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Abstract 
Background:  The treatment responses of immune checkpoint inhibitors in metastatic renal cell carcinoma (mRCC) vary, requiring reliable 
prognostic biomarkers. We assessed the prognostic ability of computed tomography (CT) texture analysis in patients with mRCC treated with 
programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitors.
Materials and Methods:  Sixty-eight patients with mRCC treated with PD-1/PD-L1 inhibitors between 2012 and 2019 were revaluated. Using 
baseline and first follow-up CT, baseline and follow-up texture models were developed to predict overall survival (OS) and progression-free 
survival (PFS) using least absolute shrinkage and selection operator Cox-proportional hazards analysis. Patients were divided into high-risk or 
low-risk group, and the survival difference was assessed using Kaplan-Meier and log-rank test. Multivariable Cox models were constructed by 
including only the clinical variables (clinical models) and by combining the clinical variables and the texture models (combined clinical-texture 
models), and their predictive performance was evaluated using Harrell’s C-index.
Results:  The baseline texture models distinguished longer- and shorter-term survivors for both OS (median, 60.1 vs. 17.0 months; P = .048) and 
PFS (5.2 vs. 2.8 months; P = .003). The follow-up texture models distinguished longer- and shorter-term overall survivors (40.3 vs. 15.2 months; 
P = .008) but not for PFS (5.0 vs. 3.6 months; P = .25). The combined clinical-texture model outperformed the clinical model in both predicting 
the OS (C-index, 0.70 vs. 0.63; P = .03) and PFS (C-index, 0.63 vs. 0.55; P = .04).
Conclusion:  CT texture analysis performed at baseline and early after starting PD-1/PD-L1 inhibitors is associated with clinical outcomes of 
patients with mRCC.
Key words: metastatic renal cell carcinoma; immune checkpoint inhibitors; computed tomography; texture analysis; survival.

Implications for Practice
The diverse treatment outcomes of patients with metastatic renal cell carcinoma (mRCC) following immune checkpoint inhibitor (ICI)-based 
therapies necessitate reliable prognostic biomarkers. Using computed tomography (CTs) performed at baseline and within 3 months after 
treatment initiation, the baseline and follow-up texture models were constructed to predict overall survival and progression-free survival. 
The baseline texture models could distinguish shorter-term and longer-term overall survivors and progression-free survivors, and the 
follow-up texture models could distinguish shorter-term and longer-term overall survivors. The present study demonstrates that texture 
analysis using CT obtained before and early after ICI-based treatment may help in predicting treatment outcomes in patients with mRCC.

Introduction
The treatment landscape of metastatic renal cell carcinoma 
(mRCC) has undergone a radical change in the past 15 years, 
with agents targeting the mammalian target of rapamycin 
(mTOR), vascular endothelial growth factor (VEGF), pro-
grammed death receptor-1 (PD-1)/programmed death 
ligand-1 (PD-L1), and cytotoxic T lymphocyte antigen-4 
(CTLA-4) axes all becoming part of the standard of care 

of treatment.1,2 While these therapies have substantially im-
proved the outcomes of patients with mRCC, the selection of 
patients for systemic therapies has now become of paramount 
importance to maximize the efficacy and minimize the tox-
icity of these therapies for patients.

Multiple studies have investigated biomarkers of response 
to systemic therapies in mRCC. These biomarkers have been 
primarily tumor tissue-based and have included infiltrating 
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T-cell exhaustion markers,3 PD-L1 protein expression,3,4 som-
atic mutations,5-7 transcriptomic signatures,8-10 and histologic 
features.11,12 Despite their promise, none of these biomarkers 
are routinely used in clinical practice for treatment selection, 
owing to the lack of standardization and their limited pre-
dictive ability. Moreover, these methods may be limited by the 
invasiveness of tissue acquisition and sampling errors related 
to variations in tissue composition within the tumor.

Tumor heterogeneity is a well-known feature of malignancy 
that may help predict tumor behavior and outcomes.13 It can 
be quantitatively assessed by texture analysis, an imaging 
processing method used to quantitatively analyze imaging-
based spatial composition of lesions that may not be per-
ceptible to the human eye.14 There is growing evidence that 
identifying tumor heterogeneity using computed tomography 
(CT) texture analysis can be helpful in predicting tumor ag-
gressiveness, treatment response, and overall survival (OS) in 
various cancer subtypes.15-19

Prior study from our group in metastatic urothelial cancer 
showed that CT texture analysis can help predict the dur-
ability of response to treatment with immune checkpoint 
inhibitor (ICI).20 Given the promising results of CT texture 
analysis in preceding studies,15,16,18,19 the potential of CT 
texture analysis as a prognostic biomarker deserves further 
exploration. Therefore, the aim of this study was to assess 
the predictive ability of CT texture analysis for OS and 
progression-free survival (PFS) in patients with mRCC treated 
with ICI-based therapies.

Materials and Methods
Study Population
This institutional review board-approved, Health Insurance 
Portability and Accountability Act-compliant retrospective 
study was performed at a large cancer referral center. Written 
informed consent was waived. Inclusion criteria were as fol-
lows: (1) patients with mRCC treated at our institute with ICI 
from January 2012 to February 2019; (2) baseline and first 
follow-up contrast-enhanced CT of the chest, abdomen, and 
pelvis available for review; and (3) presence of target lesion(s) 
per response evaluation criteria in solid tumors (RECIST) 
1.121 on the baseline CT. Among 129 recruited patients, those 
without available contrast-enhanced CT(s) at baseline or 
follow-up (n = 40), and those without any target lesion (n = 
21) were excluded. The final cohort consisted of 68 patients 
(median age, 61 years (interquartile range [IQR], 53-66]; 
55 men, 13 women) (Figure 1). The median time interval 
from baseline CT acquisition to treatment initiation was 17 

days (IQR, 10-22 days). The first follow-up CT scan(s) were 
obtained within 3 months after treatment initiation. Patients’ 
imaging data and clinicopathologic factors including age, sex, 
histologic type of RCC, and IMDC (International Metastatic 
RCC Database Consortium) risk category22,23 were obtained. 
Patients’ medical records were reviewed to record the date 
of start of treatment, date of disease progression (PD) per 
RECIST 1.1, and survival data.

Endpoints
The primary endpoints were OS and PFS. OS was defined as 
the time from treatment initiation and death from any cause, 
and PFS was defined as the time interval between treatment 
initiation and tumor progression or death from any cause, 
whichever occurred first.24 For both endpoints, patients were 
censored at last follow-up if an event had not occurred.

CT Acquisition
CT images were acquired on multidetector-row CT scanners 
with 120 kVP and a tube current maximum of 500 mA with 
dose modulation. Scans were performed after administra-
tion of 75-100 mL nonionic iodine contrast (Ultravist; Bayer 
HealthCare, Leverkusen, Germany) based on estimated glom-
erular filtration rate, and empirically timed with chest im-
ages obtained in the arterial phase (25-35 seconds delay) and 
abdominopelvic images obtained in the portal venous phase 
(60-90 seconds delay). Scans were reconstructed with an axial 
section thickness of 5 mm.

Tumor Segmentation and Texture Analysis
On CT, among lesions ≥ 1  cm in maximum diameter and 
lymph nodes ≥ 1.5 cm in short axis, a maximum of two le-
sions per organ and a total of five lesions per patient were 
selected as target lesions per RECIST 1.121 by a fellowship-
trained radiologist with 2 years of experience (H.J.P.) who 
was blinded to the outcomes. A single slice axial CT image 
showing maximum size of each lesion was sent to a commer-
cially available texture analysis research software platform 
(TexRAD Ltd, part of Feedback Plc, Cambridge, UK; www.
texrad.org). Using this software, a fellowship-trained radi-
ologist with 2 years of experience (H.J.P.) created the region-
of-interest (ROI) of by contouring each lesion under the 
supervision of another board-certified abdominal radiologist 
with 10 years of experience (A.B.S.). The texture analysis tech-
nique used in this study uses a histogram-based technique25 
which evaluates the gray-level frequency distribution from the 
pixel intensity in ROIs, retrieving a set of quantifiable texture 
features: mean (the average value of pixel intensities within the 
ROI), standard deviation (SD; the variation or dispersion from 
the mean value), entropy (the complexity of pixel intensities), 
skewness (the asymmetry of the distribution of the pixel inten-
sity values on the histogram), and kurtosis (a measure of the 
peakedness of the distribution of the pixel intensity values on 
the histogram).14 A total of 10 texture features (five from the 
baseline CT and five from the follow-up CT) were extracted 
per lesion. Each texture feature was calculated separately for 
each target lesion and then averaged for each patient.

Texture Model Development
To investigate the prognostic value of the extracted texture 
features, we developed texture models using the baseline CT Figure 1. Flow diagram of the patient recruitment process.
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to predict survival of the patients (baseline texture models) 
and follow-up CT (follow-up texture models) separately 
for predicting OS and PFS. For feature selection and model 
construction, we used the least absolute shrinkage and selec-
tion operator (Lasso)-Cox proportional hazards analysis.26 
Considering the small sample size, we implemented leave-
one-out cross-validation resampling method27,28 to validate 
the performance of the texture models to predict survival 
of the patients, a method used and validated in prior litera-
ture.29-31 Patient data (n = 68) were divided into two parts, a 
training set made up of 67 patients and a single patient left for 
validation. This leave-one-out procedure was repeated a total 
of 68 times through the whole patient dataset until each pa-
tient data was used as the test set, and the test results were ag-
gregated. Lasso-Cox models were built using only the training 
set to select the regularization parameters, which resulted in 
feature selection and computation of survival indices on the 
training sets. Using the median survival index calculated from 
the training set in the Lasso-Cox model as threshold, patients 
were categorized into either high-risk or low-risk group. Since 
the test data was not used in model training process, the test 
error is an unbiased estimate of the model performance.

Statistical Analysis
Paired t-test was used to compare the value of each texture 
parameter on baseline and follow-up CT. Kaplan-Meier and 
log-rank test were used to assess the survival difference be-
tween the high-risk and low-risk groups. To predict OS and 
PFS, clinical models (including age, sex, histologic type of 
RCC [ie, sarcomatoid/rhabdoid differentiation or not], and 
the IMDC risk category32) and the combined clinical-texture 
models (including both the clinical variables and the texture 
models) were constructed by multivariable Cox proportional 
hazard analysis to predict OS and PFS. We used an automated 
variable selection method by using the backward elimination 
with the Akaike information criteria (AIC) as a feature selec-
tion rule.33 The hazard ratio (HR) and 95% confidence inter-
vals (CI) of each variable were calculated. The discriminatory 
capabilities of the models were evaluated using the AIC and 
the Harrell’s C-index,34 and the C-indexes were compared 
using the nonparametric approach described by Kang et 
al.35 The calibration capabilities of the models were assessed 
using a calibration plot36 that compared the predicted versus 
the observed probabilities of 2-year OS and 6-month PFS. A 
two-sided P value < .05 was considered significant. Statistical 
analysis was done with R (R Foundation for Statistical 
Computing, Vienna, Austria, http://www.R-project.org, ver-
sion 4.1.1). Lasso-Cox models were built using “glmnet” 
package.

Results
Patient Characteristics
The clinical characteristics of the included patients are shown 
in Table 1. The most common histological subtype of RCC 
was clear cell RCC (67.6%, 46/68). Sarcomatoid or rhabdoid 
differentiation was present in 19 patients (27.9%). IMDC risk 
group categorization was as follows: 9 (13.2%) favorable, 39 
(57.4%) intermediate, and 20 (29.4%) poor risk. Patients had 
a median of two lines of prior systemic therapy for metastatic 
disease (range, 0-3). ICI-based therapies were the first line of 
treatment for 32 patients (47.1%). Treatment discontinuation 

occurred in 61 patients (89.7%) due to PD (80.3%, 49/61) 
and drug toxicity (16.4%, 10/61). The median treatment 

Table 1. Patient characteristics.

Characteristics Number (%) 

Number of patients 68

Agea 61 (53-66)

Sex

 � Male 55 (80.9)

 � Female 13 (19.1)

RCC subtype

 � Clear cell 46 (67.6)

 � Papillary 9 (13.2)

 � Chromophobe 5 (7.4)

 � Othersb 8 (11.8)

Sarcomatoid or rhaboid differentiation

 � Present 19 (27.9)

 � Absent 49 (72.1)

IMDC risk category

 � Favorable 9 (13.2)

 � Intermediate 39 (57.4)

 � Poor 20 (29.4)

Number of prior systemic treatment

 � 0 32 (47.1)

 � 1 19 (27.9)

 � ≥2 17 (25.0)

Best overall response

 � CR or PR 17 (25.0)

 � SD 19 (27.9)

 � PD 27 (39.7)

 � Unknown 5 (7.4)

Treatment regimenc

 � ICI and VEGF 31 (45.6)

 � ICI monotherapy 28 (41.2)

 � ICI combination therapy 6 (8.8)

 � ICI and clinical trial drugs 3 (4.4)

Reason for off therapy 61 (89.7)

 � PD 49 (80.3)

 � Toxicity 10 (16.4)

 � Consent withdrawal 2 (3.3)

Treatment period (months)a 4.6 (1.9-10.2)

Follow-up dataa

 � Follow-up duration (months) 17.0 (9.2-32.2)

 � OS (months) 21.5 (10.5-32.5)

 � PFS (months) 5.2 (2.0-8.4)

aData are medians, with first and third quartiles in parentheses.
bXp11.2 translocation type with TFE3 gene fusion (n = 3), collecting duct type 
(n = 2), fumarate hydratase-deficient type (n = 2), and unclassified type (n = 1).
cICI monotherapy included nivolumab (n = 28) and atezolizumab (n = 
1); ICI combination therapy included nivolumab and ipilimumab (n = 
5) and durvalumab and tremelimumab (n = 1); ICI and VEGF included 
atezolizumab and bevacizumab (n = 17), avelumab and axitinib (n = 10), 
pembrolizumab and axitinib (n = 2), pembrolizumab and lenvatinib (n = 
1), and nivolumab and axitinib (n = 1).
Abbreviations: CR, complete response; ICI, immune checkpoint inhibitor; 
IMDC, International Metastatic RCC Database Consortium; PD, 
progressive disease; PR, partial response; RCC, renal cell carcinoma; SD, 
stable disease; VEGF, vascular endothelial growth factor.
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period with ICI was 4.6 months (IQR, 1.9-10.2 months). 
During the follow-up from start of treatment (median, 17.0 
months; IQR, 9.2-32.2 months), 54 patients (79.4%) experi-
enced progression, and 40 patients (58.8%) died. The median 
OS and PFS were 21.5 months (95% CI, 10.5-32.5 months), 
and 5.2 months (2.0-8.4 months), respectively.

CT Texture Analysis and Development of Outcome 
Prediction Models
A total of 298 lesions from 68 patients were analyzed. There 
were 97 lymph nodes (32.6%), 51 lung lesions (17.1%), 41 
liver lesions (13.8%), 40 peritoneal nodules (13.4%), 22 
adrenal lesions (7.4%), 17 renal lesions (5.7%), 11 pancre-
atic lesions (3.7%), 10 intramuscular lesions (3.4%), and 9 
pleural nodules (3.0%). Details of texture analysis are shown 
in Table 2.

Using the texture features and patients’ outcome data, four 
Lasso-Cox proportional hazard models were developed: base-
line texture model for predicting OS, follow-up texture model 
for predicting OS, baseline texture model for predicting PFS, 
and follow-up texture model for predicting PFS. The frequen-
cies of each texture feature to be selected in models are shown 
in Figure 2. The top features selected in both models for 
predicting OS were entropy and skewness, and those selected 
in both models for predicting PFS were entropy and kurtosis.

Performance of CT Texture Models for Predicting 
OS and PFS
Patients were categorized into either high-risk or low-risk 
group with the median survival index obtained from training 
datasets as threshold. For OS, both the baseline and follow-up 
texture models successfully distinguished longer-term and 
shorter-term survivors in the test set (Figure 3A and B). In 
the baseline texture model, the median OS was 60.1 months 
(95% CI, 19.6-not reached) in the low-risk group and 17.0 
months (95% CI, 11.9-32.8) in the high-risk group (P = 
.048), and in the follow-up texture model, the median OS was 
40.3 months (95% CI, 21.7-not reached) and 15.2 months 
(95% CI, 11.1–32.3) in low- and high-risk group, respectively  
(P = .008). Representative cases are shown in Figure 4.

For PFS, the baseline texture model successfully distin-
guished shorter from longer PFS patients in the test set, but 

the follow-up texture model failed to distinguish the shorter-
term from longer-term progression-free survivors (Figure 3C 
and D). In the baseline texture model, the median PFS was 
5.2 months (95% CI, 3.6-23.8) in the low-risk group and 2.8 
months (95% CI, 1.7-7.6) in the high-risk group (P = .003). In 
the follow-up texture model, the median PFS was 5.0 months 
(95% CI, 3.5-11.9) and 3.6 months (95% CI, 2.4-7.6) in low- 
and high-risk group, respectively (P = .25).

In a subgroup of the 32 patients without prior systemic 
treatment (ie, treated with ICI as a first-line therapy), the 
baseline texture models for OS and PFS discriminated longer- 
and shorter-term survivors (median OS, not reached vs. 
16.8 months [95% CI, 2.9-30.7], P = .03; median PFS, 11.7 
months [95% CI, 4.5-33.6] vs. 3.8 months [95% CI, 1.4-7.8], 
P = .004), and the follow-up texture model for OS also dis-
tinguished longer- and shorter-term survivors (median OS, 
39.7 months vs. 9.8 months [95% CI, 0.1-19.5], P = .002). 
The follow-up texture model for PFS could not separate 
longer-term survivors (median PFS, 6.9 months [95% CI, 4.5-
17.1]) and shorter-term survivors (median PFS, 3.6 months 
[95% CI, 1.4-10.4] (P = .53) (Supplementary Figure S1).

Performance of the Clinical Models and the 
Combined Clinical-Texture Models for Predicting 
Outcome
The results of the univariable and the multivariable Cox re-
gression analyses are shown in Supplementary Tables S1 and 
S2, respectively. For OS, univariable analysis showed that both 
the baseline and follow-up texture models had significant as-
sociation with OS (HR, 2.05 [95% CI, 1.07-3.94] and 2.65 
[95% CI, 1.38-5.11] for baseline and follow-up texture model, 
respectively). IMDC risk category also showed significant as-
sociation with OS (HR, 5.64 [95% CI, 1.29-24.64] for poor 
category, with favorable category being the reference). None 
of the other clinicopathologic variables showed significant as-
sociation with OS (P ≥ .09). For PFS, on univariable analysis, 
the baseline texture model had significant association with PFS 
(HR, 1.84 [95% CI, 1.08-3.12]), whereas follow-up texture 
model did not demonstrate association with PFS (HR, 1.30 
[95% CI, 0.77-2.19]). IMDC risk category was not associ-
ated with PFS (HR, 2.12 [95% CI, 0.89-5.07] and 2.42 [95% 
CI, 0.96-9.08] for intermediate category and poor category, 

Table 2. Value of each texture parameter of baseline and follow-up CT.

Parameters High-risk group, OS Low-risk group, OS P High-risk group, PFS Low-risk group, PFS P 

Baseline

 � Mean 57.4 ± 19.8 80.5 ± 21.0 <.001 59.5 ± 21.4 74.9 ± 22.7 .01

 � SD 23.4 ± 7.2 21.1 ± 8.0 .13 23.7 ± 7.4 21.2 ± 7.7 .12

 � Entropy 4.3 ± 0.2 4.1 ± 0.2 .008 4.3 ± 0.2 4.2 ± 0.2 .007

 � Skewness −0.1 ± 0.3 −0.5 ± 0.5 <.001 0.0 ± 0.2 −0.5 ± 0.5 <.001

 � Kurtosis 0.2 ± 0.7 1.5 ± 1.1 <.001 0.0 ± 0.4 1.5 ± 1.0 <.001

Follow-up

 � Mean 66.9 ± 23.9 55.0 ± 14.9 .02 70.1 ± 22.5 51.6 ± 13.5 <.001

 � SD 22.1 ± 5.5 18.7 ± 5.3 .01 23.3 ± 5.3 17.4 ± 4.2 <.001

 � Entropy 4.3 ± 0.2 4.0 ± 0.3 <.001 4.4 ± 0.2 3.9 ± 0.3 <.001

 � Skewness −0.1 ± 0.3 −0.4 ± 0.3 <.001 −0.3 ± 0.4 −0.2 ± 0.4 .74

 � Kurtosis 0.3 ± 0.6 1.0 ± 0.7 <.001 0.6 ± 0.7 0.7 ± 0.7 .42

Data are mean ± SD.
Abbreviations: CT, computed tomography; SD, standard deviation.
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respectively, with favorable category being the reference). No 
other clinicopathologic variable (such as age, sex, or histologic 
subtype of RCC) was associated with PFS (P ≥ .06).

The clinical model for OS included only the IMDC risk 
category, which predicted OS with a C-index of 0.63 (95% 
CI, 0.55-0.71). The combined clinical-texture model for OS 
was constructed with the follow-up texture model and IMDC 
risk category, and showed the C-index of 0.70 (95% CI, 0.63-
0.78), which was significantly higher than that of the clinical 
model (P = .03). The clinical model for PFS included hist-
ology only, and predicted PFS with a C-index of 0.55 (95% 
CI, 0.50-0.61). The combined clinical-texture model for PFS 
included the baseline texture model, histology, and age, and 
showed significantly higher C-index (0.63; 95% CI, 0.51-
0.73) for predicting PFS than that of the clinical model (P = 
.04). Calibration plots demonstrated a good correlation be-
tween the predicted and observed probability of OS and PFS 
(Supplementary Figure S2).

Discussion
Our study demonstrated that CT texture analysis performed 
before and early during treatment with ICI-based therapies 

can help predict OS and PFS in patients with mRCC. The 
Lasso-Cox prediction texture models built from baseline CT 
scans could distinguish shorter-term and longer-term sur-
vivors in terms of both OS and PFS, and the follow-up texture 
models built from CT scans within 3 months after treatment 
initiation could predict shorter-term and longer-term overall 
survivors. The combined clinical-texture models outper-
formed the clinical model for both predicting OS and PFS.

The diverse clinical outcomes of patients with mRCC fol-
lowing ICI-based therapies37-43 necessitates development of 
reliable biomarkers to predict treatment outcome and to 
establish stratified approach in treatment planning for in-
dividual patients. Despite the need for reliable prognostic/
predictive biomarkers, identifying biomarkers for cancer im-
munotherapy is challenging because immunity is dynamic and 
adaptive, and molecular heterogeneity exists in the tumor it-
self and its microenvironment. We tried to address this unmet 
need for biomarkers to predict treatment response to ICI, 
and our results demonstrate that baseline CT texture analysis 
prior to systemic therapy may be a noninvasive prognostic 
biomarker for clinical outcomes.

Recently, the use of computer-assisted analyses has in-
creased for various imaging-based diagnostic and predictive 
tasks, expanding the role of imaging beyond the domain of 
traditional visual imaging analysis. Not only texture ana-
lysis, more advanced techniques such as radiomics and deep 
learning have also gained attention. However, radiomics and 
deep learning are highly labor-intensive, time consuming, and 
owing to their high-dimensionality, are easily challenged by 
issues of overfitting and reproducibility.44 Also, due to the 
complexity of radiomics features and nontransparency of 
deep learning neural network, their results are usually not in-
tuitive.45 We developed image-based predictive models using 
the five distinct histogram-based texture features, which were 
readily extracted using a commercially available software. In 
histogram-based texture analysis, the workflow of feature ex-
traction and model development is simple and reproducible, 
and the results are intuitive as the characteristic of each fea-
ture is understandable.

In this study, we used Lasso as a method to select fea-
tures for texture model development. Feature selection, the 

Figure 2. Heatmap showing the selection frequency of each texture feature for predicting OS and PFS. Data in each cell is the number of each texture 
feature to be selected divided by a total of number of training models with percentages. OS, overall survival; PFS, progression-free survival; SD, 
standard deviation.

Table 3. Performance of the clinical model and the combined clinical-
texture model for predicting OS and PFS.

Outcomes Clinical model Combined clinical- 
texture model 

Pa 

OS

 � AIC 286.4 278.5

 � C-index (95% CI) 0.63 (0.52-0.71) 0.70 (0.63-0.78) .03

PFS

 � AIC 416.7 409.8

 � C-index (95% CI) 0.55 (0.50-0.61) 0.63 (0.51-0.73) .04

aFrom comparing C-indexes of the clinical model and the combined 
clinical-texture model.
Abbreviations: AIC, Akaike information criteria; CI, confidence interval; 
OS, overall survival; PFS, progression-free survival.

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyac034#supplementary-data
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process of finding and selecting the most useful features in 
a data, is a crucial step of the model development process 
to minimize overfitting. There are several feature selection 
methods that use regularization technique, such as Lasso, 
ridge, and elastic net.46-48 Lasso selects features by penalizing 
the coefficients of “not-so-significant” features to become 
zero. Ridge, on the other hand, penalizes the features by re-
ducing their coefficients equally but not to zero. Elastic net 
uses both the Ridge and Lasso penalties. Lasso is effective in 
reducing the number of features and performs well when a 
few features are significant, while it is often unstable when 
the features are highly correlated, and it cannot select more 
features than the sample size before it saturates.49 In our 
study, to exclude redundant features and produce a parsimo-
nious model, we used Lasso.

Heterogeneity of tumor is a well-known feature of ma-
lignancy which may help predict tumor behavior and out-
comes.50 On imaging, tumor heterogeneity can be visualized 
by the coarseness and irregularity resulting from local spa-
tial variations in image brightness, which can be objectively 
and quantitatively assessed by texture analysis.14,15,25 In our 
study, the most commonly selected texture feature discrim-
inative of high-risk and low-risk groups was entropy, which 
was selected 100% in baseline texture models for predicting 
OS and PFS, 100% in follow-up texture model for predicting 
PFS, and 41.2% in baseline texture model for predicting PFS. 
Entropy is a statistical measure of randomness reflecting the 
non-uniformity of pixel intensity, and higher entropy rep-
resent increased tumor heterogeneity.14,25 Higher entropy 
has been reported to be associated with poor prognosis in 

Figure 3. Kaplan-Meier curves of patients stratified by the OS and PFS predicted by texture models. For OS (A, B), significant differences in patients’ 
survival outcomes were noted between the low-and high-risk groups stratified by texture models in the baseline texture model (A) (median OS, 60.1 
months vs. 17.0 months; P = .048) and follow-up texture model (B) (median OS, 40.3 months vs. 15.2 months; P = .008). For PFS (C, D), significant 
difference was noted in survival outcomes between the low- and high-risk groups in the baseline texture model (C, median PFS, 5.2 months vs. 2.8 
months; P = .003), but not in the follow-up texture model (D, median PFS, 5.0 months vs. 3.6 months; P = .25). OS, overall survival; PFS, progression-
free survival.
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various cancers including lung cancer, urothelial cancer, and 
RCC,15,20,51 which is consistent with our result. Kurtosis, a 
measure of peakedness and tailedness of a probability distri-
bution,14,25 was the second most commonly selected texture 
feature. Previous studies also showed that kurtosis is asso-
ciated with clinical outcome of patients with cancer, again 
implying tumor heterogeneity evaluated by texture analysis 
may be predictive of clinical outcome.15-19 There have been 
conflicting results on the direction of relationship between 
kurtosis and prognosis of patients with cancer; several 
studies showed that lower kurtosis were related with shorter 
OS,52,53 as in our study, but others reported higher kurtosis 
in patients with shorter OS and PFS.54,55 More studies are 
needed to further clarify the association between kurtosis 
and outcome.

Currently, IMDC risk category is the most widely accepted 
for clinical prognostic stratification in mRCC,32 which is con-
sistent with our results that the IMDC risk category was the 
single independent predictor for OS among all clinical vari-
ables. When combining the clinical variables and the texture 
model, both the texture model and IMDC risk category were 
predictors of OS, and what is more noteworthy is that our 
baseline texture model was one of the predictors of PFS while 

IMDC risk category was not. These results indicate that CT 
texture analysis may have comparative performance to the 
IMDC risk category, and the potential of CT texture ana-
lysis as a useful tool for predicting outcomes in patients with 
mRCC treated with ICI agents.

Our study has several limitations. First, the retrospective 
study design may have introduced selection bias. We only 
included patients who had baseline and first follow-up 
contrast-enhanced CT. Whether our predictive model is ap-
plicable in patients having non-enhanced CT scans is un-
known. Second, we only performed the analysis using up to 
five lesions per patient and up to two lesions per organ, and 
concerns may arise that this may not represent the charac-
teristics of all targetable lesions. However, this was done ac-
cording to RECIST 1.1 which also uses the same process for 
response assessment.21 Furthermore, the ROI was drawn by a 
single radiologist; however, high repeatability of texture ana-
lysis performed on single ROIs created by single radiologists 
has been previously demonstrated,56 and in this way, texture 
analysis can be easily implemented in clinical practice along 
with routine response evaluation where a single radiologist 
interprets the imaging study. Third, due to the small size of 
the study population, we could not validate our predictive 

Figure 4. Texture analysis using CT. Contrast-enhanced CT images of the abdomen performed before treatment initiation show (A) a metastatic mass 
in left adrenal gland (red mark) in patient A and (B) a metastatic mediastinal lymph node (red mark) in patient B. (C) Histogram analysis of the two 
lesions shows different shapes; higher degree of complexity is noted in patient A’s lesion (red line), reflecting higher entropy. Patient A progressed at 2 
months and died at 15 months. Patient B survived without progression for more than 40 months. Both the baseline OS texture model and the baseline 
PFS texture model correctly classified each patient as high-risk and low-risk group, respectively. CT, computed tomography; OS, overall survival; PFS, 
progression-free survival.
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model in an independent test dataset. We tried to address this 
by using the “leave-one-out” method which has been previ-
ously used.29-31 Still, our model needs to be further validated 
with larger, independent cohorts. Despite these limitations, 
our study indicates that texture analysis has a potential role 
in predicting outcomes in patients with mRCC treated with 
immunotherapy as shown in our previous study of patients 
with metastatic urothelial cancer.

Conclusion
The results of our study suggest that CT texture analysis per-
formed at baseline and early after treatment initiation allows 
for prediction of OS and PFS in patients with mRCC treated 
with ICI-based therapies. This may help address the unmet 
need for a noninvasive prognostic biomarker of treatment re-
sponse for immunotherapy.

Funding
None declared.

Conflict of Interest
Ziad Bakouny: Genentech/imCORE, Bristol-Myers 
Squibb (RF), UpToDate (H); Eliezer M. Van Allen: Tango 
Therapeutics, Genome Medical, Invitae, Enara Bio, Janssen, 
Manifold Bio, Monte Rosa (C/A), Novartis, BMS (RF), Tango 
Therapeutics, Genome Medical, Syapse, Enara Bio, Manifold 
Bio, Microsoft, Monte Rosa (OI), Roche/Genentech (travel 
reimbursement), Institutional patents filed on chromatin mu-
tations and immunotherapy response, and methods for clin-
ical interpretation; intermittent legal consulting on patents 
for Foaley & Hoag (Patents); Toni K. Choueiri: AstraZeneca, 
Aveo, Bayer, Bristol-Myers Squibb/ER Squibb and Sons LLC, 
Cerulean,Corvus, Eisai, EMD Serono, Exelixis, Foundation 
Medicine Inc., Genetech, GlaxoSmithKline, Heron 
Therapeutics, Infinity Pharma, Ipsen, Jansen Oncology, 
IQVIA, Lily, Merck, NCCN, NiKang, Novartis, Peloton, 
Pfizer, Prometheus Labs, Roche, Sanofi/Avantis, Surface 
Oncology, Pionyr, Tempest (C/A, H), Dana-Farber/Harvard 
Cancer Center Kidney SPORE (2P50CA101942-16) and 
Program 5P30CA006516-56, the Kohlberg Chair at Harvard 
Medical School and the Trust Family, Michael Brigham, 
and Loker Pinard Funds for Kidney Cancer Research at 
DFCI (RF); Atul B. Shinagare: Virtualscopics and Imaging 
Endpoints (C/A). The other authors indicated no financial 
relationships.

(C/A) Consulting/advisory relationship; (RF) Research funding; (E) 
Employment; (ET) Expert testimony; (H) Honoraria received; (OI) 
Ownership interests; (IP) Intellectual property rights/inventor/patent 
holder; (SAB) Scientific advisory board

Author Contributions
Conception/design: A.B.S. Provision of study material or 
patients: A.B.S. Collection and/or assembly of data: H.J.P. 
Data analysis and interpretation: H.J.P., L.Q., Z.B., A.B.S. 
Manuscript writing: H.J.P., L.Q., Z.B., K.M.K., E.M.V.A., 
T.K.C., A.B.S. Final approval of manuscript: H.J.P., L.Q., 
Z.B., K.M.K., E.M.V.A., T.K.C., A.B.S.

Data Availability
The data underlying this article will be shared on reasonable 
request to the corresponding author.

Supplementary Material
Supplementary material is available at The Oncologist online.

References
1.	 National Comprehensive Cancer Network. NCCN Clinical Prac-

tice Guidelines in Oncology: Kidney Cancer; 2020. Accessed July 
31, 2021. https://www.nccn.org/professionals/physician_gls/pdf/
kidney.pdf.

2.	 Choueiri TK, Kaelin WG. Targeting the HIF2–VEGF axis in renal 
cell carcinoma. Nat Med. 2020;26(10):1519-1530.

3.	 Pignon JC, Jegede O, Shukla SA, et al. irRECIST for the evaluation 
of candidate biomarkers of response to nivolumab in metastatic 
clear cell renal cell carcinoma: analysis of a phase ii prospective 
clinical trial. Clin Cancer Res. 2019;25(7):2174-2184.

4.	 Flaifel A, Xie W, Braun DA, et al. PD-L1 expression and clinical 
outcomes to cabozantinib, everolimus, and sunitinib in patients 
with metastatic renal cell carcinoma: analysis of the randomized 
clinical trials METEOR and CABOSUN. Clin Cancer Res. 
2019;25(20):6080-6088.

5.	 Miao D, Margolis CA, Gao W, et al. Genomic correlates of response 
to immune checkpoint therapies in clear cell renal cell carcinoma. 
Science. 2018:359(6377):801-806.

6.	 Braun DA, Ishii Y, Walsh AM, et al. Clinical validation of PBRM1 
alterations as a marker of immune checkpoint inhibitor response in 
renal cell carcinoma. JAMA Oncol. 2019;5(11):1631-1633.

7.	 Braun DA, Hou Y, Bakouny Z, et al. Interplay of somatic alterations 
and immune infiltration modulates response to PD-1 blockade in ad-
vanced clear cell renal cell carcinoma. Nat Med. 2020;26(6):909-918.

8.	 Motzer RJ, Robbins PB, Powles T, et al. Avelumab plus axitinib 
versus sunitinib in advanced renal cell carcinoma: biomarker 
analysis of the phase 3 JAVELIN Renal 101 trial. Nat Med. 
2020;26(11):1733-1741.

9.	 McDermott DF, Huseni MA, Atkins MB, et al. Clinical activity and 
molecular correlates of response to atezolizumab alone or in com-
bination with bevacizumab versus sunitinib in renal cell carcinoma. 
Nat Med. 2018;24(6):749-757.

10.	Motzer RJ, Banchereau R, Hamidi H, et al. Molecular subsets in 
renal cancer determine outcome to checkpoint and angiogenesis 
blockade. Cancer Cell. 2020;38(6):803-817.e804.

11.	Bakouny Z, Braun DA, Shukla SA, et al. Integrative molecular char-
acterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat 
Commun. 2021;1(1):808.

12.	Tannir NM, Signoretti S, Choueiri TK, et al. Efficacy and safety of 
nivolumab plus ipilimumab versus sunitinib in first-line treatment 
of patients with advanced sarcomatoid renal cell carcinoma. Clin 
Cancer Res. 2021;27(1):78-86.

13.	Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of 
breast tumor heterogeneity. Cancer Cell. 2007;11(3):259-273.

14.	Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture anal-
ysis: definitions, applications, biologic correlates, and challenges. 
Radiographics. 2017;37(5):1483-1503.

15.	Goh V, Ganeshan B, Nathan P, et al. Assessment of response to ty-
rosine kinase inhibitors in metastatic renal cell cancer: CT texture 
as a predictive biomarker. Radiology. 2011;261(1):165-171.

16.	O’Connor JP, Rose CJ, Waterton JC, et al. Imaging intratumor het-
erogeneity: role in therapy response, resistance, and clinical out-
come. Clin Cancer Res. 2015;21(2):249-257.

17.	Sasaguri K, Takahashi N. CT and MR imaging for solid renal mass 
characterization. Eur J Radiol. 2018;99(1):40-54.

18.	Ladwa R, Roberts KE, O’Byrne KJ, et al. Quantitative CT tex-
ture assessment of tumour heterogeneity to predict those 

https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf
https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf


The Oncologist, 2022, Vol. 27, No. 5 397

patients with non-small cell lung cancer most likely to benefit 
from immune checkpoint inhibitors. J Clin Oncol. 2018;36(15): 
e21027-e21027.

19.	Durot C, Mule S, Soyer P, et al. Metastatic melanoma: pretreatment 
contrast-enhanced CT texture parameters as predictive biomarkers 
of survival in patients treated with pembrolizumab. Eur Radiol. 
2019;29(6):3183-3191.

20.	Alessandrino F, Gujrathi R, Nassar AH, et al. Predictive role of 
computed tomography texture analysis in patients with met-
astatic urothelial cancer treated with programmed death-1 
and programmed death-ligand 1 inhibitors. Eur Urol Oncol. 
2020;3(5):680-686.

21.	Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evalu-
ation criteria in solid tumours: revised RECIST guideline (version 
1.1). Eur J Cancer. 2009;45(2):228-247.

22.	Heng DY, Xie W, Regan MM, et al. Prognostic factors for overall 
survival in patients with metastatic renal cell carcinoma treated 
with vascular endothelial growth factor-targeted agents: results 
from a large, multicenter study. J Clin Oncol. 2009;27(34): 
5794-5799.

23.	Heng DY, Xie W, Regan MM, et al. External validation and compar-
ison with other models of the International Metastatic Renal-Cell 
Carcinoma Database Consortium prognostic model: a population-
based study. Lancet Oncol. 2013;14(2):141-148.

24.	U.S. Food and Drug Administration. Clinical Trial Endpoints for 
the Approval of Cancer Drugs and Biologics. Accessed July 31, 
2021. https://www.fda.gov/regulatory-information/search-fda-
guidance-documents/clinical-trial-endpoints-approval-cancer-
drugs-and-biologics.

25.	Ganeshan B, Miles KA. Quantifying tumour heterogeneity with 
CT. Cancer Imaging. 2013;13(1):140-149.

26.	Simon N, Friedman J, Hastie T, et al. Regularization paths for cox’s 
proportional hazards model via coordinate descent. J Stat Softw. 
2011;39(5):1-13.

27.	Gelfand AE. Model determination using sampling-based methods. 
In: Gilks WR, Richardson S, Spiegelhalter DJ eds. Markov Chain 
Monte Carlo in Practice. CRC Press; 1996:145-161.

28.	Efron B. Estimating the error rate of a prediction rule—improve-
ment on cross-validation. J Am Stat Assoc. 1983;78(382):316-331.

29.	Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung 
cancer prognosis by fully automated microscopic pathology image 
features. Nat Commun. 2016;7(1):12474. https://doi.org/10.1038/
ncomms12474.

30.	O’Connell PJ, Zhang WJ, Menon MC, et al. Biopsy transcriptome 
expression profiling to identify kidney transplants at risk 
of chronic injury: a multicentre, prospective study. Lancet. 
2016;388(10048):983-993.

31.	Michiels S, Le Maitre A, Buyse M, et al. Surrogate endpoints 
for overall survival in locally advanced head and neck cancer: 
meta-analyses of individual patient data. Lancet Oncol. 
2009;10(4):341-350.

32.	Ko JJ, Xie W, Kroeger N, et al. The International Metastatic Renal 
Cell Carcinoma Database Consortium model as a prognostic tool 
in patients with metastatic renal cell carcinoma previously treated 
with first-line targeted therapy: a population-based study. Lancet 
Oncol. 2015;16(3):293-300.

33.	Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting 
of a multivariable prediction model for individual prognosis or di-
agnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 
2015;162(1):W1-73.

34.	Harrell FE Jr., Lee KL, Mark DB. Multivariable prognostic 
models: issues in developing models, evaluating assumptions 
and adequacy, and measuring and reducing errors. Stat Med. 
1996;15(4):361-387.

35.	Kang L, Chen W, Petrick NA, et al. Comparing two correlated C 
indices with right-censored survival outcome: a one-shot nonpara-
metric approach. Stat Med. 2015;34(4):685-703.

36.	Crowson CS, Atkinson EJ, Therneau TM. Assessing calibration 
of prognostic risk scores. Stat Methods Med Res. 2016;25(4): 
1692-1706.

37.	Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus 
everolimus in advanced renal-cell carcinoma. N Engl J Med. 
2015;373(19):1803-1813.

38.	Hwang I, Park I, Yoon SK, et al. Hyperprogressive disease in patients 
with urothelial carcinoma or renal cell carcinoma treated with 
PD-1/PD-L1 inhibitors. Clin Genitourin Cancer. 2020;18(2):e122
-e133.

39.	Refae S, Gal J, Brest P, et al. Hyperprogression under immune 
checkpoint inhibitor: a potential role for germinal immunogenetics. 
Sci Rep. 2020;10(1):3565.

40.	Motzer RJ, Rini BI, McDermott DF, et al. Nivolumab plus 
ipilimumab versus sunitinib in first-line treatment for advanced 
renal cell carcinoma: extended follow-up of efficacy and safety 
results from a randomised, controlled, phase 3 trial. Lancet Oncol. 
2019;20(10):1370-1385.

41.	Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib 
versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 
2019;380(12):1103-1115.

42.	Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib 
versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 
2019;380(12):1116-1127.

43.	Choueiri TK, Powles T, Burotto M, et al. Nivolumab plus 
Cabozantinib versus Sunitinib for advanced renal-cell carcinoma. 
N Engl J Med. 2021;384(9):829-841.

44.	Park JE, Park SY, Kim HJ, et al. Reproducibility and generaliza-
bility in radiomics modeling: possible strategies in radiologic and 
statistical perspectives. Korean J Radiol. 2019;20(7):1124-1137.

45.	Buhrmester V, Münch D, Arens M. Analysis of explainers of black 
box deep neural networks for computer vision: a survey. arXiv: 
1911.12116v1 [cs.AI]. 2019. Accessed June 03, 2021. https://arxiv.
org/abs/1911.12116.

46.	Zou H, Hastie T. Regularization and variable selection via the 
elastic net. J R Statist Soc B. 2005;67(2):301-320.

47.	Ogutu JO, Schulz-Streeck T, Piepho HP. Genomic selection using 
regularized linear regression models: ridge regression, lasso, elastic 
net and their extensions. BMC Proc. 2012;6(suppl 2):S10.

48.	Friedman J, Hastie T, Tibshirani R. Regularization paths for 
generalized linear models via coordinate descent. J Stat Softw. 
2010;33(1):1-22.

49.	Zou H. The adaptive lasso and its oracle properties. J Am Stat 
Assoc. 2006;101(476):1418-1429.

50.	Nelson DA, Tan TT, Rabson AB, et al. Hypoxia and defective ap-
optosis drive genomic instability and tumorigenesis. Genes Dev. 
2004;18(17):2095-2107.

51.	Ahn SY, Park CM, Park SJ, et al. Prognostic value of computed 
tomography texture features in non-small cell lung cancers treated 
with definitive concomitant chemoradiotherapy. Invest Radiol. 
2015;50(10):719-725.

52.	Ng F, Ganeshan B, Kozarski R, et al. Assessment of primary colo-
rectal cancer heterogeneity by using whole-tumor texture analysis: 
contrast-enhanced CT texture as a biomarker of 5-year survival. 
Radiology. 2013;266(1):177-184.

53.	Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture 
analysis differentiates K-ras mutation from pan-wildtype NSCLC 
and is prognostic. PLoS One. 2014;9(7):e100244.

54.	Sandrasegaran K, Lin Y, Asare-Sawiri M, et al. CT texture analysis 
of pancreatic cancer. Eur Radiol. 2019;29(3):1067-1073.

55.	Haider MA, Vosough A, Khalvati F, et al. CT texture analysis: 
a potential tool for prediction of survival in patients with meta-
static clear cell carcinoma treated with sunitinib. Cancer Imaging. 
2017;17(1):4.

56.	Xu F, Ma X, Wang Y, et al. Ct texture analysis can be a potential 
tool to differentiate gastrointestinal stromal tumors without kit 
exon 11 mutation. Eur J Radiol. 2018;107(1):90-97.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-endpoints-approval-cancer-drugs-and-biologics
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-endpoints-approval-cancer-drugs-and-biologics
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-endpoints-approval-cancer-drugs-and-biologics
https://doi.org/10.1038/ncomms12474
https://doi.org/10.1038/ncomms12474
https://arxiv.org/abs/1911.12116
https://arxiv.org/abs/1911.12116

