1/CLOCK:BMAL1 [12]. These include, but are

not limited to, histones, BMAL1, and PER2 [13–15]. Sirt1 also deacetylates peroxisome prolif-

erators activated receptor (PPAR)-γ and the peroxisome proliferators activated receptor co-

activator (PGC-1α), which control fatty acid mobilization and oxidation [16, 17], and coordi-

nate gluconeogenesis [18]. Thus, a number of experiments have positioned Sirt1 as an essential

conduit between metabolism and circadian machinery [19].

The role of Sirt1 in the hypothalamus is controversial, as both deleting Sirt1 [20] and enhanc-

ing its activity both locally [21] as well as globally [22] leads to hyperphagia. Deleting Sirt1 in

pro-opiomelanocortin (POMC) neurons is sufficient to reduce energy expenditure in mice fed

on a hypercaloric diet [23]. Pan-neuronal deletion of Sirt1 eliminates CR-induced hyperactivity,

reduces growth hormone secretion, and glucose intolerance in older mice [24]. Sirt1 global

knockouts lack the increased activity and lifespan typical of mice on CR [25, 26]. Finally, Satoh

and colleagues (2010) demonstrate that transgenically increasing levels of Sirt1 leads to stronger

activation of metabolic centers in the hypothalamus along with increased physical activity when

calorie intake is restricted [9]. Correspondingly, knocking out Sirt1 globally decreased hypotha-

lamic neuronal activation and almost completely abrogated FAA, essentially demonstrating that

Sirt1 is the missing link between circadian activity cycles and scheduled feeding. Inspired by

these results, we attempted to delete Sirt1 in a cell-type-specific manner using the Cre-Lox sys-

tem in mice to finely map the neuronal circuitry required for FAA.

Results

Consistent with the findings of others [9, 23, 27], we observed widespread neuronal expression

of Sirt1 using immunohistochemistry in adult mouse brain fed on an ad-libitum diet. Sirt1

showed robust expression in regions such as the hippocampus (Fig 1A) and regions important

in metabolism, including the paraventricular nucleus of the hypothalamus (Fig 1B).

Our initial approach was to determine if targeted deletion of Sirt1 in selected populations of

neurons could suppress FAA in pilot studies (Table 1). We made use of the Cre-lox system

to inactivate Sirt1 by deleting its fourth exon, the catalytic domain, in several brain regions

Sirt1loxP/loxP [28]. Note that the deletion of the fourth exon of Sirt1 mimics the phenotypes

observed by the complete loss of Sirt1 protein in the initial knockout mouse study [28, 29]. We

used Western blotting to verify deletion of exon 4 of Sirt1, noting a decrease in the size of Sirt1

protein in forebrain homogenates from CamKII-Cre; Sirt1loxP/loxP mice (Fig 1C) and brain

lysates from a complete knockout of Sirt1 to verify the specificity of the Sirt1 antibody [29]. The

nearly complete downward shift of the molecular weight of Sirt1 in CamKII-Cre; Sirt1loxP/loxP

brain lysate suggests a high efficiency of deletion of the 4th exon, consistent with other studies

using this conditional allele [28].
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Deleting Sirt1 in POMC neurons using Pomc-Cre mice [30] did not cause any significant

body weight loss observed in Pomc-Cre; Sirt1loxP/loxP mice and the Sirt1loxP/loxP littermate

controls on a timed 60% calorie restricted (CR) diet (Fig 1D and S1 Dataset). Pomc-Cre;

Fig 1. Sirt1 expression, deletion, and testing FAA in mice lacking Sirt1 in Pomc neurons. Immunostaining for Sirt1 in the adult mouse brain reveals a

broad neuronal expression pattern: (A) CA1 region of the hippocampus (scale bar indicates 100 microns) and (B) low magnification image of the dorsal

hypothalamus (scale bar indicates 500 microns), showing robust Sirt1 expression in the paraventricular nucleus. (C) Western blot showing the decreased

molecular weight of Sirt1 in homogenates of cortex of CamKII-Cre; Sirt1loxP/loxP mice (lane 2) indicated by an arrowhead. Lane 1 shows full length Sirt1

protein indicated by an arrow in Sirt1loxP/loxP control cortex. Lanes 3 and 4 are from the cortex of a Sirt1 WT and Sirt1 KO mice. Note that there is a cross

reacting protein of smaller molecular weight than the exon 4-deleted Sirt1 indicated by an asterisk. (D) Body weights of Pomc-Cre; Sirt1loxP/loxP and

Sirt1loxP/loxP littermate controls. Mice were fed AL diets on Day -7. CR began on Day 0. Waveform of high activity behaviors at (E) day -7 (n = 6 WT, n = 8

KO), prior to initiating timed CR, (F) day 14 (n = 6 WT, n = 8 KO) of CR, (G) day 28 (n = 6 WT, n = 8 KO) of CR. (H) Total high activity (walking, hanging,

jumping, and rearing) observed during the duration of the 23.5h to 24h video across the duration of the experiment. (I) High activity observed during the

three hours preceding scheduled feeding divided by the total seconds of total high activity is depicted as fraction of high activity to represent FAA in mice.

Data are shown as means +/- SEMS. Feeding time is indicated by an arrow. Lights on are indicated by yellow coloration while lights off time is indicated by

grayed area. For body weight, statistical significance was determined using an unpaired t-test; for behavioral data, statistical significance was determined using

the Mann-Whitney Test. � denotes p<0.05.

https://doi.org/10.1371/journal.pone.0199586.g001
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Sirt1loxP/loxP mice had an average daily food intake of 5.6 grams (+/- 1.1g), while the Sirt1loxP/loxP

controls had an intake of 5.1 grams (+/-1.2g) (P = 0.43, t test). Next, we studied the behavioral

response to timed CR in these mice, measuring the amount of high activity, or summation of

walking, rearing, jumping, and hanging, in videos of home cage behavior using computer vision

software [31] weekly. Starting 7 days prior to initiating CR, “Day -7”, we observed similar nor-

malized activity waveforms (the high activity in each hourly bin divided by the total high activ-

ity) between Pomc-Cre; Sirt1loxP/loxP mice and Sirt1loxP/loxP controls (Fig 1E). After 14 and 28

days of timed CR, both groups of mice show a strong peak of activity preceding scheduled meal-

time at ZT9 (Fig 1F and 1G). There were similar levels of total high activity (in seconds) between

Pomc-Cre; Sirt1loxP/loxP mice and Sirt1loxP/loxP controls (Fig 1H). To quantify the amount of FAA,

we divided the activity in the 3 hours (h) prior to scheduled mealtime by the total high activity

for the 24 hour recording to express the ‘fraction of high activity’, our working definition for

FAA. For example, on the first day of timed CR (“day 0”), both Pomc-Cre; Sirt1loxP/loxP and

Sirt1loxP/loxP mice expend only 4–5% of their total high activity behaviors in the 3h preceding

scheduled mealtime (Fig 1I). We noted that Pomc-Cre; Sirt1loxP/loxP developed FAA more

quickly than control mice as they demonstrated a statistically significant increase in FAA after 7

days of CR (P = 0.01, Mann-Whitney, Fig 1F), but at all time points beyond Day 7 there were

no significant differences in pre-meal activity.

As we observed little to no effect of selected inactivation of Sirt1 in Pomc-Cre and in pilot

studies of tyrosine hydroxylase (TH)-Cre driver [32], which is expressed in dopaminergic, epi-

nephrine, and norepinephrine neurons (S1 Fig), we next sought to create a broader deletion of

Sirt1 in the brain. To that end, we utilized the CamKII-alpha-Cre [33] to test whether Sirt1 loss

in the forebrain would cause a loss of FAA in mice on CR diets. Food intakes between experi-

mental and control groups were similar (P = 0.582, Unpaired T test), with controls averaging

4.5g (+/- 0.7g) and CamKII-Cre; Sirt1loxP/loxP averaging 4.8g (+/- 1.1g). There were no differ-

ences in body weights of CamKII-Cre; Sirt1loxP/loxP and Sirt1loxP/loxP littermate controls on CR

diets (Fig 2A). High activity waveforms preceding timed CR were similar (Fig 2B), as was the

amount of pre-meal high activity at days 14 and 28 of CR (Fig 2C and 2D). There was also no

difference in total high activity (Fig 2E) or the fraction of high activity in the three hours before

feeding (Fig 2F) between control and experimental groups when on CR across the duration of

the study, suggesting that Sirt1 expression in the forebrain was not required for the develop-

ment or acquisition of FAA.

Because inactivating Sirt1 in bulk of the forebrain had no effect on FAA, our next approach

was to create an even broader neuronal knockout by using the nestin-Cre driver [34]. We

observed a trend toward lower body weights of nestin-Cre; Sirt1loxP/loxP mice but these differ-

ences were not statistically significant (Fig 2G). Food intakes for controls and conditional

knockouts were not significantly different (P = 0.168, t test), with controls averaging 4.4g (+/-

Table 1. Mouse strains used in this study.

Strain Sirt1 allele Area of expression/deletion Reference

Sirt1loxP/loxP Floxed Exon 4 Conditional allele [28]

Sirt1 KO Null allele Global [29]

Sirt1 Y/Y Mutant No catalytic activity Global [36]

Tyrosine hydroxylase-Cre Floxed Exon 4 Dopamine, norepinephrine, and epinephrine producing cells [32]

Pomc-Cre Floxed Exon 4 Pomc neurons, mainly arcuate nucleus and nucleus tractus solitarius [30]

CAGG-CreTm Floxed Exon 4 Global, 10 weeks of age at tamoxifen injection [35]

Nestin-Cre Floxed Exon 4 Neuronal lineages [34]

CamKII-alpha-Cre Floxed Exon 4 Forebrain [33]

https://doi.org/10.1371/journal.pone.0199586.t001
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Fig 2. Testing FAA in forebrain and pan neuronal deletion mutants of Sirt1. (A) Mean body weights for CamKII-Cre; Sirt1loxP/loxP and Sirt1loxP/loxP littermate

controls. CR diets began on Day 0. Mean high activity data for home cage behaviors at (B) Day -7 (n = 8 WT and n = 9 for KO), (C) Day 14 of CR (n = 6 WT and n = 9

KO), and (D) Day 28 (n = 7 WT and n = 8 KO) of CR are shown. (E) Mean total high activity, measured in seconds, over the entire 23.5h-24h video recording for

Sirt1loxP/loxP controls and CamKII-Cre;Sirt1loxP/loxP (F) Mean fraction of normalized high activity in the 3h prior to mealtime; there were no differences between groups

on all days. (G) Mean body weight for Nestin-Cre; Sirt1loxP/loxP and Sirt1loxP/loxP littermate controls. Mean high activity data for home cage behaviors at (H) Day -7 (n = 5

WT, n = 7 KO), (I) Day 14 (n = 4 WT, n = 4 KO) of CR, and (J) Day 28 (n = 5 WT, n = 7 KO) of CR are shown. (K) The amount of high activity in seconds for

Sirt1loxP/loxP and Nestin-Cre; Sirt1loxP/loxP mice. On Day 7, the amount of total activity was greater for than Nestin-Cre; Sirt1loxP/loxP compared to Sirt1loxP/loxP controls

(P = 0.0333). (L) Fraction of high activity measures between Sirt1loxP/loxP and Nestin-Cre; Sirt1loxP/loxP groups exhibit a greater amount of FAA in controls on Day 7

Sirt1 is not essential for food anticipation

PLOS ONE | https://doi.org/10.1371/journal.pone.0199586 June 25, 2018 5 / 14

https://doi.org/10.1371/journal.pone.0199586


0.6g) and knockouts 3.9g (+/- 0.7g). Activity waveforms were similar between groups at Day

-7, 14, and 28 with both groups showing a clear increase in activity prior to scheduled meal-

time (Fig 2H–2J). The total activity levels (Fig 2K) and FAA levels (Fig 2L) were similar

between nestin-Cre; Sirt1loxP/loxP and Sirt1loxP/loxP except on Day 7 of CR, when the neuronal

knockouts showed a decreased total activity (P = 0.033, Mann-Whitney) and fraction of high

activity (P = 0.033, Mann-Whitney). Thus, broad deletion of Sirt1 may cause a slight delay in

the acquisition of FAA, but subsequently, there were no significant differences between groups

in either total activity or FAA.

Because a pan-neuronal deletion of using nestin-Cre Sirt1 caused only a slight delay in the

acquisition of FAA, we next sought a broader deletion of Sirt1 that would also encompass

peripheral tissues. Since Sirt1 is important in embryogenesis and its global deletion can cause

embryonic lethality [29], we used a ubiquitously active chimeric Cagg promoter to drive

tamoxifen-inducible Cre-driver (CAGG-CreTm) to globally inactivate Sirt1 during adulthood

[35]. We injected CAGG-CreTm; Sirt1loxP/loxP and Sirt1loxP/loxP mice with tamoxifen at 8–10

weeks of age. Several weeks after tamoxifen injection, we measured food intakes of 4.7g (+/-

1g) for Sirt1loxP/loxP and 4.5g (+/- of 1.2g) for CAGG-CreTm; Sirt1loxP/loxP. The food intakes and

body weights (Fig 3A) were not significantly different. High activity waveforms were similar at

Day -7 (Fig 3B), and Days 14 and 28 of CR, where a sizable increase in activity before sched-

uled mealtime was evident (Fig 3C and 3D). The total high activity was also not significantly

different between CAGG-CreTm; Sirt1loxP/loxP mice or controls on CR except for Day 14, where

controls had significantly greater total activity than CAGG-CreTm; Sirt1loxP/loxP (P = 0.0315,

Mann-Whitney, Fig 2E). When we examined high activity in the 3-hours preceding scheduled

mealtime, there were no significant differences between controls and postnatal knockouts (Fig

2F), suggesting that global, postnatal deletion of Sirt1 also does not impact FAA behavior.

Finally, we tested both a global, constitutive deletion of Sirt1 [29] and a gene replacement

with a catalytically inactive form of Sirt1 in which a histidine at 355 position is changed to a

tyrosine, termed “Y/Y”, that is catalytically inactive [36] for FAA. For these studies, we used

mice that were middle-aged, ranging from 9 to 11 months of age with average food intakes of

5.5g (+/- 0.87g) for WT, 4.4g (+/- 1.1g) for KO, and 4.8g (+/- 1g) for Y/Y, which were not sig-

nificantly different (P = 0.1003, T test). There was a trend toward lower body weights in the

Sirt1 KO and Y/Y mutants compared to WT; upon CR, all mice showed a substantial and simi-

lar decrease in body weight over time (Fig 3G). Particularly, there were no significant differ-

ences in weight loss across groups, except for Day 7, when WT showed less weight loss

compared to Y/Y (ANOVA, P = 0.0333, Tukey, Fig 3G). For these mice, home cage activity

was measured by photobeam breaks and presented as activity “counts” (arbitrary units). The

waveforms of normalized activity counts were similar on Day -7, prior to CR (Fig 3H), and

upon CR there was a notable increase in activity during ZT4-6, right before mealtime (Fig 3I

and 3J). Total activity counts were similar between all groups except for the measurement

prior to initiating CR (Day -7) when WT displayed a significantly higher total physical activity

than both KO (ANOVA, P = 0.017, Kruskal-Wallis) (Fig 3K). On Day 7, WT mice had signifi-

cantly lower total counts than Y/Y mutant mice (ANOVA, P = 0.0301, Kruskal-Wallis). How-

ever, there were no significant differences between groups on any other day examined (Fig

3K). In terms of pre-meal activity, we found no significant difference between WT, KO, and

Y/Y groups on all days of CR (Fig 3L), as observed with all other experimental groups. Thus,

all experiments provide little evidence that Sirt1 is key regulator of FAA in mice.

(P = 0.0333). For body weight data, statistical significance was determined using an unpaired T test. For behavioral data, statistical significance was determined using the

Mann-Whitney Test. � denotes p<0.05.

https://doi.org/10.1371/journal.pone.0199586.g002
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Fig 3. Testing FAA in post-natal knockout, complete null, and catalytic mutant Sirt1 mice. (A) Mean body weight prior to starting CR (Day -7) through Day 42 of

CR for tamoxifen-injected Sirt1loxP/loxP and CAGG-CreTm; Sirt1loxP/loxP mice. CR diets began on Day 0. Mean high activity data for home cage behaviors at (B) Day -7

(n = 8 KO, n = 9 WT), (C) Day 14 (n = 9 KO and WT) of CR, and (D) Day 28 (n = 9 KO and WT) of CR are shown. Feeding time is indicated by an arrow. (E) The total

high activity for Sirt1loxP/loxP and CAGG-CreTm; Sirt1loxP/loxP groups were similar with the exception of Day 14, where the knockouts showed a significant decrease (n = 9

for both groups, P = 0.0315). (F) Mean normalized high activity in the 3-hours preceding scheduled mealtime were similar between tamoxifen-injected Sirt1loxP/loxP and

CAGG-CreTm; Sirt1loxP/loxP mice. (G) Mean body weight for control, Sirt1 KO, and Sirt1 Y/Y mutants starting Day -7, prior to starting CR, through Day 28 of CR. Mean

home cage activity counts at (H) Day -7(n = 10 WT, N = 6 KO, and N = 9 YY), (I) Day 14 (n = 10 WT, n = 6 KO, and n = 8 YY) of CR, and (J) Day 28 (n = 10 WT, n = 6

KO, and n = 9 YY) of CR are shown. (K) Total activity counts over the course of the experiment. (I) When dividing the final 3h counts over total counts throughout the

23.5h-24h recording, all mice displayed relatively similar amount of FAA prior to scheduled feeding times on all days except for Day -7 (P = 0.0442). However, no

significance was found when performing pairwise comparisons. All data is shown with mean +/- SEM and statistical significance was determined using the Kruskal-

Wallis Test with Dunn’s post-test. � denotes p<0.05.

https://doi.org/10.1371/journal.pone.0199586.g003
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Discussion

Surprisingly, we observed little evidence that Sirt1 promotes the development of FAA and no

evidence for the involvement of Sirt1 in the maintenance of FAA. Nor did we observe much

effect on body weight homeostasis during 60% timed CR feeding over a short-term CR experi-

ment—in contrast to well-documented effects of Sirt1 on body weight and metabolism [36,

37]. The Sirt1loxP/loxP Pomc-Cre and nestin-Cre mice showed opposite kinetics of FAA develop-

ment: Pomc deletion accelerated FAA whereas nestin deletion slowed acquisition of FAA.

That being said, CamKII-alpha, CAGG-CreTm, global knockout, and complete gene replace-

ment with catalytically inactive Sirt1 all showed no delay or enhancement in the development

of FAA. Thus, we conclude that Sirt1 and the acetylation of the broad network of its substrates

are not required for FAA and may only have a very subtle or limited role in circadian entrain-

ment to scheduled feeding. Given the results of Satoh and colleagues [9] demonstrating a

strong role for Sirt1 in promoting FAA via hypothalamic pathways, what could account for dif-

ferences between our study and theirs?

There are several methodological differences between the present study and that of Satoh

and colleagues that may account for the discrepancies between our results. To begin with,

Satoh and colleagues relied on two genetic strategies to study the function of Sirt1 in mediating

the response to dietary restriction. First, they created a transgenic mouse that overexpressed

Sirt1 using the ‘half genomic’ prion protein promoter fragment. The Sirt1 transgenic overex-

pression mice demonstrated enhanced pre-meal activity after 5 days of dietary restriction that

correlated with increased c-Fos expression in several hypothalamic nuclei. Their second

genetic method relied on a complete deletion mutant of Sirt1 [28] on an FVB background. In

contrast, our studies did not utilize a Sirt1 overexpression model and, instead, relied on condi-

tional deletion of exon 4 of Sirt1, a complete knockout using a different targeting strategy [38],

and a gene replacement with a catalytically inactive form of Sirt1 [36]. Other potentially

important technical differences between studies include the method of activity measurement,

diet, and duration of the study. In our studies, we allowed ample time for mice to experience a

controlled-feeding schedule—in some cases performing timed CR feeding for 7 weeks (Fig 2)

—whereas Satoh and colleagues examined very early development of FAA, displaying data

from just the first 5–7 days of dietary restriction. The only effects that we did observe in the

conditional mutants occurred during the first week of CR, which is a time of rapid adaptation

to extreme weight loss. Perhaps this window of time is when Sirt1 is most important as a medi-

ator of chronic stresses like CR. Finally, Satoh observed stronger effects of Sirt1 deletion in

males than in females. While sex differences in FAA are documented, they are subtle [39–42].

As we used both male and female mice in our studies and observed robust inductions of FAA

in all groups, where redistribution of activity to precede scheduled meals often exceeded 20%

of total activity, we do not support sex differences as an explanation for the discrepancies

between our results. To reconcile our results with those of Satoh and colleagues, a more

detailed study of the early development and sustainment of FAA conducted by both laborato-

ries using similar activity measurements, time course, and mouse mutants on the same genetic

background would be in order.

Sirt1 has a remarkable list of substrates, modulating activity and levels of everything from

monoamine oxidase [43] to p53 [44] to c-Myc [45]. The action of Sirt1 in the brain has

received much attention in terms of metabolism, feeding-related behaviors, and direct action

on the circadian system via hypothalamic neurons [8, 23, 46]. Our results suggest that Sirt1 is

not the missing link between scheduled feeding and circadian behavioral activity cycles, but, as

has been pointed out several times in the literature, “context is everything” for such a highly-

networked protein [38]. In fact, a recent systematic study of the effect of 30 different genetic
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backgrounds on gene deletion showed profound effects of background on genotype-pheno-

type relationship in mice [47]. While this study showed that most phenotypes for both diabetes

and psychiatric traits were consistent across many strain backgrounds, there were many exam-

ples where the trait disappeared or was even reversed on particular backgrounds. Thus, further

experiments with conditional deletion of Sirt1 in the brain on different genetic backgrounds

may be merited.

Materials and methods

Mouse strains and husbandry

The Institutional Animal Care and Use Committee at the California Institute of Technology

and the Animal Care and Use Committee at Cal Poly Pomona approved the experiments

described herein. The Sirt1loxP/loxP mice [28] were provided on a genetic C57BL/6 and crossed

for one to two generations onto C57BL/6J upon arrival and ovarian transfer rederivation at the

Caltech animal facility. A summary of mouse strains used is shown in Table 1. The mutant

Sirt1 allele was created on the 129/Sv inbred background and these animals were outcrossed

to the outbred CD1 strain. The offspring were intercrossed and mice homozygous for Sirt1

mutations were identified by PCR screening. The Sirt1 Y/Y and KO mice came from the col-

ony of Michael McBurney at the University of Ottawa, while the Sirt1loxP/loxP mice came from

the colony of Lenny Guarente at MIT, and all other mice were obtained from the Jackson

Laboratory.

For all experiments, mice were maintained in static microisolator cages, temperatures ran-

ged between 21–23˚C, and humidity ranged between 45–65%. The cages contained sani-chip

bedding (Envigo, product number 7090) and a cotton nestlet. The conditional mutant mice

were fed LabDiet Laboratory Rodent Diet 5001 while the Sirt1 KO and Y/Y mutants were fed

2018 Teklad diet (Envigo). The macronutrient composition of the two diets used in these stud-

ies were very similar: the % of calories derived from protein was 28.5% for 5001 chow and 24%

for 2018 chow, for fat 13.5% and 18%, and carbohydrates provided 58.0% for both diets. The

strong induction of FAA in control mice for all studies (approximately 25% of total activity

occurs in the 3-hours preceding scheduled mealtime after 2 weeks of CR, Figs 1I, 2F, 2L, 3F

and 3L) suggests that the use of different diets did not influence our results.

The conditional mutant mice were maintained on 13 hours of light and 11 hours of dark-

ness. By convention, for designating time on 13:11 L:D, ZT 12 was designated as the com-

mencement of lights-off. For the Sirt1 knockout and Y/Y mutant (Fig 3), mice were

maintained on a 12:12 light:dark cycle, and therefore ZT 0 was defined as lights on, by conven-

tion. The strong induction of FAA under both conditions suggests that this minor difference

in the amount of daylight did not influence the results of our study.

To genotype mice, DNA was obtained from tail clippings, which were obtained from una-

naesthetized 2-week old mice and then digested with proteinase K and DNA was purified

using an isopropanol precipitation. For genotyping the Sirt1 genomic locus, we found it essen-

tial to use a Qiagen multiplex PCR kit in combination with the following primers: T1 cond
KO F GCC CAT TAA AGC AGT ATG TG, T1 cond KO R CAT GTA ATC TCA ACC
TTG AG. Cre was amplified with the following primers: GCG GTC TGG CAG TAA AAA
CTA TC and GTG AAA CAG CAT TGC TGT CAC TT. Mice were euthanized CO2

narcosis.

Tamoxifen (Sigma, T5648) was dissolved in 10% ethanol and sesame oil (Sigma, S3547) at

10 mg/mL. Solutions were prepared the night before and stored at 4˚C overnight. Mice were

injected intraperitoneally at 8–10 weeks of age with a dose of 10 mg/kg for 5 consecutive days.
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Behavioral measurements and calorie restriction conditions

Home cage behavior measurement began (day -7) at 9–10 weeks of age for mice in Figs 1 and

2. The videos of singly housed mice in the home cage were analyzed by an automated behavior

recognition system, HomeCageScan 3.0 [31, 37], and data was output into twenty-four one-

hour bins to facilitate the understanding of the temporal structure of activity. Dim red lighting

was provided with red LEDs from LEDwholesalers.com (High Power 42 SMT RED LED

PAR38). Home cage behavior measurements were obtained by video recording mice from a

perpendicular angle in their home cages and analyzing these videos using HomeCageScan soft-

ware, which annotates for the following behaviors: remain low, pause, twitch, awaken, distance

traveled, turn, sniff, groom, food bin entry, chew, drink, stretch, unassigned behaviors, hang-

ing, jumping rearing, and walking. The sum of hanging, jumping, rearing, and walking are

designated as high activity behaviors and are summed for sum high activity. FAA was calcu-

lated summing the final 3h of high activity and dividing the value by the total high activity in

that day per mouse. Because the Sirt1 KO and Y/Y mice had varied coat colors, including

white, that are not amenable to HomeCageScan, we used a photo beam system (CLAMS,

Columbus Instruments, USA) to quantify homecage activity. Total counts of photo beam

breaks that occurred along x- and y- axes as a result of mouse movement, providing bins every

30 minutes. Total activity was determined by summing hanging, walking, jumping and rearing

across all 24 hour bins, while FAA ratios were calculated by dividing the high activity in the 3

hours preceding mealtime by the total high activity.

Body weights of mice were weighed every 7th day beginning from day -7 to day 28. Mouse

weights on Day -7 reflect ad libitum diets, however, CR diets were employed beginning Day 0.

Food intake was calculated for all mice prior to starting CR, while mice were on AL diets. Food

intake was measured by placing approximately 50 grams of standard mouse chow in the food

bin and measuring remaining chow mass 48 hours later. Daily averages were computed per

cohort and 60% of the daily food intake was fed at the same time daily for the duration of the

experiment. Feedings occurred at ZT 7 or ZT 9 but were always consistent within an experi-

ment. CR began at 10–11 weeks of age for the conditional mutant mice and 9–11 months of

age for the complete knockout and the Y/Y mutant.

Experimental design and statistical analysis

Statistical significance tests were conducted using GraphPad Instat. Food intakes were tested

for significance using an Unpaired T Test, whereas mouse body weights were tested for signifi-

cance using a One-Way ANOVA with Tukey’s post-test. As behavioral data did not follow a

normal distribution, we used nonparametric tests, Mann-Whitney for comparing two groups

and Kruskal-Wallis with Dunn’s post-test for comparing three groups.

Immunohistochemistry and Western blotting

Brain homogenates were prepared in glass dounce homogenizers as 10% homogenates (wt/

vol) in PBS. After sonication, large debris was pelleted by low-speed centrifugation. Further

dilutions were made into lysis buffer containing (PBS 1% Tween 20 1% Triton X 100 and 150

mM NaCl). The equivalent of 30–50 g of total protein was loaded onto 10% Bis-Tris gels (Invi-

trogen), transferred to nitrocellulose membranes, and analyzed by Western blotting using the

a Sirt1 monoclonal antibody (AS-16, Sigma). Imaging was performed using a Licor Odyssey

system.

For immunochemistry, brains were immersion-fixed in 10% buffered formalin (Sigma) for

at least 24h prior to being sectioned at room temperature using a vibratome (Leice Instruments).

Antibody staining was performed using a rabbit polyclonal Sirt1 antibody (Upstate) and Vector
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ABC immunoperoxidase staining kit (Vector labs). Images were taken on a Nikon Eclipse

TE2000-U light microscope coupled to a computer with NIS-Elements BR 3.0 software.

Supporting information

S1 Fig. Testing FAA in tyrosine hydroxylase Cre deletion mutants of Sirt1. (A) Mean body

weights for TH-Cre; Sirt1loxP/loxP and Sirt1loxP/loxP littermate controls. CR diets began on Day 0.

Mean high activity data for home cage behaviors at (B) Day -7 (n = 5 WT and n = 3 for KO),

(C) Day 14 of CR (n = 5 WT and n = 3 KO), and (D) Day 28 (n = 3 WT and n = 2 KO) of CR

are shown. (E) Mean total high activity, measured in seconds, over the duration of the experi-

ment. (F) Mean fraction of normalized high activity in the 3h prior to mealtime; there were no

differences between groups on all days.

(EPS)

S1 Dataset. Behavior, body weight, and food intake for each mouse line used in this study.

(XLSX)
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