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Background: Women undergoing cancer-related mastectomy and reconstruction are facing multiple
treatment choices where post-surgical satisfaction with breasts is a key outcome. We developed and
validated machine learning algorithms to predict patient-reported satisfaction with breasts at 2-year
follow-up to better inform the decision-making process for women with breast cancer.
Methods: We trained, tested, and validated three machine learning algorithms (logistic regression (LR)
with elastic net penalty, Extreme Gradient Boosting (XGBoost) tree, and neural network) to predict
clinically important differences in satisfaction with breasts at 2-year follow-up using the validated
BREAST-Q. We used data from 1553 women undergoing cancer-related mastectomy and reconstruction
who were followed-up for two years at eleven study sites in North America from 2011 to 2016. 10-fold
cross-validation was used to train and test the algorithms on data from 10 of the 11 sites which were
further validated using the additional site's data. Area-under-the-receiver-operating-characteristics-
curve (AUC) was the primary outcome measure.
Results: Of 1553 women, 702 (45.2%) experienced an improved satisfaction with breasts and 422 (27.2%)
a decreased satisfaction. In the validation set (n ¼ 221), the algorithms showed equally high performance
to predict improved or decreased satisfaction with breasts (all P > 0.05): For improved satisfaction AUCs
were 0.86e0.87 and for decreased satisfaction AUCs were 0.84e0.85.
Conclusion: Long-term, individual patient-reported outcomes for women undergoing mastectomy and
breast reconstruction can be accurately predicted using machine learning algorithms. Our algorithms
may be used to better inform clinical treatment decisions for these patients by providing accurate es-
timates of expected quality of life.
© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

CI confidence interval
LR logistic regression
LIME local interpretable model agnostic explanation
PRO patient-reported outcome
PROM patient-reported outcome measurement
SHAP Shapley Additive Explanations
MCID minimal clinically important difference
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1. Background

Breast cancer surgery has undergone many changes over the
past decades. Foremost among there is the trend towards de-
escalation of surgical severity; (radical) mastectomy was once
standard of care but many women now receive breast conserving
therapy [1]. In spite of de-escalation trends still about 35% of all
breast cancer patients have to undergo primary, secondary, or
prophylactic mastectomy [2]. The negative impact of mastectomy
on quality of life is well documented and reconstruction is often
offered to minimize such impacts [3,4]. However, women under-
going cancer-related mastectomy and reconstruction face difficult
treatment choices like implant-based vs. autologous reconstruction
or timing of radiotherapy. While several trials and observational
studies have provided evidence to inform these treatment de-
cisions, tailoring multi-disciplinary care to the unique needs and
preferences of individuals undergoing breast reconstruction re-
mains complex with many knowledge gaps [5e7].

Modern predictivemodeling usingmachine learning techniques
may help reduce complexity, overcome knowledge gaps, and
improve clinical care and outcomes for patients undergoing cancer-
related breast reconstruction. Machine learning algorithms identify
complex patterns in data to make accurate outcome predictions of
future events at an individual level [8e10]. Such algorithms have
shown great performance in other areas of breast cancer treatment
like identifying exceptional responders to neoadjuvant treatment
or patients at risk of experiencing financial toxicity related to their
cancer treatment [11,12]. As post-surgical satisfaction with breasts
is a recommended key outcome for women undergoing cancer-
related mastectomy and breast reconstruction [13], we hypothe-
sized that machine learning algorithms may allow accurate, indi-
vidualized predictions of long-term satisfaction with reconstructed
breasts prior to the initiation of the breast reconstruction process to
better inform the decision-making process for these women.

In this study, we developed and validated machine learning
algorithms to predict individual, patient-reported satisfaction with
breasts at 2-year follow-up to better inform decision-making for
women undergoing cancer-related mastectomy and subsequent
implant-based or autologous breast reconstruction.

2. Methods

2.1. Patient recruitment and selection

Patients were recruited as part of an international multicenter
trial (Mastectomy Reconstruction Outcomes Consortium (MROC)
study, NCT01723423). MROC patient recruitment was from 2012 to
2015, while data collection went from 2012 to 2017. The trial was
conducted at 11 study sites across the US and Canada and included
women who underwent cancer-related mastectomy and subse-
quent breast reconstruction. Study participants were followed-up
for two years after surgery. Choice of breast reconstructive
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procedure was not randomly assigned but based on surgeon and
patient preferences. Further details are published elsewhere [5,14].
Ethics approval was obtained from all study sites and all patients
gave their written informed consent.

Inclusion criteria of theMROC studywere patient age 18 years or
older, prophylactic or therapeutic, bilateral or unilateral, immediate
or delayed, implant-based or autologous breast reconstruction.
Exclusion criteria included previously failed breast reconstruction
attempts.

2.2. Design and definitions

In this analysis, we developed and validated machine learning
algorithms to predict changes in individual patient-reported
satisfaction with reconstructed breasts at 2-year follow-up prior
to the initiation of the breast reconstruction process.

Patient-reported satisfaction with breasts was measured using
the BREAST-Q ‘Satisfaction with Breasts’ subscale, a gold-standard
measure for assessing patient-reported outcomes for women
with breast cancer [15,16]. As described previously, we defined
three types of outcome: improved, worsened, or stable satisfaction
[17]. Changes greater than or equal to the minimal clinically
important difference (MCID) were used as the outcome for both
worsened (negative clinically-meaningful change in post-operative
scores compared to baseline) and improved satisfaction with
breasts (positive change compared to pre-operative score) [18].

For our predictive models, we used known clinical, patient, and
patient-reported variables influencing the post-operative outcome
after breast reconstruction [19,20]. A full list of co-variables and the
outcome variable is shown in Table 1. In line with recent recom-
mendations to avoid racial bias in predictive models we did not
include socio-economic and ethnic information into themodels but
rather compared the predictive performance among different
ethnic groups to ensure a fair algorithm performance [21,22]. The
surgeon was not included as a predictive factor due to lacking ob-
jectivity and consensuswith regard to suitablemetrics for assessing
a surgeon's performance (years of practice vs. caseload vs. patient
satisfaction) and thus limited generalizability for future model
iterations.

2.3. Algorithm development

Choice of algorithms, algorithm development, and reporting on
them was informed by recent guidelines on how to use machine
learning in medicine [23], how to report findings of diagnostic tests
[24] and multivariate prediction models [25], and previously pub-
lished research by our group [9,11,12,17]. We developed and vali-
dated three algorithms to predict clinically meaningful changes in
satisfaction with reconstructed breasts:

1) Logistic Regression (LR) with Elastic Net Penalty: We chose this
algorithm because of its known ability to attenuate the influence
of certain predictors on the model, leading to greater general-
izability to new datasets [26,27].

2) Extreme Gradient Boosting (XGBoost) Tree: Decision trees are
commonly used because of their ability to identify more com-
plex, non-linear relations between variables while still being
readily interpretable. Gradient boosting, a machine learning
technique where the final prediction model consists of an
ensemble of several stepwise built models, has been shown to
further improve the predictive performance of decision trees
[28]. We used Shappley Additive Explanation (SHAP) values to
provide insights into the model predictions [29].

3) Neural network: Neural networks are state-of-the-art algo-
rithms that mimic the structure of the mammalian cortex and



Table 1
Baseline demographic and clinical characteristics of participating women.

Whole cohort
(n ¼ 1553)

Development set
(n ¼ 1332)

Validation set
(n ¼ 221)

P valuec

Patient variables
Agee, mean (SD), years 50.19 (9.98) 50.22 (10.10) 49.99 (9.22) 0.732#

BMIe, mean (SD), kg/m2 26.49 (5.39) 26.61 (5.48) 25.72 (4.76) 0.012#

Diabetese, no (%) 0.577a

No, no. (%) 1482 (95.4) 1269 (95.3) 213 (96.4)
Yes, no. (%) 71 (4.6) 63 (4.7) 8 (3.6)

Smokere

Never, no. (%) 1032 (66.5) 888 (66.7) 144 (65.2) 0.726a

Previous, no. (%) 482 (31.0) 409 (30.7) 73 (33.0) 0.534a

Current, no. (%) 26 (1.7) 24 (1.8) 2 (0.9) 0.498a

Unknown, no. (%) 13 (0.8) 11 (0.8) 2 (0.9) 1
Pre-operative patient-reported outcome data
BREAST-Q satisfaction with breaste, mean (SD), 0e100 59.96 (22.12) 59.76 (22.10) 61.33 (22.22) 0.330b

BREAST-Q psychosocial well-beinge, mean (SD), 0e100 69.57 (18.08) 69.49 (18.13) 70.04 (17.81) 0.673b

BREAST-Q physical well-being chest and upper bodye, mean (SD), 0e100 78.87 (14.55) 78.50 (14.56) 81.10 (14.31) 0.013b

BREAST-Q physical well-being abdomen, mean (SD)e, 0e100 89.53 (13.46) 89.27 (14.56) 91.11 (11.37) 0.033b

BREAST-Q sexual well-beinge, mean (SD), 0e100 54.90 (20.73) 55.03 (20.59) 54.11 (21.55) 0.562b

Clinical variables
Radiatione

After reconstruction, no. (%) 293 (18.9) 252 (18.9) 41 (18.6) 0.971a

Before reconstruction, no. (%) 220 (14.2) 186 (14.0) 34 (15.4) 0.648a

None, no. (%) 1040 (67.0) 894 (67.1) 146 (66.1) 0.817a

Mastectomye

Nipple-sparing, no. (%) 170 (10.9) 149 (11.2) 21 (9.5) 0.531a

Simple, no. (%) 1377 (88.7) 1178 (88.4) 199 (90.0) 0.560a

Other, no. (%) 6 (0.4) 5 (0.4) 1 (0.5) 1
Reconstruction techniquee

Tissue expander (TE), no. (%) 831 (53.5) 699 (52.5) 132 (59.7) 0.054a

Direct-to-implant (DTI), no. (%) 71 (4.6) 62 (4.7) 9 (4.1) 0.833a

Transverse rectus abdominis (TRAM) flap, no. (%) 121 (7.8) 100 (7.5) 21 (9.5) 0.374a

Deep inferior epigastric perforator (DIEP) flap, no. (%) 291 (18.7) 251 (18.8) 40 (18.1) 0.865a

Latissimus dorsi (LD) flap, no. (%) 49 (3.2) 46 (3.5) 3 (1.4) 0.149a

Gluteal artery perforator (GAP) flap, no. (%) 8 (0.5) 7 (0.5) 1 (0.5) 1a

Superficial inferior epigastric artery (SIEA) flap, no. (%) 48 (3.1) 48 (3.1) 0 (0.0) 0.008a

Crossover flap, no. (%) 60 (3.9) 52 (3.9) 8 (3.6) 0.988a

Mixed flaps, no. (%) 46 (3.0) 39 (2.9) 7 (3.2) 1a

Mixed implant and autologous, no. (%) 28 (1.8) 28 (2.1) 0 (0.0) 0.057a

Chemotherapye 0.584
Received, no. (%) 442 (28.5) 383 (28.8) 59 (26.7)
Not received, no. (%) 1111 (71.5) 949 (71.2) 162 (73.3)

Reconstruction lateralitye 0.390a

Unilateral, no. (%) 700 (45.1) 594 (44.6) 106 (48.0)
Bilateral, no. (%) 853 (54.9) 738 (55.4) 115 (52.0)

Mastectomy indicatione 0.706a

Therapeutic, no. (%) 1398 (90.0) 1197 (89.9) 201 (91.0)
Prophylactic, no. (%) 155 (10.0) 135 (10.1) 20 (9.0)

Axillary interventione

Axillary lymph node dissection (ALND), no. (%) 402 (25.9) 358 (26.9) 44 (19.9) 0.035a

Sentinel lymph node biopsy (SLNB), no. (%) 698 (44.9) 584 (43.8) 114 (51.6) 0.039a

None, no. (%) 453 (29.2) 390 (29.3) 63 (28.5) 0.878a

Socioeconomic and ethnic data
Marital status
Single, no. (%) 109 (7.1) 100 (7.5) 9 (4.1) 0.084a

Living with significant other, no. (%) 67 (4.3) 59 (4.5) 8 (3.6) 0.701a

Married, no. (%) 1176 (76.1) 1004 (75.8) 172 (77.8) 0.564a

Separated, no. (%) 27 (1.7) 23 (1.7) 4 (1.8) 1a

Divorced, no. (%) 125 (8.1) 104 (7.8) 21 (9.5) 0.483a

Widowed, no. (%) 42 (2.7) 35 (2.6) 7 (3.2) 0.825a

Education level
Some high school, no. (%) 31 (2.0) 29 (2.2) 2 (0.9) 0.319a

High school degree, no. (%) 121 (7.8) 112 (8.4) 9 (4.1) 0.036a

Some college/trade school, no. (%) 255 (16.5) 226 (17.0) 29 (13.1) 0.179a

College/trade school degree, no. (%) 602 (38.8) 517 (38.9) 85 (38.5) 0.960a

Some masters/doctoral, no. (%) 61 (3.9) 54 (4.1) 7 (3.2) 0.655a

Masters/doctoral degree, no. (%) 480 (31.0) 391 (29.4) 89 (40.3) 0.002a

Working status
Unable to work, no. (%) 37 (2.4) 29 (2.2) 8 (3.6) 0.295a

Unemployed, no. (%) 31 (2.0) 28 (2.1) 3 (1.4) 0.627a

Student, no. (%) 10 (0.7) 9 (0.7) 1 (0.5) 1a

Volunteer, no. (%) 8 (0.5) 7 (0.5) 1 (0.5) 1a

Retired, no. (%) 141 (9.2) 130 (9.9) 11 (5.0) 0.028a

Homemaker, no. (%) 179 (11.6) 152 (11.5) 27 (12.3) 0.842a

(continued on next page)
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Table 1 (continued )

Whole cohort
(n ¼ 1553)

Development set
(n ¼ 1332)

Validation set
(n ¼ 221)

P valuec

Part time employed, no. (%) 216 (14.1) 175 (13.3) 41 (18.6) 0.044a

Full time employed, no. (%) 863 (56.1) 746 (56.6) 117 (53.2) 0.376a

Other, no. (%) 52 (3.4) 41 (3.1) 11 (5.0) 0.218a

Household income per year
<25,000$, no. (%) 81 (5.4) 74 (5.8) 7 (3.2) 0.171a

25,000$ to 49,999$, no. (%) 163 (10.9) 149 (11.6) 14 (6.5) 0.032a

50,000$ to 74,999$, no. (%) 269 (17.9) 232 (18.1) 37 (17.1) 0.787a

75,000$ to 99,999$, no. (%) 233 (15.5) 207 (16.1) 26 (12.0) 0.144a

>100,000$, no. (%) 754 (50.3) 621 (48.4) 133 (61.3) <0.001a

Ethnical background
Caucasian, no. (%) 1398 (90.9) 1199 (90.8) 199 (91.7) 0.750a

African American, no. (%) 69 (4.5) 61 (4.6) 8 (3.7) 0.662a

Asian, no. (%) 63 (4.1) 54 (4.1) 9 (4.1) 1a

American Indian, no. (%) 8 (0.5) 7 (0.5) 1 (0.5) 1a

Outcome e patient-reported satisfaction with breasts at 2-year follow-up compared to
baseline
Improvedd, no. (%) 702 (45.2) 602 (45.2) 100 (45.2) 1a

Decreasedd, no. (%) 422 (27.2) 357 (26.8) 65 (29.4) 0.468a

Stable, no. (%) 429 (27.6) 373 (28.0) 56 (25.3) 0.460a

ALND ¼ axillary lymph node dissection; SLNB ¼ sentinel lymph node biopsy.
P values < 0.05 highlighted in bold.

a P values refer to Chi-square tests for binary feature evaluation (feature true vs. feature not true).
b P values refer to t-tests to evaluate mean differences of continuous data.
c P values refer to differences in the development and validation set.
d Increase or decrease equal or larger to minimal clinically important difference.
e Variable used in the predictive models.
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that have shown great ability to detect even the most complex
patterns in data. Neural networks are, however, prone to over-
fitting and can be difficult to interpret. We used Local Inter-
pretable Model Interpretation (LIME) to provide insights into
the model predictions [30,31].

According to guidelines formultivariable risk predictionmodels,
validation of such a model is recommended in a dataset of at least
100 events [25]. For improved satisfaction with breasts, this
requirement was satisfied by three trial sites of this large, inter-
national, multicenter trial of which the one with a maximum
amount of events for decreased satisfaction was chosen as an in-
dependent validation set onwhich the final model was (externally)
validated. The other 10 trial sites were used as development set
(Fig. 1).

Data preparation steps (separately applied to every fold of the
Fig. 1. Flow of p
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cross-validation process) included imputation of missing data using
k-nearest neighbors (5 neighbors), removal of zero-variance vari-
ables, one hot-encoding for categorical variables, as well as feature
scaling and centering for continuous variables. We used 10-fold
cross-validation to train and tune the algorithms on the develop-
ment set; we used a hypergrid-search for hyperparameter tuning
(see Supplementary Appendix for optimal hyperparameters). To
address possible class-imbalances we used the Kappa performance
metric (mean value over the 10 folds) to select the final model. To
avoid overfitting and to improve generalizability of our models we
applied a tolerance threshold of 3% meaning that the simplest
model within a 3% tolerance of the empirically optimal model was
chosen as the final model [32]. A more detailed description of the
algorithm development and compliancewith the above-mentioned
guidelines [23e25] can be found in the online Supplementary
Appendix.
articipants.
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2.4. Statistical analysis

We used descriptive statistics including absolute and relative
frequencies as well as chi-square tests for categorical data and
mean and standard deviation alongside t-tests for continuous data
to compare the distribution of baseline and outcome variables in
the development and validation set.

To assess the diagnostic performance of machine learning al-
gorithms predicting clinically meaningful changes in patient-
reported satisfaction with breasts, area under the receiver-
operating characteristics curve (AUC) and accompanying 95% con-
fidence intervals were calculated for every model using 2000
bootstrap replicates that were drawn from the validation dataset
and stratified for the outcome variable (clinically meaningful in-
crease/decrease).

Additionally, model overall accuracy was computed by
comparing the model predictions to the actual patient-reported
outcome at 2-year follow up; 95% Clopper-Pearson confidence in-
tervals were computed.

We used calibration plots (observed vs. predicted probabilities
[33]) and Spiegelhalter's Z statistic [34] to evaluate model
calibration.

No multiplicity adjustments against type-I-error inflation were
performed. All P values should be interpreted descriptively and
have no confirmatory value. A P value smaller than 0.05 was
considered statistically significant. Analysis was conducted using R
software, Version 3.6.1; the “caret” package of R was used for the
model development.

3. Results

3.1. Clinical and demographic characteristics

Of 3058 women enrolled, 1503 returned both baseline and 2-
year follow-up information for satisfaction with breasts. Of those
1503 patients, 1332 patients from 10 trial sites were included in the
development set for the algorithm training and initial testing and
one complete trial site (n ¼ 221) was set aside as validation set
(Fig. 1).

Clinical and demographic characteristics in the whole cohort as
well as in the development and validation datasets are listed in
Table 1. A total of 702 (45.2%) women experienced a clinically
meaningful improved satisfaction with breasts two years after
surgery, 422 (27.2%) a clinically meaningful decreased satisfaction,
and 429 (27.6%) a stable satisfaction with breasts. In the validation
set, women had a significantly lower BMI (26.6 vs. 25.7), a higher
pre-operative physical well-being for chest and upper body (78.5
points vs. 81.1) as well as abdomen (89.3 points vs. 91.1), they un-
derwent autologous reconstructions with superficial inferior
epigastric artery flaps less often (0% vs. 3.1%), and received SLNB
(51.6% vs. 43.8%) instead of ALND (19.9% vs. 26.9%) more often.

3.2. Algorithm performance

Table 2 summarizes the performance of the LR with elastic net
penalty, the XGBoost tree, and the neural network algorithm in the
prediction of improved or worsened satisfaction with breasts at 2-
year follow up.

For the prediction of worsened satisfaction in the validation set,
the LR with elastic net penalty, the XGBoost tree, and the neural
network showed an AUC of 0.84 (95%CI 0.78e0.90), 0.84 (95%CI
0.78e0.90), and 0.85 (95%CI 0.78e0.90), respectively. For the pre-
diction of improved satisfaction in the validation set, the three al-
gorithms showed an AUC of 0.87 (95%CI 0.82e0.91), 0.86 (95%CI
0.81e0.91), and 0.87 (95%CI 0.83e0.92) for improved satisfaction.
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When compared against each other, the performance of the
different algorithms did not differ significantly (Fig. 2). Accompa-
nying ROC curves are illustrated in Fig. 3.

Calibration plots of all algorithms in the validation set yielded
good calibration (Fig. 4). Spiegelhalter's Z statistic confirmed awell-
calibrated model for the XGBoost tree algorithm to predict wors-
ened or improved satisfaction (z score 0.127 and �0.152, P value
0.449 and 0.440) but not for the other algorithms.

3.3. Predictive coefficients and insights into variable importance

The predictive coefficients of the LR with elastic net penalty
(Table 3) illustrate that baseline satisfaction with breasts was most
strongly associated with the outcomes at 2-year follow up followed
by type of reconstruction, timing of radiotherapy, smoker status,
mastectomy indication, and laterality. Specifically, a low baseline
satisfaction with breasts, autologous reconstruction with TRAM or
DIEP flaps, radiation before reconstruction, and never having
smoked were associated with improved satisfaction at 2-year
follow up. Contrary, a high baseline satisfaction with breasts,
implant-based reconstruction using tissue expanders, autologous
reconstruction using mixed flaps, radiation after reconstruction, a
current smoker status, and unilateral reconstruction were associ-
ated with worsened outcomes at 2-year follow up.

Figs. 5 and 6 provide insights into the variable importance of the
XGBoost tree and the neural network using local interpretable
methods. Generally, the same effects as for the logistic regression
with elastic net penalty could be observed.

For comparison, the results of a traditional multivariable
regression with decreased satisfaction at 2-year follow up as
outcome variable are listed in Table 4.

3.4. Subgroup analysis

To assess potential racial bias of the predictive models, we
evaluated the algorithms' performance among different ethnic
groups. The logistic regressionwith elastic net penalty, the XGboost
tree, and the neural network showed significantly better perfor-
mance among African American women compared to Caucasian
women (AUC 1 vs. 0.84; P < 0.001). No significant differences could
be observed when comparing the algorithms’ performance among
Asian and Caucasianwomen or Asian and African Americanwomen
(all P > 0.05).

4. Discussion

In this study, we demonstrate that machine learning algorithms
can accurately predict individual, long-term patient-reported out-
comes for women undergoing cancer-related mastectomy and
subsequent implant-based or autologous breast reconstruction.
The strength of these algorithms is that they may better inform
clinical treatment decisions (e.g., autologous vs. implant-based
reconstruction) for these patients by using contextualizing clin-
ical, patient, and patient-reported variables to provide patient-
relevant outcome predictions tailored to the individual patient's
situation. Insights into the predictions made by the algorithms
showed that baseline patient-reported variables were more
important than clinical treatment decisions.

Identifying and recommending optimal treatment decisions for
women undergoing cancer-related mastectomy and breast recon-
struction has been a major focus of clinical research during the past
years [7]. For example, previous clinical trials have found that
autologous reconstruction is generally associated with better out-
comes compared to implant-based reconstruction, that radio-
therapy is generally associated with poorer quality of life outcomes



Table 2
Evaluation of algorithms trained to predict satisfaction with breasts at two-year follow-up.

2-year follow-up satisfaction lower than baseline 2-year follow-up satisfaction higher than baseline

Accuracy (95% CI) AUC (95% CI) Accuracy (95% CI) AUC (95% CI)

Logistic regression with elastic net penalty
Test set (n ¼ 1332) 0.84 (0.83e0.85) 0.85 (0.84e0.87) 0.77 (0.76e0.78) 0.85 (0.84e0.86)
Additional validation set (n ¼ 221) 0.83 (0.78e0.88) 0.84 (0.78e0.90) 0.78 (0.72e0.83) 0.87 (0.82e0.91)
XGBoost Tree
Test set (n ¼ 1332) 0.84 (0.82e0.85) 0.85 (0.84e0.87) 0.76 (0.75e0.78) 0.85 (0.83e0.86)
Additional validation set (n ¼ 221) 0.83 (0.77e0.88) 0.84 (0.78e0.90) 0.77 (0.71e0.83) 0.86 (0.81e0.91)
Neural network
Test set (n ¼ 1332) 0.83 (0.82e0.84) 0.86 (0.85e0.87) 0.76 (0.74e0.77) 0.84 (0.83e0.86)
Additional validation set (n ¼ 221) 0.84 (0.78e0.88) 0.85 (0.78e0.90) 0.78 (0.72e0.84) 0.87 (0.83e0.92)

AUC ¼ Area under the Receiver Operating Characteristic Curve.

Fig. 2. Performance comparison between the models to predict improved and decreased satisfaction with breasts at 2-year follow-up.

Fig. 3. Receiver Operating Characteristic Curves of the models to predict improved and
decreased satisfaction with breasts at 2-year follow-up.
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(but the optimal timing, before or after reconstruction, remains
unclear), and that nipple-sparing mastectomy may offer no benefit
over simple mastectomy [6,19,20,35,36]. However, clinical appli-
cability of these findings may have been limited so far due to
inherently limited group-level inferences of traditional statistics
[37]. For example, while autologous reconstruction may have sta-
tistically better outcomes compared to implants in a prospective
study such a finding does not mean that all womenwill have better
outcomes if they receive an autologous reconstruction. Traditional
primary endpoint evaluations are performed under the assumption
that all other co-variables (e.g. radiation, type of mastectomy,
baseline satisfaction etc.) are held constant to eliminate their in-
fluence on the outcome. Thus, while it is important to know that
autologous reconstruction was generally associated with better
outcomes in prospective studies if all other influences were sta-
tistically eliminated, this may not fully represent the complex in-
teractions between different treatment choices and the individual
patient's situation within the breast reconstruction process. Accu-
rate predictive models like our algorithms may better inform the



Fig. 4. Calibration Plots of the Machine Learning Models in the Validation Set. 4a. Decreased satisfaction e Logistic Regression with Elastic Net Penalty.4b. Decreased satisfaction e

XGBoost Tree.4c. Decreased satisfaction e neural network.4d. Improved satisfaction - Logistic Regression with Elastic Net Penalty. 4e. Improved satisfaction e XGBoost Tree.4f.
Improved satisfaction e neural network.
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Table 3
Regularized coefficients from the logistic regression with elastic net penalty.

Regularized coefficient for lower satisfaction at 2-
year follow-up (positive values indicate a positive
correlation with low satisfaction)

Regularized coefficient for higher satisfaction at 2-
year follow-up (positive values indicate a positive
correlation with high satisfaction)

Patient variables
Age 0.01 0.0
BMI 0.05 0.0
Diabetes 0.0 0.0
Smoker
Never �0.13 0.14
Previous 0.0 0.0
Current 0.42 �0.37

Patient-reported outcomes at baseline
Satisfaction with breasts 1.44 �1.26
Psychosocial well-being 0.0 0.0
Physical well-being chest and upper body �0.04 0.0
Physical well-being abdomen 0.01 0.0
Sexual well-being 0.0 0.0
Clinical variables
Radiation
After reconstruction 0.52 �0.42
Before reconstruction �0.22 0.02
None 0.0 0.0

Mastectomy
Nipple-sparing 0.0 �0.01
Simple 0.0 0.0
Other 0.11 0.0

Reconstruction e Implant-based
Tissue expander 0.40 �0.28
Direct-to-implant 0.0 0.0

Reconstruction e Autologous (flap)
TRAM �0.76 0.16
DIEP �0.22 0.23
LD 0.0 0.0
GAP 0.0 0.0
SIEA �1.00 0.0
Crossover 0.0 0.0
Mixed flaps 0.28 0.0

Reconstruction e Mixed implants and autologous �0.11 0.01
Chemotherapy
Received �0.12 �0.03
Not received 0.12 0.03

Laterality
Unilateral reconstruction 0.16 �0.05
Bilateral reconstruction �0.16 0.05

Mastectomy indication
Therapeutic 0.19 0.0
Prophylactic �0.19 0.0

Axillary intervention
Axillary lymph node dissection 0.0 �0.13
Sentinel lymph node biopsy 0.01 0.0
No axillary intervention 0.0 0.21
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decision-making process for patients and clinicians. A clinical trial
comparing the outcomes of “intelligent” (algorithm-supported)
decision-making against traditional decision-making for women
undergoing mastectomy and breast reconstruction seems
warranted.

Our group has previously reported the results of predicting
short-term patient-reported outcomes for women undergoing
breast reconstruction [17]. Our present analysis does not only
demonstrate that longer-term outcomes can be predicted with
great accuracy but also that the drivers for predicting short- or
long-term outcomes are different. For example, direct-to-implant
118
reconstruction was strongly associated with worse short-term but
not long-term outcomes (regularized b ¼ 0.34 vs. 0.0) whereas the
negative impact of implant-based reconstruction with tissue ex-
panders on patient-reported satisfaction with breasts worsened in
the long-term follow up (regularized b ¼ 0.08 vs. 0.40). For autol-
ogous reconstruction, TRAM, DIEP, and SIEA flaps were associated
with a decreased risk of a poorer short-term and long-term
outcome. GAP and crossover flaps were previously found to be
associated with worsened short-term follow up; this effect could
not be observed for 2-year outcomes. Interestingly, also the
importance of patient and patient-reported variables changed over



Fig. 5. Shapley Additive Explanations (SHAP) Value Summary Plot of the Extreme Gradient Boosting (XGBoost) Tree Model. 5a. Decreased satisfaction.5b. Improved satisfaction.
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time: A higher patient age was strongly associated with poorer
short-term outcomes but not with long-term outcomes (regular-
ized b¼ 0.66 vs. 0.01) and patient-reported baseline variables other
than satisfaction with breasts (psychosocial, physical, and sexual
well-being) were less important in predicting long-term outcomes.

In interpreting our findings, some limitations of our study
should be considered.

First, although we used the largest dataset of its kind to develop
and validate our algorithms, some procedures showed a limited
sample size in the development and validation set. Moreover, most
of our study sites were high-volume academic centers located in
119
North America and although the algorithms performed equally well
among different ethnic groups, our study population showed
limited ethnic diversity. Future research may verify our findings in
more diverse populations.

Second, only about 50% of study participants completed long-
term follow-up of the patient-reported outcome satisfaction with
breasts. Possible bias arises from this loss to follow up but previous
research in the field of patient-reported outcomes indicates similar
completion rates [17,19,20,35]. The initiation of digitized patient-
reported outcome assessments may allow improving engagement
with those assessments in future trials [38,39].



Fig. 6. Local interpretable model-agnostic explanations of the neural network. 6a. Decreased satisfaction.6b. Improved satisfaction.
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Third, although satisfaction with reconstructed breasts is a key
outcome for women undergoing cancer-related mastectomy and
breast reconstruction it is not the only relevant outcome. Future
research may look into developing additional prediction models for
other patient-reported outcomes like psychological well-being,
physical well-being, and sexual well-being after breast recon-
struction to inform even more comprehensively about expected
quality of life after breast reconstruction.
120
5. Conclusion

Long-term, individual patient-reported outcomes for women
undergoing cancer-related mastectomy and breast reconstruction
can be accurately predicted usingmachine learning algorithms. Our
algorithms may be used to better inform clinical treatment de-
cisions for these patients by providing accurate estimates of ex-
pected quality of life prior to the initiation of the breast
reconstruction process.



Table 4
Multivariable logistic regression for decreased satisfaction with reconstructed
breasts.

Odds ratio (95% CI) P value

Patient variables
Age 1.01 (0.99e1.02) 0.550
BMI 1.02 (0.99e1.06) 0.202
Diabetes
No 1 [reference] e

Yes 1.74 (0.77e3.73) 0.166
Smoker
Never 1 [reference] e

Previous 1.41 (1.01e1.98) 0.045
Current 2.06 (0.56e6.98) 0.256

Patient-reported outcomes at baseline
Satisfaction with breasts 1.11 (1.09e1.12) <0.001
Psychosocial well-being 0.99 (0.98e1.00) 0.033
Physical well-being chest and upper body 0.99 (0.98e1.00) 0.067
Physical well-being abdomen 1.00 (0.99e1.01) 0.922
Sexual well-being 0.99 (0.98e1.00) 0.097
Clinical variables
Radiation
After reconstruction 2.62 (1.70e4.08) <0.001
Before reconstruction 0.95 (0.49e1.78) 0.878
None 1 [reference] e

Mastectomy
Nipple-sparing 1.09 (0.65e1.81) 0.745
Simple 1 [reference] e

other 0.33 (0.01e3.35) 0.416
Reconstruction
Tissue expander 1 [reference] e

Direct-to-implant 0.81 (0.40e1.60) 0.548
TRAM 0.23 (0.10e0.49) <0.001
DIEP 0.35 (0.22e0.55) <0.001
LD 0.43 (0.16e1.11) 0.093
GAP 0.40 (0.04e3.03) 0.417
SIEA 0.08 (0.02e0.25) <0.001
Crossover 0.82 (0.38e1.73) 0.614
Mixed flaps 1.07 (0.40e2.60) 0.891
Mixed implants and autologous 0.23 (0.03e1.36) 0.137

Chemotherapy
Not received 1 [reference] e

Received 1.31 (0.92e1.87) 0.138
Laterality
Unilateral reconstruction 1 [reference] e

Bilateral reconstruction 0.72 (0.51e1.00) 0.052
Mastectomy indication
Therapeutic 1 [reference] e

Prophylactic 0.45 (0.21e0.95) 0.042
Axillary intervention
Axillary lymph node dissection 0.69 (0.40e1.20) 0.192
Sentinel lymph node biopsy 0.90 (0.56e1.45) 0.662
No axillary intervention 1 [reference] e
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