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COMMENTARY

A Perfect Marriage: Molecular Genetics Ties the Knot 
with Electrophysiology in Studies of Visual Transduction

M. Carter Cornwall and Petri Ala-Laurila

Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118

In recent years, the combination of classical electro-

physiological techniques and targeted gene manipula-

tions have provided for novel, powerful ways to address 

key questions in visual transduction. Electrophysiologi-

cal techniques allow precise characterization of the 

electrical and chemical events that underlie phototrans-

duction while gene manipulations allow specifi c modifi -

cations of the molecules of the transduction cascade. 

A particularly elegant example of how these techniques 

can complement one another is reported in the article 

by Sakurai et al. on p. 21 of this issue. To investigate 

the contribution of the different and unique properties 

of rod and cone visual pigments, Sakurai et al. gener-

ated mice in which the mouse green cone opsin gene 

was “knocked into” the rhodopsin gene locus, so that 

the mouse green cone pigment was expressed in rods, 

either alone (mG/mG) or coexpressed with rhodopsin 

(Rh/mG). These manipulations left the other partici-

pants in the rod transduction cascade unchanged, al-

lowing evaluation of the distinct contributions of each 

of the two visual pigments to the overall physiological 

properties of the photoreceptor.

Vertebrate visual transduction is perhaps the most 

studied of all of the G protein–coupled receptor signal-

ing cascades. A host of physiological and biochemical 

experiments have been performed over the past 30 

years to investigate the details of this cascade. The ap-

plication of methods in molecular genetics has comple-

mented these classical approaches, and has allowed 

mechanistic questions that were beyond the reach of 

the classical methods to be addressed.

To appreciate the utility of the molecular genetic ap-

proach in dissecting the contributions of the different 

actors in the visual transduction cascade it is useful to 

consider a schematic of the process (Fig. 1).

Transduction starts with the absorption of light quanta 

by visual pigments located in membrane structures within 

the outer segments of rod and cone photoreceptors. 

Both rod and cone pigments are opsins, members of the 

superfamily of seven transmembrane helix G protein–

coupled receptors (for review see Nathans, 1987). The 

ligand and chromophore, 11-cis retinal (in land-based 

vertebrates) or 11-cis-3,4-dehydroretinal (in many aquatic 

vertebrates), is covalently bound to opsin via a proton-

ated Schiff base bond to the ε-amino group of a con-

served lysine in the seventh transmembrane segment of 

opsin. Photon absorption triggers a rapid photoisom-

erization of the chromophore from the 11-cis to the 

all-trans form to produce an activated form, Meta II 

(Hubbard and Kropf, 1958). Meta II then catalyzes 

the exchange of GDP for GTP on the α-subunit of the 

G-protein transducin to produce a second activated 

form G*. Each activated transducin can then bind to the 

γ-subunit of a phosphodiesterase to produce G*-PDE. 

This complex catalyzes the enzymatic destruction of 

cGMP, which results in the closure of cation channels in 

the photoreceptor outer segment membrane. Channel 

closure causes membrane hyperpolarization and a de-

crease of transmitter release by synaptic processes con-

nected to secondary retinal neurons (Koutalos and Yau, 

1993; Yau, 1994; Ebrey and Koutalos, 2001; Fain et al., 

2001; Burns and Arshavsky, 2005).

Just as important as the activation is the deactivation 

of the excited forms of Meta II, transducin, and PDE 

(McBee et al., 2001; Lamb and Pugh, 2004). Without 

timely termination of each of these steps, it would be 

impossible for the retina to sense the complex and rap-

idly changing visual information generated by images 

moving across the retina. Deactivation starts with the 

quenching of activated Meta II, which in rods in intact 

retina has a spectroscopically measured lifetime on the 

order of minutes to tens of minutes (Baumann, 1972; 

Brin and Ripps, 1977; Kibelbek et al., 1991). However, 

physiological measurements show that its effective life-

time is no longer than a few seconds and possibly much 

shorter (Pepperberg et al., 1992; Lyubarsky and Pugh, 

1996; Matthews, 1996; Murnick and Lamb, 1996). This 

short effective lifetime of Meta II in rods is due to the 

rapid phosphorylation of Meta II by rhodopsin kinase 

(GRK1) and subsequent binding to arrestin (Arr1), a 

capping protein that effectively terminates activation 

(Hofmann et al., 1992; Arnis et al., 1994).

The decay of Meta II in cones is considerably more 

rapid than in rods (Imai et al., 1995, 1997; Ala-Laurila 

et al., 2006), but the factors that regulate the lifetime of 

Meta II in cones, and its effects on photoresponses, are 

less clear. In cone photoreceptors, Meta II is phosphor-

ylated by two different but related kinases (GRK1 and Correspondence to M. Carter Cornwall: cornwall@bu.edu
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GRK7) (Weiss et al., 2001). That phosphorylation of the 

cone pigment is important physiologically was demon-

strated by measurements of photoresponses of S- and 

M-cone photoreceptors in Nrl−/−/Grk1−/− mice, which 

showed that the recovery of fl ash responses was consid-

erably slowed compared with responses measured in 

wild-type mice (Nikonov et al., 2005).

Another important step is the deactivation of acti-

vated transducin. This occurs as the GTP bound to the 

activated transducin-phosphodiesterase complex (G*-E* 

complex) is hydrolyzed to GDP. Intrinsic GTPase activity 

is accelerated by transducin’s binding to a GTPase acti-

vating protein complex (GAP) that includes a regulator 

of protein signaling, RGS9, together with its obligatory 

subunit, Gβ5 (for review see Burns and Arshavsky, 2005). 

In rods, RGS9 regulated GTPase deactivation of the G*-E* 

complex is rate limiting for inactivation (Krispel et al., 

2006). RGS9 is expressed at high levels in bovine cone 

photoreceptors (Cowan et al., 1998), and it is required 

for normal inactivation of mouse cone phototransduction 

(Lyubarsky et al., 2001), but it is not yet known whether 

this step is rate limiting for the recovery of cones.

The light-activated hydrolysis of cytosolic cGMP by 

the activated G*-PDE* complex results in a closure 

of cGMP-gated ion channels leading to a decreased 

Na+ and Ca2+ infl ux, which in conjunction with the 

continued Ca2+ effl ux from the outer segment via the 

Na+-Ca2+ antiporter, causes cytosolic [Ca2+] to decrease. 

This decrease triggers a number of important adaptive 

changes (for review see Fain et al., 2001), including an 

increase in the guanylyl cyclase rate resulting in in-

creased cyclic GMP synthesis, an increase in phosphory-

lation of rhodopsin due to a decrease in calcium-bound 

recoverin, and an increase in the sensitivity of the cGMP 

channel via the calcium binding protein, calmodulin. 

All of these mechanisms appear to be important for reg-

ulating response recovery in rods as well as cones (for 

review see Burns and Arshavsky, 2005).

As the fi eld of molecular genetics has expanded, the 

number of tools that can be used to investigate the spe-

cifi c elements and mechanisms in this complex scheme 

also has expanded. As applied together with electro-

physiological investigations, the methods that have been 

used can be divided into distinct classes. One approach 

is to knock out a gene responsible for a product that 

is important to the function of the cascade, but not criti-

cal to its overall operation. One can then test for perturba-

tions in physiological responses that result. For example, 

knockouts of the genes for rhodopsin kinase (GRK1) 

(Chen et al., 1999), arrestin (Xu et al., 1997), and RGS9 

(Chen et al., 2000) have been expressed in mouse ret-

ina and the physiological effects measured. In all cases, 

responses were slower to recover, as expected. In knock-

out experiments of a slightly different type, a hemizy-

gous knockout of rhodopsin was used to decrease the 

concentration of rhodopsin in rod membranes in order 

to demonstrate that membrane protein diffusion sets 

the speed of rod phototransduction (Calvert et al., 2001). 

An additional use of the knockout tech nology was 

that of knocking out rod transducin in mice in order to 

isolate cone photoreceptors for electrical recording 

(Nikonov et al., 2006). Without rod transducin, rods were 

no longer functional, thus isolating cone photorecep-

tors for electrophysiological studies. Similarly, knock-

outs of most of the visual retinoid cycle proteins have 

been created, including RDH11, IRBP, LRAT, RPE65, 

and RDH2, though a summary of the effects is beyond 

the scope of this commentary.

Although the knockout approach has been very effec-

tive in addressing the physiological roles of many players 

in the visual transduction cascade, its utility is limited in 

the study of the central players, such as the visual pig-

ment or the G protein. Elimination of these proteins re-

sults in complete elimination of the light response. Here, 

the gene knockin approach is an effective alternative. 

This method has the advantage that the wild-type pro-

tein can be totally eliminated by substitution of another 

form of the same protein or sometimes to good effect, 

the wild type and another form of the protein can be co-

expressed and studied within the same cells. The report 

by Sakurai et al. is an outstanding example of the power 

of this latter approach. This study combines single-cell 

recording and membrane noise analysis with molecular 

biological techniques, to which the authors added an ar-

senal of other biochemical techniques—including mea-

surements of the relative and absolute expression levels 

of the pigment, spectroscopy of the expressed visual pig-

ments, histology of the mutant mouse retinae, biochemi-

cal measurements of the levels of expression of other 

transduction proteins (α-transducin, phosphodiesterase 

[α and β], and rhodopsin kinase [GRK1]), and binding 

assays to assess the levels of transducin activation. The 

concerted use of all of these techniques sets a new bench-

mark for multidisciplinary studies to examine retinal 

function at the cellular level.

There are two principal conclusions from the experi-

ments in which the green cone pigment was substituted 

for rhodopsin in rods. The fi rst is that the amplitude of 

the single-photon response (the reduction in the recep-

tor current produced by the absorption of a single pho-

ton by the green cone pigment) is one third of that 

produced by a photon captured by rhodopsin. The sec-

ond is that the rate of thermal activation of the mouse 

green pigment in situ in darkness is 1.7 × 10−7 s−1. This 

rate is 	860-fold higher than that of rhodopsin. Both of 

these differences can be attributed solely to the visual 

pigment, as all other players in the cascade were un-

perturbed in their expression. These conclusions were 

reached on the basis of two experimental variants. In 

the fi rst, physiological and biochemical parameters 

were compared between wild-type rods and rods that 

expressed only mouse green pigment (mG/mG). The 
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second model used a heterozygous expression of a wild 

type–like mutant rhodopsin, E122Q, and mouse green 

pigment (RhEQ/mG) in the same rods. E122Q rhodopsin 

previously has been shown by members of this same 

group to have characteristics similar to wild-type rho-

dopsin (similar amplitude of the quantal response and 

similar pigment stability), but the absorption spectrum 

is shifted to the blue by 	23 nm compared with mouse 

green (Imai et al., 2007). One caveat is that the expres-

sion level of mouse green opsin in rods is quite low, only 

	11% of rhodopsin in wild-type retina. This low expres-

sion level may refl ect that the promoter region in the 

construct was unchanged, and that the mechanisms in-

volved in traffi cking cone opsin to the nascent discs is 

not fully compatible with mouse rods. The authors con-

trolled for complications due to this low level of expres-

sion by examining expression in Rh/mG heterozygotes. 

Thus, incorporation of both pigments into the same 

rod allowed the comparison of response properties and 

noise characteristics with all other participants in the trans-

duction cascade unchanged. The conclusions reached 

using each approach were identical.

Sakurai and coworkers attributed the differences in 

single-photon amplitude to differences in the intrinsic 

properties of rhodopsin and mouse green visual pigments. 

They hypothesize that these intrinsic differences may 

arise from differences in the temperature-dependent 

equilibrium between Meta I and Meta II in rhodopsin 

and mouse green pigment. Alternatively, these differ-

ences may arise from differences in the decay rate of 

Meta II. Their result is surprising in the light of earlier 

results of Kefalov et al. (2003), who reported that the 

single-photon response generated by human or salaman-

der red cone pigment was similar to that of human rho-

dopsin, when expressed in the same amphibian rods. 

The reason(s) for this difference is not understood.

Figure 1. The phototransduction cascade and the 
visual cycle. The rod outer segment (ROS) is shaded 
in pink; the retinal pigment epithelium (RPE) in 
green. Enzymes are shaded in yellow. Upon photon 
absorption by rhodopsin, the 11-cis retinal chromo-
phore is isomerized to all-trans retinal to form acti-
vated metarhodopsin II (Meta II). Meta II induces 
the exchange of GDP for GTP on the α-subunit of 
the G-protein transducin (Tα-GTP), and the separa-
tion of the α-subunit from the β and γ subunits. The 
GTP-bound α-subunit activates phosphodiesterase 
(PDE to PDE*), which causes hydrolysis of cGMP 
to 5′GMP. Reduced cytosolic [cGMP] decreases 
the cGMP binding to cGMP-gated cation channels 
and causes their closure, resulting in membrane 
hyperpolarization. Deactivation is a multistep process. 
Meta II is deactivated by its phosphorylation by rho-
dopsin kinase (RK) on at least three residues of the 
opsin C terminus (3P), and then is capped by the 
protein arrestin (ARR). The covalent bond between 
retinal and opsin is hydrolyzed (Meta II decay). Ret-
inal is released from the opsin binding pocket 
and is reduced to retinol by retinol dehydrogenase 
(RDH1) and its cofactor, NADPH. Free opsin is de-
phosphorylated and the arrestin removed. All-trans 
retinol leaves the outer segment, is bound to an ex-
tracellular binding protein, IRBP, and is transferred 
to the RPE. In the RPE, all-trans retinol is esterifi ed 
by lecithin retinol acyl transferase (LRAT) to all-
trans retinyl ester. It is converted by an isomerohy-
drolase through a scaffolding complex involving 
RPE65 to 11-cis retinol. It then is either stored in 
the RPE or oxidized to 11-cis retinal by a second oxi-
doreductase (RDH2). The 11-cis retinal is delivered 
back to the photoreceptor outer segment where it 
condenses with opsin to produce rhodopsin. Cal-
cium feedback plays an important role in the photo-
receptor adaptation. Ca2+ has three major targets 
(red dotted lines): (1) it binds to GCAP and inhibits 

cGMP production by guanylyl cyclase (GC), (2) it stimulates the binding of calmodulin (CAM) to the cGMP-gated channels, which re-
duces the affi nity of the channels for cGMP, and (3) it binds to recoverin (REC) and inhibits RK activity. Light-induced closure of 
cGMP-gated channels reduces infl ux of Ca2+ and Na+ into the rod outer segment. Ca2+ normally is exchanged from the cell through a 
Na+/Ca2+-K+ exchanger.
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The second important result is that the rod pigment 

is >800-fold more stable than the cone pigment, and, 

as such, generates less photon-like quantal noise in 

darkness. This transduction noise, also known as “dark 

light,” is due to the cone pigment activating the cascade 

just as real light does (Barlow, 1956) and produces de-

sensitization of the cone, much as does background 

light in the rod. Thus, the reliability of signaling by 

photoreceptors in dim light is a function not only of the 

size of the single quantum response, but also of the noise 

generated by false positive signals. The unique features 

of the visual pigments that stabilize rhodopsin com-

pared with cone opsin and that cause single quantum 

responses triggered by rhodopsin to be larger than 

cone opsin–triggered responses thus underlie the high 

signal-to-noise ratio in wild-type rods. These features 

are critical factors in setting the limits of signal reliability 

in rods and cones. Thus, these two key factors are fun-

damentally important in setting the detection limit of 

each cell type.
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