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Abstract: Recent years have witnessed a rapidly expanding use of artificial intelligence and machine 
learning in medical imaging. Generative adversarial networks (GANs) are techniques to synthesize images 
based on artificial neural networks and deep learning. In addition to the flexibility and versatility inherent in 
deep learning on which the GANs are based, the potential problem-solving ability of the GANs has attracted 
attention and is being vigorously studied in the medical and molecular imaging fields. Here this narrative 
review provides a comprehensive overview for GANs and discuss their usefulness in medical and molecular 
imaging on the following topics: (I) data augmentation to increase training data for AI-based computer-
aided diagnosis as a solution for the data-hungry nature of such training sets; (II) modality conversion to 
complement the shortcomings of a single modality that reflects certain physical measurement principles, 
such as from magnetic resonance (MR) to computed tomography (CT) images or vice versa; (III) de-noising 
to realize less injection and/or radiation dose for nuclear medicine and CT; (IV) image reconstruction for 
shortening MR acquisition time while maintaining high image quality; (V) super-resolution to produce 
a high-resolution image from low-resolution one; (VI) domain adaptation which utilizes knowledge such 
as supervised labels and annotations from a source domain to the target domain with no or insufficient 
knowledge; and (VII) image generation with disease severity and radiogenomics. GANs are promising tools 
for medical and molecular imaging. The progress of model architectures and their applications should 
continue to be noteworthy.
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Introduction

Recent years have witnessed the rapidly expanding use of 
artificial intelligence (AI) and machine learning (ML) in 
medical imaging. However, as a “data-hungry” technology, 
large datasets are indispensable to meet the increasing 
demand of high-quality images (1) as training sets, preferably 
addressing all aspects of radiology, including interventional, 
neuroradiology, and molecular imaging. As such, extensive 
imaging datasets must be pooled from various centers, 
reviewed, and appropriately annotated by experts. Given the 
increasing number of different imaging techniques applied 
to a wide variety of disease conditions, new approaches are 
needed to overcome the hurdles of traditional data collection 
and to provide an appropriate number of scans that can be 
utilized for training of AI methods. 

In this regard, Goodfellow and coworkers have introduced 
generative adversarial networks (GANs), which generate 
synthetic data with similar characteristics as their “real” 
counterparts (2). Such artificially created images can be 
added to existing datasets and may provide a larger number 
of images to enhance the variety within a dataset and, 
ultimately, to improve ML algorithms. Further applications 
of GANs in medical imaging include augmenting datasets 
of patients afflicted with orphan diseases (3) or to duplicate 
rare presentations of more common diseases that would 
not be encountered to the extent that an effective ML 
algorithm could be trained from real images (4-8). Moreover, 
in laboratory animal research, replacement is seen as the 
ultimate goal to further reduce the use of live animals (9) 
enabling GANs to open doors for a practical implementation 
potentially simulating disease onset or progression. 

Given the increasing number of applications for GANs 
in medical imaging, this narrative review aimed to provide 
a comprehensive overview of established methods for 
estimating generative models via an adversarial process 
(including data augmentation, domain translation, de-
noising, super-resolution (SR), domain adaptation, and 
image generation with disease severity and radiogenomics) 
and to highlight future aspects in the highly innovative 
and rapidly developing field of AI. GANs for natural 
images has been proposed and its usefulness has been 
validated. However, to the best of our knowledge, there 
are no published review papers on GANs for medical and 
molecular imaging. 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/atm-20-6325).

General techniques of deep learning with GANs

Convolutional neural network (CNN)

Based on Huber-Wiesel’s hierarchical hypothesis of visual 
information processing, a CNN consists of convolutional 
layers that extract the patterns in images and pooling layers 
to provide shift-invariance of the patterns. In a multi-
layered CNN, local features can be extracted from shallow 
layers and global features from deep layers (10). 

GAN and DCGAN

Proposed by Goodfellow et al. (2), GANs consist of two 
sub-networks, a generator and a discriminator. The 
generator takes a latent (random) vector as an input and 
generates an image that is very similar to the training data 
(real image). The discriminator takes the generated or real 
image as an input and determines whether the input is 
fake or real. By training the generator and discriminator to 
compete with each other, the GAN will be able to generate 
images that more closely resemble real data. GAN has 
become a remarkable technology because of its success in 
generating clearer images than the conventional method of 
variational auto-encoding.

Deep convolutional GAN (DCGAN) is a model that 
applies a CNN to a GAN to improve the quality of the 
generated images (11). In order to improve authenticity 
judgment, the discriminator uses convolution to extract 
features from the image. For discriminators, convolution 
technique to extract features of the image and the generator 
has a high resolution to generate the image, while for 
generators, a type of transposed convolution is employed 
for generating high-resolution images. 

Conditional GAN (cGAN)

Aiming at generating images of a certain modality, disease 
condition, or specific region of the human body by 
exclusively using typical GANs or DCGANs, a separate 
network model for each condition has to be established and 
appropriately trained. The generator in the cGAN takes 
not only latent vectors but also conditional labels as input 
and thus, the cGAN is capable of learning the relationship 
between real and fake (12). As the training proceeds, the 
generator can create an image with a given conditional 
label corresponding to situations such as brain magnetic 
resonance images (MRI) after stroke, computed tomography 
(CT) images displaying lung nodules, or oncologic positron 
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emission tomography (PET) images (3,13,14).

Pix2Pix

As an image-to-image translation, Pix2Pix is a GAN that uses 
images instead of labeled features, such as specific disease 
conditions (15). Using real image pairs and pairs of real and 
generated images, Pix2Pix learns the relationships between 
images and such a pair-wise learning approach allows the 
conversion of an image from one domain (modality) to 
another. For instance, in medical imaging, the Pix2Pix is 
utilized to convert MRI to CT images for the same subject 
and region (16).

CycleGAN

The Pix2Pix method requires a large amount of paired data 
to perform pair-wise learning. Paired training data, however, 
will not always be available and thus, recent developments 
of GANs allow for the translation of an image from a source 
domain to a target domain, even if paired datasets are not 
available (17).

For the two domain datasets A and B, CycleGAN 
provides two generators and two discriminators, that is, 
generators that converts an image of domain A (or B) into 
domain B (or A), and discriminators that determine whether 
an image for domain B (or A) is real or generated one from 
domain A (or B). For instance, CycleGAN could generate 
a CT image from an MR image of another subject without 
the need of additional imaging.

Progressive growing GAN (PGGAN)

As a major drawback, high-resolution images cannot be 
generated by using GANs and DCGANs. PGGANs, 
however, start with generation of low resolution images 
(overall features), and gradually increase the resolution of 
the generated images (detailed features) (18). In addition 
to continuous training to reach higher resolution of the 
duplicated images, the so-called minibatch standard 
deviation was also developed to guarantee diversity of 
generated images.

Super-resolution GAN (SRGAN)

SRGAN enables SR processing, generating high-resolution 
images, also described as photo-realistic natural images 
for 4x upscaling factors (19). Such a deep residual network 

allows for recovery of photo-realistic textures, even from 
heavily down sampled images (19). 

GANs in medical and molecular imaging

PubMed, IEEE, Google Scholar and arXiv were searched 
for relevant literature from January 2017 to May 2020 
using with the following keywords: “artificial intelligence”, 
“neural network”, “deep learning”, “generative adversarial 
networks”, “GAN”, “GANs”, “medical image”, “medical 
imaging”, “molecular imaging”, “nuclear medicine”, 
“MRI”,  “CT”, “PET”, “SPECT”, “X-ray”,  “data 
augmentation”, “modality conversion”, “de-noising”, 
“image reconstruction”, “super-resolution”, “domain 
adaptation”, “image generation”. The selected language 
is English. Therefore, database and language biases are 
limitations of this review articles. Although literatures 
from arXiv were preprints, those were cited in order to 
keep up with the lasted trends of GANs. Thirty-eight 
literature was reviewed in the following sections. Twenty-
one of them reported that publicly available datasets were 
utilized as training data.

Image synthesis

Some of the aforementioned techniques have already been 
applied to different imaging modalities and diseases. Given 
the relatively static and invariable anatomy of the brain 
compared to other body parts such as the lower abdomen, 
the vast majority of these studies have been applied to brain 
disorders. 

2D-sectional images—GANs applied to MRI

First, data augmentation techniques have been proposed 
for 2D sectional images derived from MRI. For instance, 
a DCGAN was utilized to synthesize artificial MR images 
using T1W images of healthy subjects and patients 
afflicted with recent stroke. The likelihood that images 
were DCGAN-created versus acquired was evaluated by 
a mix of neuroradiologists and radiologists from other 
subspecialties in a binary fashion to identify real vs. created 
images. In this quality control study, DCGAN-created 
brain MR images were able to convince neuroradiologists 
that they were viewing true images instead of artificial 
brain MR images. Thus, DCGAN-derived brain MRI 
may be nearing readiness to be implemented for synthetic 
data augmentation for data-hungry technologies, such 
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as supervised ML, which in turn can pave the way to 
incorporate these techniques in even highly complex 
medical imaging cases (3). 

In a separate study, a GAN-based network model was 
trained with brain MR images from T1-weighted (T1), post-
contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 
fluid attenuated inversion recovery (FLAIR) sequences (20) 
demonstrating semantic segmentation of enhancing tumor, 
peritumoral edema, and necrosis (non-enhancing tumor core) 
regions on gliomas. Supervised data including generated 
images improved the segmentation performance, again 
potentially addressing the scarcity of readily available medical 
images (20). 

CycleGAN is one of the standard methods for learning 
the relationships between different datasets. Ideally, when 
an image IB is generated for dataset B using an image IA 
in dataset A, the image IA is the same as I’A generated 
using the image IB. However, it is not guaranteed that 
the mapping between the two image datasets is unique. 
A so-called one2one CycleGAN was proposed to realize 
the mapping uniqueness (21) and the results showed 
the superiority of the opposed method over the baseline 
CycleGAN. Using a small sample size dataset in training 
GANs could result in synthesizing low diversity and/
or low-quality images. A network model was developed 
for tumor image generation with even a limited sample 
dataset as the training data (22). That model consisted 
of components with clear roles generating shape and 
texture of tumors, and produced tumor images by 
merging the generated tumor into background tumor-
free images. Experiments on FLAIR images with 19/20 
co-gain absent/present (control/mutated) classes showed 
that the proposed method generated high quality images 
compared to conventional network models, and captured 
the characteristics of the two tumor classes. 

Reflecting clinical reality, datasets consisting of multiple 
diseases have recently been investigated, but resulting 
inter-class imbalances in sample sizes have to be addressed. 
As such, a recently introduced GAN was conditioned 
on global information such as acquisition configuration 
(scanner type, protocol, etc.) or lesion type in addition to 
local information from segmentation masks on the lesions. 
The learning of the developed GAN was performed 
with brain glioma MR images (FLAIR, T2, and T1) and 
dermoscopic images of skin lesions (melanoma, seborrheic 
keratosis, and nevus), respectively. The GAN succeeded 
in synthesizing realistic images for both MR imaging and 
dermoscopic imaging (23). 

2D-sectional images—GANs applied to chest X-ray, 
mammography, and PET

Apart from MRI, data augmentation of 2D images by GAN 
has also been used in conventional X-ray. For instance, a 
combination of real and artificial images to train a deep 
convolutional neural network (DCNN) to detect pathology 
across five classes of chest X-rays (cardiomegaly, normal, 
pleural effusion, pulmonary edema, and pneumothorax) was 
used. Augmenting the original dataset with GAN-generated 
images significantly improved performance of chest 
pathology classification when compared to the accuracy of 
the original dataset (24). 

Regarding other modalities, for mammography, 
generating synthetic full field digital mammograms of 
1280×1024 pixels was accomplished with a progressive 
growing GAN (25). For PET imaging, a cGAN and 
DCGAN-based model (RADIOGAN) succeeded in 
generating maximum intensity projection images of 
normal, head & neck cancer, esophageal cancer, lung 
cancer, and lymphoma with a small sample size for each 
class of lesion (14).

3D images—GANs applied to MRI

Over time, volumetric imaging has become increasingly 
important in modern medical imaging. It has been reported 
that the generation of 3D brain MR images was possible 
with a small set of training data from a network model with 
a combination of a variational auto-encoder (VAE) and 
a GAN (26). The model outperformed baseline models 
in both quantitative and qualitative measurements for 
generating normal brain images, and also successfully 
generated FLAIR, T1W images for tumor and T2W 
images for stroke as shown in Figure 1.

Other groups have used similar techniques for other 
imaging modalities. For example, with FDG-PET images, 
a 3D cGAN model with 3D U-Net like generator was 
developed to convert low injected dose images to high dose 
images (27). After training with full-dose (an average of 203 
MBq) and low-dose (about a quarter of full-dose) images, 
the proposed model outperformed the state-of-the art 
methods in both qualitative and quantitative measures.

A GAN-based technique was utilized to produce smooth 
CT interpolations with high quality and accuracy of human 
organ structures in order to fill the gaps between adjacent 
CT slices (28). The experiments that were performed 
showed great improvement on two difference matrix sizes 
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(256×256 and 512×256) when compared quantitatively 
and qualitatively with conventional methods based on 
optimizing mean squared error or a perceptual loss between 
ground truth and interpolated slices.

Modality conversion (domain translation, image-
to-image)

Generation of CT images from MR images

Methods for conversion of MR images to CT images or vice 
versa are an area that is being actively studied. A number 
of GAN-based methods have been proposed, and in this 
section, we will discuss the most recent advances.

MR to CT conversion is a particularly salient example 
of where modality conversion could be utilized in routine 
clinical practice. Potential applications include bone 
segmentation in MR images and estimation of attenuation 
maps in PET imaging (i.e., improved attenuation correction 
for PET/MR). For example, Hiasa et al. performed a 
conversion in 2D from MR to CT images by applying a 
CycleGAN technique trained with T1W MR and CT images 
of lower abdominal regions including the hip joints (29).

Again, emphasizing the importance of volumetric 
imaging, conversion in 3D has also been accomplished. A 
GAN based on a 3D fully CNN was used (30). The method 
significantly outperformed state-of-the-art methods in 
prediction of brain and pelvis CT images with measurement 
of mean absolute error and peak signal-to-noise ratio.

With  the  growing  ins ta l l ed  base  o f  PET/MR 
scanners, the need for accurate methods to perform 
attenuation correction from MR is acute. Estimation of 
attenuation maps from non-attenuation corrected data 
have been investigated. Briefly, the generator received 
a non-attenuation corrected PET (NAC PET) image 
and synthesized the pseudo-CT image (31). Training 
data consisted of 50 paired CT and NAC PET images 
and validation data of 20 paired CT and NAC PET 
images. Minimal underestimation was present (<5%) for 
standardized uptake values (SUVs) in all brain regions on 
the NAC PET images corrected for attenuation with the 
synthesized CT images when compared to the attenuation-
corrected PET images. 

Another GAN succeeded in generation of attenuation-
corrected PET from non-attenuation-corrected PET 
images for whole-body 18F-FDG PET imaging (32). 
Training data were 25 pairs of whole body 18F-FDG images 
with and without attenuation correction. In comparing 

deep-learning-based attenuation-corrected PET with 
original attenuation-corrected PET, average mean error 
and normalized mean square error of the whole-body were 
0.62%±1.26% and 0.72%±0.34%.

Other application in image-to-image translation

A GAN trained with 17 PET/CT pairs for liver regions 
was used to synthesize PET images from CT images (33). 
Using a test set consisting of 8 CT scans with a total of 
26 liver tumors, 92.3% of all tumors were detected in the 
synthesized PET images compared to the real PET images.

Image-to-Image translation has also been applied to correct 
voxel intensity non-uniformity of MRI images (34). In order 
to estimate a corrected MR image from an uncorrected one, a 
GAN was trained using pairs of uncorrected and corrected MR 
images. Experiments showed higher accuracy and better tissue 
uniformity compared to a clinically established algorithm.

Furthermore, instead of individual network modes for 
each task of image-to-image translation, a comprehensive 
framework, named MedGAN has been proposed (35). For 
three different tasks of PET/CT translation, correction 
of MR motion artefacts, and PET image denoising, the 
MedGAN outperformed other existing approaches in 
regards to perceptual analysis by 5 experienced radiologists, 
as well as quantitative evaluation.

De-noising

In CT and nuclear imaging, from the perspective of 
reducing the exposure dose and/or shortening acquisition 
time, GANs have been applied to noise reduction on images 
scanned under low-dose conditions. For single-photon 
emission computed tomography (SPECT) imaging, de-
noising techniques based on GANs have been explored (36). 
When an image of high noise level is given, the generator 
estimates an image from the noisy image that is equivalent 
to the real low noise image in terms of signal-to-noise ratio. 
From an experiment on abdominal simulated images with 
low (128 MBq) and high (987 MBq) injected dose using an 
XCAT phantom (37), region-of-interest analysis of noise 
level demonstrated that the GAN-based method has the 
potential to decrease the noise level of SPECT images.

For CT images that are expected to provide anatomic 
information, it is important to remove noise while preserving 
the shape and contrast of the organs. In order to achieve 
this requirement, GANs that introduce perceptual loss and 
sharpness loss have been developed. The former class of 
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GANs introduces perceptual loss using a pre-trained network 
known as a VGG, and was evaluated on abdominal CT 
images with normal dose and simulated quatre-dose (38). The 
generator has the role of denoising the low-dose CT images. 
The discriminator judges whether the input is a normal dose 
image or a denoised one. In practice, that approach solved 
the over-smoothing problem and denoised the images with 
increased contrast for lesion detection.

In the latter type of GAN, an additional sharpness 
detection network was introduced to measure the sharpness 
of the denoised image (39). The networks were trained with 
pairs of high and low dose CT images, in which effective 
dose for high and low were 14.14, 7.07, and 0.71 mSv, to 
generate noise-reduced versions of the low-dose images. 
Figure 2 demonstrated the denoised images comparable 
with high-dose CT images in term of peak signal-to-noise 
ratio and structured similarity index.

In regards to EKG-gated cardiac CT scans without 
contrast enhancement for coronary calcium scoring, de-
noising in low dose CT images is useful to avoid excessive 
radiation dose for the patient (40). Jelmer and colleagues 
trained networks with pairs of low- and routine-dose CT 
images to generate noise-reduced images based off of the 
low-dose images. The GAN-based noise reduction allowed 
accurate quantification of coronary artery calcification from 
low dose cardiac CT images.

Image reconstruction

In addition to conventional analytical and iterative image 
reconstruction methods, GANs may be utilized for this task. 
In this section, we discuss GANs for reconstruction of MR 
images with compressed sensing (CS-MRI), which enables a 
reduce acquisition time while maintaining image quality.

A model referred to as RefineGAN provided faithful 
interpolation in k-space and outperformed the state-of-
the-art CS-MRI methods in terms of both running time 
and image quality for open-source MRI databases of brain, 
chest, and knee. That was true even for low sampling rate, 
i.e., 10% of fully acquired data (41).

Another GAN-based framework,  GANCS, was 
developed which was applicable to reconstruction of CS-
MRI (42). In a study on a contrast-enhanced MR dataset 
of pediatric patients, expert radiologists rated images by 
the GANCS as high quality in regards to improvement of 
fine texture details when compared to the conventional CS 
methods. Processing times of reconstruction were faster 
than the current state-of-the-art CS-MRI schemes by two 

orders of magnitude.
As a means to improve fidelity between the CS reconstructed 

image and the fully sampled image, a GAN with an adaptation 
algorithm of trained generative model parameters to the 
complete data was created (43). The use of the GAN allowed 
the reconstruction of high fidelity MR images of knee from 
noisy and/or incomplete measurement data.

At times in diagnostic imaging, only one region of the 
image is important. In the case of cardiac MRI, the cardiac 
region is more important to radiologists than are other 
regions. From that perspective, a network called Recon-
GLGAN utilized region-of-interest features from full-
sampling reconstructed images as prior information to 
improve quality in the CS-MRI reconstructions (44) as 
shown in Figure 3. A study with cardiac MR images showed 
better reconstruction quality in terms of peak signal-to-
noise ratio, structural similarity index, and normalized mean 
square error metrics as compared to those of conventional 
methods. Segmentation tests of heart regions from the 
whole image showed similar results to fully sampled images.

SR

SR is a technique for producing a high-resolution image 
from a low-resolution image. While the main processing 
in the conventional method is to increase the image size by 
interpolation and emphasize the edges by filtering, noise 
in the image is also emphasized. GAN-based approaches, 
on the other hand, learn patterns in the same region of 
paired low- and high-resolution training images to improve 
resolution in the low-resolution images. In this field, there 
is a lot of research on MR images that provide anatomic 
information. Basically, the generator receives a low-
resolution image as input and generates a SR image. The 
discriminator receives the generated image or the true high-
resolution image and determines its authenticity.

Meta-SRGAN, which is a network model that utilizes 
SRGAN and a Meta-Upscale Module. This architecture 
produces SR for 2D MR images with arbitrary scale and 
high fidelity (45). Meta-SRGAN outperformed traditional 
interpolation methods and achieved competitive results with 
the state-of-the-art method with low memory usage.

Instead of a single GAN, an ensemble learning approach 
was applied for SR of MR images of knees by training multiple 
GANs and combining their outputs to final output (46). 
The ensemble approach outperformed some state-of-the-
art methods based on deep learning in terms of structural 
similarity index and peak signal-to-noise ratio. This method 
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was also able to suppress artifacts and keep more image details.
Extending SR technology from 2D to 3D would be 

expected to increase computation time and memory 
consumption, the so-called “curse of dimensionality”. Along 
with techniques to suppress the computational cost as well 
as patch-wise (small region) learning, SR technique for 3D 
images has been developed. A network model based on 
SRGAN with improved upsampling techniques succeeded 
in generating realistic images from normal control T1W 
images down-sampled by a factor of 4 when compared to 
results by classical interpolation (47).

To generate high resolution 2D and 3D images, a multi-
scale GAN with patch-wise learning was developed (48). 
Starting from a low-resolution scale of the image, the 
training was repeated and conditioned on the previous scale 
to produce a higher resolution. The GAN suppressed the 
artifacts that occur in patch-wise training and produced 
3D chest CT and chest X-ray images with matrix sizes of 
512×512×512 and 2,048×2,048, respectively. In addition 
to SR, the GAN was also used for medical image domain 
translation, such as low dose to high dose chest CT images 
and T1W to T2W 3D brain MR images.

In another approach, a network referred to as mDCSRN-

GAN realized SR for brain MR images of 3D volume 
and preserved continuous structures by estimating multi-
level structure information and adding it on low resolution 
images of inputs (49,50). For images down-sampled by a 
factor of 4, the method recovered local image textures and 
details more accurately as shown in Figure 4, and quickly 
than current state-of-the-art deep learning approaches by a 
factor of 6.

Domain adaptation

Supervised learning for medical image analysis requires 
appropriate labels and annotation by medical experts, which 
takes an enormous amount of time and effort. Domain 
adaptation is a method for constructing high-performance 
neural networks in a target domain by adapting knowledge 
such as supervised labels and annotations from a source 
domain to the target domain with no or insufficient 
knowledge.

Unsupervised domain adaptation using adversarial 
training of 3D multi-scale CNNs was demonstrated for the 
segmentation of traumatic brain injuries (TBI) on brain MR 
images (51). Their network model leaned features of TBI 

Low Resolution 
26.88/0.8112

mDCSRN 
35.531 0.9471

mDCSRN-GAN 
32.83/ 0.9065

Original Resolution 
PSNR / SSIM

Figure 4 Effects of SR on a low resolution image (2×2×1 resolution degrading) by the mDCSRN-GAN on brain MR image with peak 
signal-to-noise ratio and structural similarity index (50).
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lesions on gradient-echo with MPRAGE, FLAIR, T2W, and 
proton density (PD) images without binary labels. The features 
were adapted to detect TBI lesions on images of MPRAGE, 
FLAIR, T2W, and PD for other patients. Figure 5 showed 
similar accuracy to results by supervised learning using binary 
labels for TBI lesions.

An unsupervised domain adaptation method based 
on Cycle-GAN has also been developed (52). Using the 
network model and tissue region labels of gray matter, white 
matter, and cerebrospinal fluid in a brain MRI dataset, the 
Alzheimer’s Disease Neuroimaging Initiative dataset was 
adopted to another brain MRI dataset, BaTS. The adopted 
tissue labels contributed to improved accuracy of brain 
tumor segmentation significantly in the BaTS dataset.

An unsupervised domain adaptation method based 
on Cycle-GAN was investigated for image registration 
independent from training dataset (53). The networks 

trained with chest X-ray images were applied to brain MR 
or multimodal retinal image registration. The investigated 
method outperformed conventional methods without 
domain adaptation in registration performance.

Image generation with disease severity and 
radiomics

Finally, it is appropriate to discuss some examples of the 
future of the GAN in medical and molecular imaging. 
Visualization of the progression of chronic obstructive 
pulmonary disease (COPD) in X-ray chest images were 
studied with VR-GAN, which learned features of X-ray 
chest images with quantitative COPD severity based on 
forced expiratory volume/forced vital capacity (54). Inputs 
to the generator are an X-ray image with two conditions 
of real severity for the image and desired severity. The 
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Figure 5 Effects of domain adaptation in segmentation of TBIs. Images in 6th column show regions of TBIs defined manually. The domain 
adaptation GAN learned features of TBI lesions in the source domain, and succeeded in detecting TBI lesions in other imaging protocol and 
patients (5th column) (51).
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generator makes a disease effect map between the desired 
severity and the baseline (top row in Figure 6). Final output 
image is obtained by summing the effect map to the baseline 
image (bottom row in Figure 6). The generated images 
agreed with radiologists’ expectations and produced realistic 
images.

A GAN was developed for elucidation of the relationship 
between gene expression and CT image for lung  
nodules (55). When background image without nodules and 
the gene expression profile are given, the GAN can generate 
a nodule image with characteristics such as size and shape 
reflected by the genomic information. That model can 
separate genetic code to clusters remarkably with effective 
reducing data of the code from 5,172 to 128 dimensions. 
As shown in Figure 7, the generated images corresponding 

to representative three clusters showed the features such as 
nodule shape and boundary smoothness for each cluster.

Conclusions

As introduced above, the many different GAN architectures 
were developed as powerful and promising tools for 
medical and molecular imaging. GANs have realized image 
synthesis, modality conversion, and SR for volumetric 
imaging. The achievement of low-dose imaging and 
shortening acquisition time while maintaining image 
quality were considered to be important clinically. Domain 
adaptation that utilizes existing expertise is expected to be a 
rapid solution to emerging problems with less work. Further 
improvements in computational power and network models 

Figure 6 Example of visualizing the progression of COPD with chest X-rays (54). (A) original image with COPD severity, y of 0.72; (B) 
generated images with several desired severities.

Figure 7 Radiogenomic map learning and generated nodule images (55). Three groups of samples are drawn in 4th column from clustered 
gene code in 3rd column.
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will enable new applications for higher dimensional images, 
such as volumetric and temporal imaging. As reviewed in 
the last topic, not only images but also various types of data 
as inputs could be one of the future directions of GANs in 
medical and molecular imaging. Use of public/open datasets 
for high verifiability and evaluation in large-scale studies 
will make the role of GANs more important.
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