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Brain differential gene expression and blood cross-validation 
of a molecular signature of patients with major depressive 
disorder
Hugo Gomez Ruedaa and  Juan Bustilloa,b

Introduction The agreement between clinicians 
diagnosing major depressive disorder (MDD) is poor. The 
objective of this study was to identify a reproducible and 
robust gene expression marker capable of differentiating 
MDD from healthy control (HC) subjects.

Materials and methods Brain and blood gene 
expression datasets were searched, which included 
subjects with MDD and HC. The largest database including 
different areas of brain samples (GSE80655) was used 
to identify an initial gene expression marker.  Tests of 
robustness and reproducibility were then implemented in 
13 brain and 7 blood independent datasets. Correlations 
between expression in brain and blood samples were also 
examined. Finally, an enrichment analysis to explore the 
marker biological meaning was completed.

Results Twenty-eight genes were differentially expressed 
in GSE80655, of which 23 were critical to differentiate 
MDD from HC. The accuracy obtained using the 23 genes 
was 0.77 and 0.8, before and after the forward selection 
model, respectively. The gene marker’s robustness and 
reproducibility were between the range of 0.46 and 0.63 
in the other brain datasets and between 0.45 and 0.78 for 

the blood datasets. Brain and blood expression tended to 
correlate in some samples. Thirteen of the 23 genes were 
related to stress and immune response.

Conclusion A 23 gene expression marker was able to 
distinguish subjects with MDD from HC, with adequate 
reproducibility and low robustness in the independent 
databases investigated. This gene set was similarly 
expressed in the brain and blood and involved genes 
related to stress and immune response. Psychiatr Genet 
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Introduction
Major depressive disorder (MDD) is highly prevalent 
(‘NIMH » Major Depression’, n.d.) and a leading cause of 
disability, affecting about 4.4% of the world population in 
the year 2017 (Friedrich, 2017). However, the diagnostic 
reliability of MDD has been questioned. According to the 
field trials of the DSM-5 Mood Disorders Working Group, 
the agreement between clinicians diagnosing MDD only 
achieved an intraclass kappa of 0.28 [95% confidence inter-
val (CI): 0.20–0.35] (Regier et al., 2013). This limited agree-
ment has been also observed in other studies (Enns et al., 
2000; Canuto et al., 2016; Behera et al., 2017).

As in other psychiatric disorders, the development of 
biomarkers has been pursued to improve the diagnostic 

reliability of MDD. Hence, many brain and periph-
eral features have been examined such as growth fac-
tors, cytokines, inflammatory markers, oxidative stress 
markers, endocrine markers, energy balance hormones, 
structural and functional imaging markers (Hacimusalar 
and Eşel, 2018). Though several biomarker studies for 
MDD have been performed (Spijker et al., 2010; Savitz 
et al., 2013; Sullivan et al., 2013; Chang et al., 2014; Liu 
et al., 2014; Wingo et al., 2015; Pantazatos et al., 2017; 
Hacimusalar and Eşel, 2018), the results thus far have 
shown limitations in reproducibility and robustness 
(Savitz et al., 2013; Sullivan et al., 2013; Chang et al., 2014; 
Pantazatos et al., 2017). Robustness refers to the persis-
tence of an effect in settings different from and outside 
of an experimental framework. Results’ reproducibility 
refers to obtaining the same results from the conduct 
of an independent study that uses the same procedures 
(Goodman et al., 2016). There are no currently available 
biomarkers for MDD or any psychiatric disorder to assist 
the clinician diagnostically (Hacimusalar and Eşel, 2018). 
Because the heritability of MDD is 37% (95% CI: 31–
42%) (Sullivan et al., 2000), genomic studies have been 
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at the forefront of biomarker development for depression 
(Gadad et al., 2018). Many psychiatric genomic studies 
have used peripheral blood mononuclear cell (PBMC) 
as a practical source of genetic material. Because of the 
immune disturbances reported in MDD (Bahn et al., 
2001; Li et al., 2004; Tomita et al., 2004; Franz et al., 2005; 
Strawbridge et al., 2017; Gao et al., 2018; Bhak et al., 2019), 
PBMCs offer other potential advantages as a tissue source 
for biomarkers. However, the impermeability of the 
blood–brain barrier prevents the PBMCs access to the 
brain in normal conditions (Erdő et al., 2017), questioning 
their relevance to disorders of the brain, like MDD. Still, 
it has been reported that gene expression from blood and 
brain are somewhat correlated in several medical con-
ditions (Canuto et al., 2016; Arion et al., 2017; Ramaker 
et al., 2017), including MDD (Tolentino and Schmidt, 
2018). Furthermore, concordance between gene expres-
sion variation in postmortem brain and in PBMCs would 
validate any potential peripheral biomarkers (Deep-
Soboslay et al., 2011; Harrison, 2011; McCullumsmith and 
Meador-Woodruff, 2011). However, for obvious practical 
reasons, no biomarker studies of gene expression have 
jointly examined postmortem brain and PBMC in MDD. 
Still, the complementary examination of gene expression 
in brain and PBMCs from different cohorts of subjects 
with MDD could advance the development of genomic 
biomarkers.

As previously stated, there is a low concordance in the 
diagnosis of MDD between clinicians. A biomarker could 
improve this concordance and the accuracy in the diagno-
sis of MDD. Most of the previous gene expression studies 
in MDD lack tests of reproducibility and robustness, and 
are limited to the population where the biomarker was 
identified. In the present study, with access to multiple 
datasets, we performed extensive robustness and repro-
ducibility tests. In an effort to identify a reproducible 
and robust gene expression biomarker capable of differ-
entiating MDD from healthy control (HC) subjects, we 
searched all the relevant online databases available up to 
October 2019. We started by examining protein-coding 
genes expressed in brain that could differentiate MDD 
from HC. We then tested the expression of this gene set 
in PBMCs in several other datasets. Subsequently, we 
examined the correlation of brain and blood samples of 
subjects with MDD and HC participants using the gene 
expression marker. Finally, we performed an enrichment 
analysis to determine the biological implications of the 
set of genes.

Methods
Identification of brain and blood datasets on Gene 
Expression Omnibus DataSets of NCBI
The workflow of the present study is summarized in 
Fig. 1. The search of databases was completed employ-
ing the terms used on Gene Expression Omnibus (GEO) 
DataSets (https://www.ncbi.nlm.nih.gov/gds) of NCBI: 

‘MDD’ AND ‘Gene expression’, ‘MDD’ AND ‘RNA 
expression’, ‘Major Depressive Disorder’ AND ‘Gene 
expression’, ‘Major Depressive Disorder’ AND ‘RNA 
expression’, ‘Depression’ AND ‘Gene expression’, and 
‘Depression’ AND ‘RNA expression’. The robustness 
and reproducibility tests were completed in datasets of 
brain and blood, also identified with the previously men-
tioned terms.

Analysis and filtering of variables
After the selection of appropriate datasets was com-
pleted, a visual inspection of the data was performed, 
to confidently ascertain datasets with no missing gene 
expression data, meaning no empty cells in the data 
matrix. The platforms used to measure gene expression 
were microarrays or RNASeq (Table 1). The microarray 
datasets were normalized using quantile normalization, 
to control as much as possible the technical noise of the 
microarrays. Moreover, all the datasets included in this 
study were scale rank normalized with a distribution 
from 0 to 1, a process denominated uniformization, to 
address the platform differences between RNASeq and 
microarrays. Dataset GSE80655 was normalized with the 
DESeq2 R package (Love et al., 2014), with the function 
varianceStabilizationTransformation.

Due to its larger sample, greater number of brain struc-
tures contained in the dataset, and use of RNASeq 
data, database GSE80655 was selected to first examine 
a molecular signature based on gene expression. This 
dataset was filtered for differential gene expression 
between patients with MDD and HCs using the func-
tion DESeq of the DESeq2 R Package. This procedure 
was completed to include in the analysis only genes 
with different expressions in both classes, that is, a 

Fig. 1

Summarization of material and methods.

https://www.ncbi.nlm.nih.gov/gds
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gene with high expression in HC and low expression 
in MDD or vice versa. This means, the classification 
between MDD and HC used the combined differen-
tial weighted gene expression level as a continuous 
variable; no cutoff of gene expression group difference 
was used. The final combination of genes was selected 
with a classification algorithm designed to improve 
accuracy, which is explained in more detail in the next 
section. The protein-coding genes with an adjusted P 
value in the differential gene expression less than 0.05, 
were selected to identify the gene expression marker. 
The P value of the differential gene expression was cal-
culated with a false discovery rate method (Benjamini 
and Hochberg, 1995) only in protein-coding genes, to 
avoid type I errors in null hypothesis testing when 
conducting multiple comparisons. Finally, the decision 
of working only with protein-coding genes was deter-
mined by the lack of additional datasets with noncod-
ing RNA to test the performance of the biomarker.

GALGO R package for marker identification and feature 
selection
To identify the gene expression marker in the data-
set GSE80655, the Genetic ALGOrithms (GALGO) 
R package was used to classify the patients with MDD 
and HC, with the classification approach of ‘nearest cen-
troid’ (Trevino and Falciani, 2006). GALGO is a genetic 
algorithm based on evolutionary-like principles. It com-
bines genes, in this case, their expression, to find the 
best combination to classify any given classes (HC and 
MDD), with the highest possible accuracy. A chromo-
some in GALGO is defined as a combination of genes 
(biomarker size); a generation is the process of internal 
combinations of chromosomes, which is controlled by the 
user with a maximum number of solutions and a goal of 

fitness (accuracy). The user can control the desired fit-
ness, and the number of solutions if that fitness is not 
reached during the specified generation. If the accuracy 
(fitness) is not reached, and the max solutions target is 
reached, GALGO moves on to the next generation, and 
the process continues until it reaches the generations 
defined by the user, in our case 300.

An internal validation of two-thirds of the sample for 
training and one-third for testing was done to avoid over-
fitting. The accuracy of the gene expression marker was 
used to measure the statistical performance to classify 
between the two groups. The accuracy is the average 
between sensitivity and specificity, which is defined as 
Accuracy =  (TP + TN)/(TP + TN + FP + FN), where 
TP is True Positive, TN is True Negative, FP is False 
Positive and FN is False Negative.

The configuration of GALGO used chromosome size 
10 (10-gene marker size), max solutions 300 and goal fit-
ness 0.9. Also, to estimate the final error, the bootstrap 
method was used with 0.632 weight for test and 0.368 for 
train (Bradley and Tibshirani, 1993). The training error 
was a 10-fold cross-validation and the first-level split-
ting selected was 0.5 and 0.5 in only the 20 first splits. 
We used a forward selection model (FSM) algorithm only 
in dataset GSE80655, because this was potentially the 
most informative one because of its larger sample, greater 
number of brain structures included and use of RNASeq 
data. FSM is a method of choosing the expression of the 
genes based on their contribution in improving the clas-
sification accuracy. The process starts with the gene that 
has the highest accuracy, meaning a univariate classifica-
tion between MDD and HC. Then, each next gene that 
significantly improves accuracy is added until there is no 
further improvement.

Table 1 Classification accuracy in datasets

Dataset ID Platform/tissue Total no. of probes/total no. of genes of the marker present Subjects per class Accuracy

Brain
 GSE80655 RNASeq/DLPFC, nAcc, anCg 23/23 HC 70, MDD 69 0.8
 GSE87610 Micro/DLPFC 48/22 HC 15, MDD 19 0.63
 GSE101521 RNASeq/DLPFC 23/23 HC 28, MDD 31 0.62
 GSE54564 Micro/Amyg 31/20 HC 21, MDD 21 0.59
 GSE44593 Micro/Amyg 27/19 HC 14, MDD 14 0.58
 GSE54570 Micro/DLPFC 19/15 HC 13, MDD 13 0.58
 GSE54562 + 54563 Micro/anCg 31/20 HC 35, MDD 35 0.55
 GSE54575 Micro/orbitoPFC 19/15 HC 12, MDD 12 0.51
 GSE53987 Micro/Hip, Stra, PFC 31/18 HC 55, MDD 50 0.49
 GSE54565 + 54572 Micro/anCg 31/20 HC 28, MDD 28 0.47
 GSE54567 + 54568 Micro/DLPFC 30/20 HC 29, MDD 29 0.46
Blood PBMC
 GSE38206 Micro/PBMC 38/19 HC 9, MDD 9 0.78
 GSE76826 Micro/PBMC 48/21 HC 12, MDD 10 0.64
 GSE39653 Micro/PBMC 29/19 HC 24, MDD 21 0.62
 GSE98793 Micro/PBMC 31/18 HC 64, MDD 128 0.59
 GSE19738 Micro/PBMC 25/19 HC 34, MDD 33 0.51
 GSE67663 Micro/PBMC 12/9 HC 72, MDD 112 0.51
 GSE52790 Micro/PBMC 20/19 HC 12, MDD 10 0.45

Amyg, amygdala; anCg, anterior cingulate; DLPFC, dorsolateral prefrontal cortex; FSM, forward selection model; HC, healthy control; Hip, hippocampus; MDD, patient 
with major depressive disorder; Micro, microarrays; nAcc, nucleus accumbens; OrbitoPFC, orbito prefrontal cortex; PBMC, peripheral blood mononuclear cell; PFC, 
prefrontal cortex; RNASeq, RNA expression measured by sequencing of RNA; Stra, striatum.
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Finally, a heatmap of the gene expression signature was 
generated to visually display the difference in the gene 
expression between MDD and HC subjects, using gplots 
R Package, with the data z-scaled per row.

Robustness and reproducibility capacity tests
The robustness and reproducibility tests were imple-
mented in brain and blood datasets. Reproducibility (also 
referred to as replicability) refers to obtaining the same 
results from the conduct of an independent study whose 
procedures are as closely matched to the original exper-
iment as possible. Robustness refers to the stability of 
experimental conclusions to variations in either baseline 
assumptions or experimental procedures. It is somewhat 
related to the concept of generalizability (also known as 
transportability), which refers to the persistence of an 
effect in settings different from and outside of an experi-
mental framework (Goodman et al., 2016).

Due to the lack of a quantitative definition of reproduc-
ibility and robustness in the literature, we defined some 
parameters. Reproducibility was considered high, moder-
ate or low, taking into account the SD calculated from the 
accuracy result in all datasets. Hence, high reproducibility 
is an accuracy within 1 SD, moderate within 2 SDs and low 
within 3 SDs or higher, in comparison with the accuracy of 
the normative dataset GSE80655 (which was 0.8).

We defined robustness as high when more than 90% of 
the independent datasets achieve reproducibility within 
1 SD in comparison with the accuracy of GSE80655. For 
moderate and low robustness, we considered that more 
than 90% of the independent datasets achieved repro-
ducibility within 2 and 3 SDs, respectively, in comparison 
with the accuracy of GSE80655.

Correlation analysis between samples in brain and 
blood datasets
To examine a relationship between expression in brain 
and blood tissue samples using the shared genes of each 
dataset of the identified marker, an analysis of correlation 
was calculated in R with the function Pearson’s, creating 
a correlation matrix. The correlation matrix is presented 
as a heatmap with the function heatmap.2 of gplots R 
package.

Enrichment analysis of the identified marker
Finally, to investigate the biological implications and 
significance of the identified gene expression marker, a 
Gene Ontology (GO) analysis was performed using GO 
terms on the STRING online database (https://string-db.
org).

STRING determines protein–protein interaction by 
genomic context (neighborhood, fusion and co-oc-
currence), genomic experiments (co-expression and 
experiments), and prior consolidated knowledge on pro-
tein–protein associations (knowledge and text-mining). 

In the case of association by neighborhood, two proteins 
are given an association score when their encoding genes 
are in close proximity to each other on the chromo-
some. For the fusion channel, all genomes are scanned 
for open reading frames that appear to be the result of 
gene fusion events. In co-occurrence, pairs of genes are 
identified whose occurrence patterns throughout evolu-
tion show similarities. For co-expression, pairs of genes 
that show consistent similarities between their expres-
sion profiles are assigned association scores. The exper-
iments collect protein–protein interaction evidence from 
experiments and assays in the laboratory. Knowledge 
channel parses association evidence from curated path-
way databases (i.e. Kyoto Encyclopedia of Genes and 
Genomes and Reactome), where it has been collected 
and consolidated manually by expert curators. Finally, 
the text-mining channel is based on PubMed abstracts 
and other sources. Pairs of proteins mentioned together 
in the same sentence, the same paragraph or merely the 
same publication are assigned a benchmarked association 
score (Szklarczyk et al., 2021).

Results
Identification of brain and blood datasets on Gene 
Expression Omnibus DataSets of NCBI
For the current in-silico analysis, 21 datasets were iden-
tified on the GEO Datasets of NCBI (Table 1), 14 from 
brain and 7 from blood tissues. The clinical data can be 
reviewed in Supplementary Table 1, Supplemental digi-
tal content 1, http://links.lww.com/PG/A260.

The datasets GSE54562 and GSE54563 were merged 
and analyzed as a one dataset. Merging  was also done for 
the datasets GSE54567 with GSE54568, and GSE54565 
with GSE54572, resulting in three datasets instead of 
six. This was done because the datasets shared the same 
microarrays platform to measure gene expression, as well 
as the same brain structures (Table 1). This increased the 
sample size in the three final datasets and decreased the 
internal variance.

Analysis and filtering of variables
The gene expression marker was identified in the data-
set GSE80655, because it had more diverse brain areas, 
and the RNA levels were measured with RNASeq, which 
is more accurate than microarrays. From the 57 905 total 
probes of the dataset, 56 658 probes corresponded genes 
with protein product, 958 to pseudogenes, 1 to an RNA 
long non-coding and 288 with unknown biological impli-
cations. Twenty-eight genes were differentially expressed 
between MDD and HC.

GALGO R package for marker identification and feature 
selection
After the filtering process was completed, the 28 genes 
were analyzed with GALGO R package. As a result, 23 
genes were selected as the most important to differentiate 

https://string-db.org
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between patients with MDD and HC, with an accuracy 
of 0.8 (Table 1).

Robustness and reproducibility capacity tests
The results of the accuracy of the tests are presented in 
Table 1 for each dataset. Figure 2 illustrates the heatmap 
of the gene expression differences across the samples in 
the MDD and HC classes.

The dataset GSE38206 had gene expression of subjects 
both during baseline depression and 8 weeks later after 
remission. In the present analysis, only the baseline 

sample was included. GSE87610 included postmortem 
data in schizophrenia, bipolar disorder, MDD and HC. 
Gene expression was from pyramidal neurons in layers 
3 and 5 of the dorsolateral prefrontal cortex (DLPFC). 
We averaged expression from both layers because they 
were highly correlated in both MDD and HC. GSE76826 
examined gene expression in late-onset depression 
(LOD) at baseline, the same subjects in remission and 
HCs. We included only the baseline data of LOD as well 
as HCs. The dataset GSE19738 originally compared base-
line and activation of the PBMCs to lipopolysaccharide 

Fig. 2

Heatmap with a hierarchical clustering of the gene expression of the 23 gene marker in the dataset GSE80655. The classes are MDD (subjects 
with major depressive disorder) and HC (healthy control), and are grouped by diagnosis in the x axis. The genes, grouped hierarchically in the y 
axis, have a yellow color if the expression is high in that subject, whereas the genes with low expression have a blue color.
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in subjects with and without depression. We used gene 
expression of PBMC before activation. Finally, in the 
dataset GSE67663, the subjects had comorbidity of 
depression and posttraumatic stress disorder.

The single SD of the accuracy for all datasets was 0.096; 
for 2 SDs it was 0.19, and for 3 SDs it was 0.29. Hence, 
datasets with an accuracy between 0.8 and 0.7 had high 
reproducibility; those with an accuracy of 0.61–0.69, mod-
erate reproducibility; and those with less than 0.6 were 
considered to have low reproducibility. The only dataset 
with high reproducibility was GSE38206. The datasets 
GSE87610, GSE101521, GSE76826 and GSE39653 had 
moderate reproducibility, and the rest (12 datasets) had 
low reproducibility.

Based on our definition of robustness, our marker had a 
low robustness performance. Only 5 of the 17 datasets had 
a high or moderate reproducibility (30%). However, data-
sets GSE54564, GSE44593, GSE54570 and GSE98793 
had accuracies between 0.58 and 0.59, very close to the 
0.61 threshold for moderate reproducibility. Hence, the 
inclusion of these four datasets improved the overall 
robustness to 53% with moderate or high reproducibility.

Correlation analysis between samples in brain and 
blood datasets
Several complementary approaches were used to exam-
ine the correlation of gene expression in brain and blood 
tissues. First, we explored the impact of the platform 
used (microarray or RNASeq). The datasets GSE80655 
(DLPFC measured with RNASeq), GSE101521 (DLPFC 
measured by RNASeq), and GSE87610 (DLPFC meas-
ured with microarrays) were selected because they 
shared more genes from the 23 gene marker. Results are 
depicted in Fig.  3 showing a high correlation between 
the genes [correlation mean = 0.7 (range = 0.16–1)].

Second, a correlation between brain samples (datasets 
GSE80655, GSE87610, GSE101521 and GSE53987), 
and selected PBMC samples (datasets GSE38206, 
GSE76826, GSE39653, GSE52790 and GSE98793) 
was done, including 14 shared genes in the original 23 
gene marker. The results are depicted in Fig.  4 show-
ing a higher linear correlation with Pearson coefficients 
between samples in different tissues; specifically, the 
brain datasets GSE87610 and GSE53987, with the blood 
datasets GSE39653 and GSE38206 with an average cor-
relation of 0.38 (range  =  −0.3 to 0.8). The selection of 
these datasets was based on (a) higher accuracy in com-
parison with the other datasets (greater than or equal to 
0.61; hence, at least moderate reproducibility); (b) higher 
number of genes present in the dataset corresponding 
to the marker (greater than or equal to 18 genes); or (c) 
higher number of samples in the datasets (n ≥ 100; this 
size facilitates the testing of correlations among samples 
independent of accuracy). More specifically, GSE80655, 
GSE87610, GSE38206, GSE76826 and GSE39653 were 

selected due to their higher accuracy. (i.e. greater than or 
equal to 0.61). GSE101521 was selected because the 23 
genes of the marker were present in the dataset and also 
measured the gene expression with RNASeq. GSE52790 
was included based on the number of genes of the bio-
marker present in the dataset (19/23). Finally, GSE53987 
and GSE98793 were selected because of their particu-
larly large samples, 105 and 182, respectively.

Finally, there was no statistical difference between brain 
and blood samples in the accuracy of the gene expression 
set we found using a t test (t = −0.36, P = 0.77).

Enrichment analysis of the identified marker
The results from the GO analysis are presented in 
Table 2.

Discussion
We examined all the available data up to October 2019 
in the GEO Datasets https://www.ncbi.nlm.nih.gov/geo/, 
from subjects with MDD and HC and from brain and 
blood tissues. We identified a set of 23 protein-coding 
genes, capable of distinguishing MDD from HC with an 
average accuracy greater than 0.50, in 7 of 11 brain and in 
6 of 7 blood datasets. Furthermore, the expression of 14 
of the 23 genes was correlated in some brain and blood 
tissue samples. In the enrichment analysis, the identified 
genes were associated with immune response, a patho-
physiological mechanism known to be involved in the 
development of depression. It is worth highlighting that 
the majority of the databases employed in this study were 
not originally used for the distinction of MDD from HCs.

Several studies have used gene expression sets to distin-
guish MDD from HC groups. Yi et al. (2012) examined 
PBMCs with microarrays in MDD (n = 8), HC (n = 8), 
and subsyndromal symptomatic depression (n  =  8), 
and reported a model of 48 genes with an accuracy of 
100%, using a leave-one-out cross-validation (LOOCV) 
approach. However, LOOCV is known to be inconsist-
ent with the linear model assumptions used. Hence, this 
study was limited by a very small sample and lack of val-
idation in an independent dataset.

Wang et al. (2019) originally used dataset GSE98793 
(included in our analyses) which they split into two 
subgroups of HC (n  =  32 each) and two of MDD 
(n = 64 each). They identified a group of 20 hub genes 
(genes with high protein–protein interactions with 
other genes) in PBMCs capable of classifying MDD 
from HC, with an accuracy (from receiving operating 
curve analyses) between 0.833 and 0.876 with valida-
tion in the second subgroups.

Miyata et al. (2016) studied late-onset MDD (LOD; in 
subjects aged greater than or equal to 50 years; n = 18) 
and HC (n  =  12). They first examined a 3066 probes 
microarray in PBMCs from a mice model of depression. 

https://www.ncbi.nlm.nih.gov/geo/


Molecular signature of patients with MDD Gomez Rueda and Bustillo 111

Fourteen genes were differentially expressed and con-
cordant between the animal model and LOD subjects. 
Finally, the ability to classify LOD and HC was tested 
using reverse transcription polymerase chain reaction 

(RT-PCR) in independent LOD subjects (n = 23). The 
CIDEC gene (cell death-inducing DFFA-like effector C) 
reached the highest accuracy (0.9185). However, their 
sample was small.

Fig. 3

Heatmap of the correlation between the subjects MDD and HC in the datasets GSE80655, GSE101521 and GSE87610 of only the DLPFC 
of the mentioned datasets. This correlation was calculated using the gene expression of 20 of the 23 genes of original the marker, due to these 
are the shared genes in these three datasets. The purpose of correlating the data of RNASeq (GSE80655 and GSE101521) and microarrays 
(GSE87610) in the same brain area (DLPFC) was to test if there is a correlation dependent of the used platform to measure the gene expression. 
The correlations are hierarchically grouped in x and y axes. A positive linear correlation is represented as red color whereas a negative linear cor-
relation is blue; the color white is used to represent the lack of linear correlation. DLPFC, dorsolateral prefrontal cortex; HC, healthy control; MDD, 
major depressive disorder.
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Spijker et al. (2010) studied whole blood with microar-
rays from a primary cohort of MDD (n  =  21) and HC 
(n  =  21). They reported a set of seven genes differen-
tially expressed. These findings were validated in an 
independent cohort of MDD (n = 13) and HC (n = 14) 
using RT-PCR. The reported specificity was 71.4% and 
sensitivity was 76.9%; accuracy was not reported. As was 

already mentioned, small studies tend to inflate effects 
(Button et al., 2013).

Bhak et al. (2019) used methylome acquired with methyl-
seq data and transcriptome obtained with whole-tran-
scriptome sequencing from PBMCs of subjects with a 
history of suicidal attempt (SA, n = 56), MDD (n = 39) 

Fig. 4

Heatmap of the correlation using 14 of the 23 genes from the original marker, between the subjects MDD and HC, between the datasets of brain 
tissue GSE80655, GSE87610, GSE101521 and GSE53987 and the PBMC datasets GSE38206, GSE76826, GSE39653, GSE52790 and 
GSE98793. The correlations are hierarchically grouped in x and y axes. A positive linear correlation is represented as red color whereas a negative 
linear correlation is blue; the color white is used to represent the lack of linear correlation. HC, healthy control; MDD, major depressive disorder; 
PBMC, peripheral blood mononuclear cell.
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and HC (n = 87). They first reported differentially meth-
ylated sites (DMSs) for each clinical group versus HC. 
The MDD had 80 DMS and the SA group had 95 com-
pared to HCs. Gene expression models failed to differ-
entiate the clinical groups from HCs. However, gene 
expression combined with DMS achieved accuracies of 
87.3% for MDD versus HC and 86.7% for SA versus HC. 
This underlines the potential advantage of linking gene 
expression with epigenetic markers.

Watanabe et al. (2015) through PCR array plates in a pri-
mary dataset assessed 40 candidate genes in PBMCs from 
subjects with MDD (n = 25) and HC (n = 25). A group of 
seven genes achieved a sensitivity of 80% and specificity 
of 92% in the primary dataset. In an independent data-
set test, including subjects with MDD (n = 20) and HC 
(n = 18), the specificity and sensitivity were 85 and 89%, 
respectively. Accuracy was not reported.

This literature has not succeeded in the identification 
of a reliable gene expression biomarker for MDD in the 
blood (Spijker et al., 2010; Yi et al., 2012; Watanabe et al., 
2015; Miyata et al., 2016; Bhak et al., 2019; Wang et al., 
2019). The studies have some limitations such as using 
LOOCV as an internal test (Yi et al., 2012; Bhak et al., 
2019) which is inconsistent when used in linear models 
(Shao, 1993); subsplitting the data instead of using an 
independent dataset for validation (Wang et al., 2019); 
and use of small datasets (Spijker et al., 2010; Watanabe 
et al., 2015; Miyata et al., 2016; Bhak et al., 2019) which 
are biased in favor of inflated effects (Button et al., 2013). 
We found no reports using brain tissue for the diagnostic 
classification of MDD.

Our accuracy findings are similar to the studies described 
above (0.8 in the primary brain dataset, with a range 
between 0.46 and 0.8 in the other brain datasets and 
between 0.45 and 0.78 for the blood datasets). However, 
our approach differed from others in that the expression 
set was restricted to protein-coding genes, first identified 
in brain and then replicated in both brain and blood. This 
is important because expression in brain supports the 
neurobiological validity of the marker, whereas expres-
sion in blood supports its potential to be eventually 
developed as a diagnostic aid. Conceptually, the fact that 
the GO analyses link the identified marker to immune, 
stress and defense responses is consistent with the broad 
literature supporting the involvement of the immune 

system in the pathophysiology of depression (Stein et al., 
1991; Maes et al., 1995; Raison et al., 2006, 2009; Quan 
and Banks, 2007; Dantzer et al., 2008; Dowlati et al., 2010; 
Leonard, 2010; Hughes et al., 2016; Miller and Raison, 
2016). Pragmatically, because ours is a compact marker, 
the implementation of RT-PCR in blood seems feasible. 
Hence, we believe a further study of this marker in a 
larger dataset with PCR is warranted.

Some technical aspects negatively impacted the perfor-
mance of the identified marker. First, in the brain tissue 
datasets, different regions were included. In brain, there 
tends to be high variability of gene expression in dif-
ferent areas (Naumova et al., 2013). However, the iden-
tified marker was capable of distinguishing MDD from 
HC in most of the brain datasets, independently of the 
included brain areas (Table  1). Moreover, postmortem 
interval affects the RNA levels and integrity (Franz et al., 
2005) which could be accountable for the lower accuracy 
in GSE10152, even though, this dataset used RNASeq 
samples from the DLPFC area, like in GSE80655. Still, 
the gene set was able to discriminate the groups with 
an accuracy greater than 0.6. Additionally, inconsistency 
with the previous literature may, in part, be due to greater 
tolerance to degradation in the gene expression we iden-
tified in GSE80655, compared to some of the genes previ-
ously reported. Also, the inherent variability of microarray 
experiments is large (Jaksik et al., 2015). As initially 
detected in GSE80655, we expected greater gene expres-
sion differences between MDD and HC in the replication 
datasets. However, although the microarray probes meas-
ured the same genes, the variability of the probes was not 
consistent across the datasets. We mitigated this with the 
selection of the probes that reflect the original assump-
tion, with an expression difference between MDD and 
HC. Furthermore, the microarray experiments used dif-
ferent number of probes (up to 48 for GSE87610 and as 
low as 12 for GSE67663). This may account for the higher 
accuracy in GSE98793 compared to GSE67663, although 
the sample sizes were almost the same. In general, data-
sets with more probes, such as GSE38206 and GSE76826, 
had a higher accuracy, but this could be artifactual. Of 
note, variability in sample sizes was significant (e.g. 192 
in GSE98793 and 18 in GSE38206). Smaller datasets 
achieved higher accuracy perhaps due to higher internal 
variability, biasing toward inflated effects (Button et al., 
2013). Finally, the association of gene expression between 

Table 2 Gene Ontology analysis of the gene expression marker

Term description
Observed gene 

count
Background 
gene count

False discovery 
rate Matching proteins in your network (labels) gene ID

Response to stress 13 3267 0.0013 CCL4, CCL4L1, CPS1, DMBT1, GIG25, HAMP, HSPA6, LCN2, OLR1, PRF1, 
SERPING1, SGK1, TATDN2

Defense response 9 1234 0.0013 CCL4, CCL4L1, DMBT1, GIG25, HAMP, LCN2, OLR1, PRF1, SERPING1
Immune response 10 1560 0.0013 CCL4, CCL4L1, DMBT1, GIG25, HAMP, HSPA6, LCN2, OLR1, PRF1, SERPING1
Immune effector 

process
7 927 0.0072 DMBT1, GIG25, HSPA6, LCN2, OLR1, PRF1, SERPING1
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brain and blood samples was implemented in tissues orig-
inating from different subjects. Ideally, samples would 
come from the same subject collected at the same time 
(Sullivan et al., 2006; Leday et al., 2018). This would 
reduce variation in clinical characteristics that could 
impact expression (Ciobanu et al., 2016; Yang et al., 2017).

The current analysis showed that (a) there is an asso-
ciation between the gene expression of the identified 
marker from subjects with MDD and HC in the blood 
and brain tissues; (b) a 23 gene expression marker was 
able to distinguish subjects with MDD from HC with 
an accuracy higher than 50% in most of the databases 
investigated and (c) this marker includes genes related 
to stress and immune response, consistent with a current 
model of depression. Future studies in larger samples 
will be necessary, including brain and blood samples from 
the same subjects to further develop a marker with min-
imal sample bias, which is reproducible and universal. 
Though reliability between clinicians diagnosing MDD 
according to DSM-5 criteria was poor (Regier et al., 2013), 
it improved with the Structured Clinical Interview for 
DSM-5 – Clinician Version (SCID-5-CV; kappa greater 
than 0.70 for MDD) (Osório et al., 2019). Hence, a future 
study would examine the accuracy of our proposed 
genetic biomarker compared to the SCID-5-CV as a gold 
standard.
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