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Abstract
As the size and complexity of network simulations accessible to computational neuro-
science grows, new avenues open for research into extracellularly recorded electric sig-
nals. Biophysically detailed simulations permit the identification of the biological origins
of the different components of recorded signals, the evaluation of signal sensitivity to
different anatomical, physiological, and geometric factors, and selection of recording
parameters to maximize the signal information content. Simultaneously, virtual extra-
cellular signals produced by these networks may become important metrics for neuro-
simulation validation. To enable efficient calculation of extracellular signals from large
neural network simulations, we have developed BlueRecording, a pipeline consisting of
standalone Python code, along with extensions to the Neurodamus simulation control
application, the CoreNEURON computation engine, and the SONATA data format, to per-
mit online calculation of such signals. In particular, we implement a general form of the
reciprocity theorem, which is capable of handling non-dipolar current sources, such as
may be found in long axons and recordings close to the current source, as well as com-
plex tissue anatomy, dielectric heterogeneity, and electrode geometries. To our knowl-
edge, this is the first application of this generalized (i.e., non-dipolar) reciprocity-based
approach to simulate EEG recordings. We use these tools to calculate extracellular sig-
nals from an in silico model of the rat somatosensory cortex and hippocampus and to
study signal contribution differences between regions and cell types.

Author summary
In this paper, we introduce BlueRecording, a suite of software tools that enables the
simulation of extracellular recordings from large-scale neural circuit models. With
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BlueRecording, users can simulate EEG, ECoG, and intracellular recordings, using a
variety of signal estimation methods. Notably, BlueRecording implements the inno-
vative “generalized reciprocity approach”, which allows the accurate calculation of
signals with arbitrarily complex electrode shapes and arrangements and heterogeneous,
anisotropic head models. BlueRecording is tightly integrated into the CoreNEURON
simulation engine, leading to a 3-fold improvement in computation time compared to
the state-of-the-art. It is compatible with the SONATA format for neural circuit models;
as demonstrators, we compute signals from in silicomodels of the rat somatosensory
cortex and of the hippocampus using BlueRecording, which permits us to disambiguate
the contributions of different cell types to the EEG signal.

neuro-simulations are available at https://
github.com/BlueBrain/neurodamus-models. The
specification for the version of the SONATA
format used at BBP is available at
https://github.com/BlueBrain/sonata-extension.
Source code for Neurodamus is available at
https://github.com/BlueBrain/neurodamus.
CoreNEURON itself is fully integrated into the
NEURON simulation environment, which is
available at
https://github.com/neuronsimulator/nrn. Code
for the generation of FEM models, as well as a
list of dependencies, is available at https://
github.com/BlueBrain/BlueBrainHeadModels.
The input files required for the generation of the
FEM meshes are available on Zeonodo
(https://doi.org/10.5281/zenodo.10926947) The
final finite element meshes and FEM output files
used in the simulations in Sect 3 are available
on Zenodo
(https://doi.org/10.5281/zenodo.14419388).
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1. Introduction
The source of key signals measured in neuroscience is the transmembrane current generated
by the electrical activity of neurons. Computational investigation of such signals using com-
partmental models requires: (1) a model and simulator that calculate the membrane currents,
and (2) an estimation of how each compartment’s current affects the signal. For (2), typically
simplifying approaches have been used. Simply comparing model output to reconstructed
current dipoles relies on accurate and reliable source reconstruction from EEG data using
inverse solution methods [1] – something that is difficult to achieve because of the poorly
conditioned inverse problem and the complex impact of volume conduction in the hetero-
geneous head anatomy on EEG signal formation. Point-source and line-source approaches
approximate the properties of the different tissues as homogeneous [2–4]. They are therefore
only valid where electrodes are within the brain tissue, where some degree of homogeneity
of the nearby dielectric environment can be assumed. The commonly employed simplified
variant of the reciprocity theorem approximates individual neurons or groups of neurons as
dipolar sources. It is therefore only valid when electrodes are sufficiently far away from said
neurons [5].

Our goals in this work were to: provide a solution to (2) that is equally valid for both prox-
imal and distal electrical measurements; provide flexibility to researchers with respect to the
approaches to both (1) and (2) they want to employ; and to support very large electrophysio-
logical models by enabling online and efficient computation.

We use the general form of the reciprocity theorem developed by Plonsey [6], which sup-
ports full compartmental resolution of the neuronal models and takes into account the dielec-
tric properties of all tissues, to calculate the impact of each compartment on the signal. It can
be employed for EEG, ECoG and LFP, and is capable of dealing with arbitrarily shaped elec-
trode geometries. The impact of each compartment on the signal is stored in what we call a
weights file. We then implemented extensions to the Neurodamus simulation control soft-
ware [7] and the CoreNEURON simulation engine [8] to consume a weights file to calculate
the signal during a simulation run and store the result for later analysis. Together, we call the
applications to calculate weights files and the extensions to the simulator the BlueRecording
framework.

The formalism of a standardized weights file ensures flexibility with respect to objective
(2). A user can easily implement a different solution so long as it provides a valid weights
file. Since large-scale simulations are required for the EEG signal, the ability to use the highly
efficient CoreNEURON simulation engine regardless of dielectric model is a significant
advantage. In addition, BlueRecording is compatible with any circuit defined in the SONATA
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format [9], making it easily portable between different simulators, and therefore highly flexi-
ble with respect to objective (1) as well.

In this paper, we apply BlueRecording to microcircuit models developed by the Blue Brain
Project (BBP). The BBP somatosensory cortex model consists of ∼4.2 million reconstructed
neurons with accurate morphologies, optimized physiological properties, and algorithmically
generated connectivity [10]. The BBP hippocampus CA1 model consists of ∼456,000 mopho-
logically detailed neurons, with properties and connectivity generated in a similar manner
to [10], along with virtual innervation by Schafer collaterals and cholinergic modulation [11].
The support for spatially extended and morphologically highly detailed BBP microcircuits is
a particular advantage when studying EEG signals. This is demonstrated here by comparing
virtual LFP, EEG, and ECoG, and identifying various contributions to the signals.

2. Design and implementation
The extracellular signals are calculated online in the NEURON simulation environment.
Due to the linear nature of Maxwell’s equation, the signal at a particular electrode (relative to
another electrode or ground) is amenable to the form

V(t) = Σm
i=1Σn

j=1Ci,ji_membranei,j(t) (1)

where i_membrane is the total compartmental transmembrane current (i.e., the sum of the
ionic and capacitive currents, as described in [2]), i is the index of each neuron in the circuit,
j is the index of each neural compartment in the neuron, and C is a scaling factor (‘weight’),
the calculation of which is discussed below. The equation takes the form of the commonly
employed lead-field matrices [12], which are frequently applied to dipole source distribu-
tions, but have also been applied directly to transmembrane currents [13–17]. The simulator
supports simultaneous recording from an arbitrary number of electrodes.

2.1. Calculation of coefficients
2.1.1. Generalized reciprocity approach. BlueRecording permits the calculation of extra-

cellular signals using the reciprocity theorem [6]. The reciprocity theorem establishes a simple
relationship between the electric field induced at different locations in the brain by apply-
ing a current through two surface electrodes, and the voltage difference measured between
these electrodes when placing a current source at the same brain locations. Intuitively, if a
source at location A produces a voltage at location B, a source at location B will produce an
identical voltage at location A – hence the term “reciprocity”. As a result, measurable sig-
nals from distributed and dynamic brain activity can be computed using a single electromag-
netic simulation, rather than needing a distinct simulation per independent source activity
component.

More formally, following Plonsey [6],let us suppose that we have a a volume current source
IU(t) in an arbitrary dielectric environment U (in the case of a neural current source, IU(t)
is the set of neural segment currents {i_membranei,j(t) ∀ i, j}, where i is the index of each
neuron and j is the index of each segment within a neuron). Further, let Φ1(t) be the poten-
tial field resulting from that current source IU(t). Now, suppose that instead of a volume cur-
rent source, we have a surface current distribution K on the surface of the environment U. Let
Φ2(t) be the potential field resulting from K.

It can be shown (for a full derivation see [6]) that∰U IU(t) ⋅ Φ2dU =∯SΦ1(t) ⋅ KdS.
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When K consists of a pair (a,b) of quasi-perfect electric conductors (e.g., metallic EEG
electrodes) providing a (virtual) current J, the situation simplifies to∰U IU(t) ⋅ Φ2dU = J ⋅
(Φ1,a –Φ1,b) = J ⋅V(t), where V(t) =Φ1,a1(t) –Φ1,b corresponds to the measured signal.

For a neurite with electrodes sufficiently far away, we can treat each nodal current
i_membranei,j(t)∈ IU(t) as point current sources at points r⃗1...⃗rk, respectively. Thus, the
left side of the equation reduces to Σm

i=1Σn
j=1i_membranei,j(t)Φ2(⃗ri,j) and the potential

between the two electrodes in this situation becomes

V(t) =Φ1(⃗ra) –Φ1(⃗rb) =
Σi = 1mΣn

j=1i_membrane_i,j(t)Φ2(⃗ri,j)
J

(2)

The coefficients Cj used to calculate the extracellular signal as described in Eq 1 are there-
fore given by

Ci,j =
Φ2(⃗ri,j)

J
(3)

In order to calculate Φ2(⃗ri,j), a finite element method (FEM) simulation of a head model
with a recording electrode array is performed, where a (virtual) current is applied between a
pair of recording electrodes, and the potential field is interpolated at the locations of the neu-
ral segments r⃗i,j. Information about the FEM rat head model setups created for this study is
provided in S1 Methods.

2.1.2. Dipole-based reciprocity approach. If, for each neuron i, we take the Taylor series
expansion of Φ2(⃗ri,j) around the vector ̂ri – the geometric center of the neuron – we obtain, to
first order

Φ2(⃗ri,j)≈Φ2( ̂ri) +∇Φ2 ⋅ (⃗ri,j – ̂ri) (4)

Substitution Eq 4 into Eq 2 and rearranging, we obtain

J ⋅V(t)≈ Σm
i=1[Φ2( ̂ri)Σji_membranei,j(t) + Σji_membranei,j(t)∇Φ2 ⋅ (⃗rj – ̂ri)] (5)

For a neural current source, Σji_membranei,j = 0 by Kirchhoff ’s Law. Thus,

V(t)≈ Σi
∇Φ2 ⋅ p⃗i(t)

J
= –ΣiE⃗n( ̂ri) ⋅ p⃗i(t) (6)

where p⃗i(t) is the current dipole calculated for neuron i at each time step as

p⃗i(t) = Σji_membranei,j(t) ⋅ (⃗ri,j – ̂ri). (7)

The normalized E⃗n = –∇Φ2/J is the ‘lead-field’. E⃗n can be computed using a FEMmodel,
as described in S1 Methods, and is interpolated at the geometric center of each neuron, ̂ri.
Substituting into Eq 1 and rearranging, we find that

Ci,j = –E⃗n( ̂ri) ⋅ (⃗ri,j – ̂ri). (8)

While the choice of ̂ri is not relevant from an analytical perspective, it can be numerically
advantageous to place it near the neuron center.

2.1.3. Calculation of coefficients with line-source approximation. Unlike EEG or ECoG
electrodes, LFP electrodes are small and located within the cortical tissue. If the LFP electrode
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can be treated as point-like, the tissue within the relevant environment is homogeneous and
isotropic, and the ground reference sufficiently distant to be treated as being at infinity and
omnidirectional, the computation of an ‘exposing’ potential required by the reciprocity the-
orem can be avoided and instead the line-source approximation can be used to compute the
coefficients for LFP calculations without need for FEM simulation.

According to the line-source approximation [18], the contribution to the electric potential
at a point electrode location of a neural segment situated in a homogeneous, isotropic envi-
ronment is given by Φi,j = 1

4𝜋𝜎eΔs ∫
0
–Δs

i_membranei,j(t)⋅ds√
(h–s)2+r2

, where Δs is the length of the segment,
h is the distance from the near end of the segment to the recording electrode in the axial
direction, and r is the absolute value of the distance from the near end of the segment to the
electrode in the perpendicular direction. Evaluating the integral analytically and substituting
into Eq 1, we find that:

Ci,j =
1

4𝜋𝜎eΔs

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

log(
√
h2+r2–h√
l2+r2–l

) h < 0, l < 0

log( (
√
h2+r2–h)(l+

√
l2+r2)

r2 h < 0, l > 0
log(

√
l2+r2+l√
h2+r2+h

) h > 0, l > 0
. (9)

With (x1, y1, z1) and (x2, y2, z2) as the endpoints of the segment and (x,y,z) as the location
of the electrode,

h = 1
Δs
(x – x2, y – y2, z – z2) ⋅ (x2 – x1, y2 – y1, z2 – z1) (10)

r2 = (x – x2)2 + (y – y2)2 + (z – z2)2 – h2 (11)
l = h +Δs (12)

2.1.4. Calculation of coefficients with point-source approximation. A further simpli-
fication can be made (in addition to the assumptions of an infinite homogeneous medium, a
point-like electrode, and reference at infinity) by treating each neural compartment as a point
rather than a line. In this case, the potential at the recording electrode is given by

V = 1
4𝜋𝜎e

ΣiΣj
i_membranei,j(t)

|⃗ri,j – r⃗e|
(13)

where r⃗e is the position of the electrode and r⃗i,j is the position of the compartment. Substitut-
ing into Eq 1 we obtain:

Ci,j =
1

4𝜋𝜎e |⃗ri,j – r⃗e|
(14)

2.1.5. Choice of voltage and spatial reference. The extracellular signals produced using
the reciprocity approaches are gauge-independent with respect to the potential field (i.e., the
location to which a potential of 0V is assigned is arbitrary). This is because the sum of mem-
brane currents of the compartments over a neuron must be zero. Thus, any constant added to
the compartment weights does not affect the signal, and only the difference in compartment
weights matters. For better visualization, we can therefore add an offset to the compartment
weights in each neuron such that the minimum weight per neuron is 0.

2.1.6. Numerical considerations. Calculation of the extracellular signal involves summa-
tion over a large number of terms that typically compensate, potentially leading to important
numerical errors as a large number of digits can be significant. Because of gauge freedom and
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current conservation, this can be mitigated by selecting good reference values for ̂ri and Φ2,
and if that proves insufficient, by using a compensation algorithm such as Kahan summation.
Our implementation does not use Kahan summation, as we have not found it to be necessary
for the current study. However, awareness that compensated summation might be required in
other situations, is necessary.

2.2. Workflow
The workflow for calculating coefficients and running an online extracellular recording simu-
lation with BlueRecording is as follows (see as well Fig 1). Tools used for each step are listed in
parentheses:

1. Calculate Segment Positions: Segment positions are calculated in two steps
i. Run Neuro-Simulation (Neurodamus): Aminimal (at least one time step) neuro-
simulation is run to produce a compartment report that reveals how the neurons are
discretized.

ii. Interpolate segment positions (bluerecording.getPositions. getPosi-
tions()):The compartment report and information from the simulation configu-
ration file are used to interpolate the segment positions from the 3d coordinates in the
morphology file, which are not necessarily aligned to the discretized compartments

2. Create electrode csv file (Manual) See Sect 2.3.2
3. Initialize ElectrodeWeights file (bluerecording.writeH5

_prelim.initializeH5File()):This step reads metadata from the electrode
csv file and the discretization from the compartment report, and writes both to the
weights file. See Sect 2.3.1 for details on the file format and 2.3.3 for details on writing
the file

4. Calculate weights:
i. Reciprocity-based methods
(i) FEM simulations (Any FEM solver): A FEM simulation is run to calculate the poten-

tial field generated by running a current between a recording electrode and a reference
electrode. The results (see S1 Table) are exported.

(ii) Interpolation of weights (bluerecording.writeH5.writeH5File()): From
the exported results, the weights are calculated by interpolating the potential field at the
neural compartment locations (for the generalized reciprocity approach) or by taking
the scalar product of the E field at the center of the neuron and the segment position
vectors (for the dipole-reciprocity approach).

ii. Analytic calculations (bluerecording.writeH5.writeH5File()): For the
line-source and point-source approximations, the weights are calculated analytically,
without requiring FEM simulations.

5. Run neuro-simulations (Neurodamus or alternative neuro-simulator)While it is
intended that simulations be run using Neurodamus as described in Sect 2.3.4, other
simulators may be extended to also support the weights file created in BlueRecording.

2.3. Implementation details
2.3.1. Extension to SONATA-format. We defined an extension to the SONATA for-

mat [9] to store the coefficients Ci,j. Briefly, the SONATA format treats each neuron in the
network as a node, and nodes are organized into populations. The coefficients are stored
in an HDF5 file (Table 1), which also includes metadata on the type and location (both in
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Fig 1. Workflow for the BlueRecording Pipeline. Input and output files are shown in red boxes, while processes are shown in black
boxes. Dashed lines around the FEM simulation step indicate that it is only used for reciprocity-based calculations

https://doi.org/10.1371/journal.pcbi.1013023.g001
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Table 1. The format of the weights file
Group Field Type Shape Requirement Description
/electrodes
/{electrodename}

layer utf8 1 Optional Layer of the circuit in which {electrodename} is located. If the electrode is in a
region without cortical layers, then “NA”. If the electrode is outside the brain,
then “Outside”

/electrodes
/{electrodename}

position float32 3 Mandatory Position of {electrodename}, in cartesian coordinates [𝜇m]

/electrodes
/{electrodename}

region utf8 1 Optional Region in which {electrodename} is located

/electrodes
{electrodename}

type utf8 1 Mandatory Specifies the approach by which the coefficients are calculated. Takes the fol-
lowing values: Reciprocity, DipoleReciprocity, LineSource, or PointSource.
Reciprocity refers to the equation from [6] for point sources of current.
DipoleReciprocity is the simplified form of this equation for current dipole
sources. LineSource means the analytic solution for current line sources in
infinite, homogeneous extracellular media. PointSource refers to the analytic
solution for point sources under the same simplified conditions.

/electrodes
/{electrodename}/
{population_name}

electrode_id uint64 1 Mandatory Index of the column corresponding to this electrode in /elec-
trodes/{population_name}/scaling_factors

/electrodes
/{popula-
tion_name}

scaling_factors float64 Total_comp x
N_elec+1

Mandatory Scaling factor for each compartment in the corresponding neuron, in [V/nA].
All values in the last column are 1. This column corresponds to a “test elec-
trode”. The signal from the test electrode should be ∼0. If this is not the case,
then the membrane currents over individual neurons do not sum to zero.

/{population_name} node_ids uint64 N_nodes Mandatory List of node ids. Node ids not listed here are to be ignored
/{population_name} offsets uint64 N_nodes + 1 Mandatory The offset for each node in the scaling_factors field, followed by the index of

the last element of the last node

https://doi.org/10.1371/journal.pcbi.1013023.t001

Cartesian space and with respect to the anatomy) for each electrode. For each population,
the coefficients for all nodes and all electrodes are listed in a single array; for each node, the
coefficients (one per compartment) are listed consecutively. For each population, there is also
a dataset listing the IDs of each node therein, as well as the index in the coefficient array at
which the coefficients for that node begin.

2.3.2. Electrode array file format. The electrode array for which the coefficients are
calculated is defined in a csv file. The csv file begins with the header name,x,y,z,
layer,region,type. Each column of the file is described in Table 2. Each row corre-
sponds to an additional electrode. The electrode csv file is read when the weights file is cre-
ated, in order to populate the metadata.

Table 2. The format of the electrode csv file
Entry Description
name Either an index or a meaningful name describing the electrode
x x-coordinate of the electrode (of the center of the electrode for extended electrode geometries), in

𝜇m
y y-coordinate of the electrode (of the center of the electrode for extended electrode geometries), in

𝜇m
z z-coordinate of the electrode (of the center of the electrode for extended electrode geometries), in

𝜇m
layer Cytological layer in which the electrode is located, or “NA” if in a brain region without layers, or

“Outside” if not within the brain. Used only to provide reference information to the user.
region Brain region in which the electrode is located, or “Outside” if not within the brain
type Method used to calculate the weights (Reciprocity, DipoleReciprocity, PointSource, or

LineSource)

https://doi.org/10.1371/journal.pcbi.1013023.t002
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2.3.3. Generation of weights files. Discretization of the neurons into electrical com-
partments is performed at runtime. Therefore, to extract the number of compartments per
neuron, a single-timestep simulation is run, from which a compartment report is produced.
For each compartment, which are uniformly spaced, the position in Cartesian coordinates is
interpolated from the 3d points in the morphology file, which do not necessarily correspond
to the discretization.

After interpolation of segment positions, the H5 file defined in Sect 2.3.1 is created, with
all coefficients initially set to 1. In a subsequent step, coefficients are computed, e.g., based
on interpolated potential field calculated using Sim4Life (ZMT Zurich MedTech AG, Zurich,
Switzerland; c.f. S1 Methods), or using the line-source approximation (c.f. Sect 2.1.3) or the
point-source approximation (c.f. Sect2.1.4).

While the weights files are intended for runtime calculation of extracellular signals in
the Neurodamus simulation control application (see Sect 2.3.4), it is also conceivable that
other simulators, such as LFPy [19] or HNN [1], could be extended to accept BlueRecord-
ing weights files. This would allow these simulators to use the full set of extracellular signal
calculation methods that BlueRecording provides, particularly the generalized reciprocity
approach, which is not available in other simulators. Alternatively, tools such as LFPy could
be extended to produce weights files in the format described in Table 1, which could then be
used with Neurodamus (see below). As LFPy provides signal calculation methods that are
not available in BlueRecording (c.f. Sect 3.1.2), this would allow those methods to be used in
conjunction with the efficient neural simulation toolchain used by BlueRecording.

2.3.4. Online calculation of EEG/LFP signals. The calculation of extracellular signals is
a multi-step process that begins with the launch of a Neurodamus [7] simulation. If a weights
file, as defined in Sect 2.3.1, is present in the SONATA simulation config file, the weights and
configuration are loaded, providing the necessary information for the subsequent extracellu-
lar signal calculation.

For each neuron distributed to a given processor, Neurodamus iterates through their
corresponding sections, loading the factors associated with each section from the weights
file. Neurodamus calls Neuron’s nbbcore_register_mapping function, which writes
the factors to an NrnThreadMappingInfo object – a Neuron datatype which stores
(among other data) the segment ids and corresponding LFP factors for each neuron on a
given thread. On each thread at runtime, for each timestep CoreNEURON (the compute
engine used by the NEURON simulation environment [8]) iterates through the neurons in the
NrnThreadMappingInfo object, and calculates the contribution to the LFP for each neu-
ron by summing the products of the segment transmembrane currents and their correspond-
ing segment weights. The calculation of the contributions of the neurons to the extracellular
signal is performed independently on each thread; these individual contributions are then
written to a SONATA report file as described in [9]. We estimate that the online calculation of
the extracellular signals adds a computational cost of 14% for 35 electrodes.

BlueRecording was developed for the CoreNEURON engine, and is not compatible
with the legacy NEURON engine. Therefore, BlueRecording cannot be used in simula-
tions of extracellular electrical stimulation or ephaptic coupling, which rely on NEURON’s
extracellularmechanism, which is not supported by CoreNEURON. However, rather
than modeling ephaptic coupling explicitly, it is also possible to model the effects of ephap-
tic coupling by injecting a current into the neuron, corresponding to the impact of the acti-
vating function. In this way, it is theoretically conceivable that BlueRecording could be used
to model ephaptic coupling. The extracellular potential induced by a current from each of
the n neural compartments would need to be calculated at the location of every other neural
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compartment, thus requiring n2 weights to be computed. In a heterogeneous dielectric envi-
ronment, this would require as many finite element simulations as there are neural compart-
ments, which would be computationally infeasible. However, if we assume a homogeneous
environment, then an analytic solution can be used to calculate the weights. It may be pos-
sible to reduce these computations to a reasonable degree of complexity using, for example,
the fast multipole method. Injecting the appropriate currents into each compartment would
also require the creation of a new current clamp mechanism, which would need to have access
to the recorded extracellular potential. Thus, the implementation of ephaptic coupling using
BlueRecording is conceivable but technically very difficult.

2.3.5. Reports. For storing simulation reports, the SONATA format [9] is utilized, which
organizes the data in an HDF5 file (Table 3). This format is specifically designed to handle
various types of data related to neural simulations, providing a structured and efficient way
for storing and retrieving the data.

For extracellular reports, a unique aspect of the SONATA format is the use of the field “ele-
ment ids” to represent electrode IDs, as opposed to representing compartments as in NEU-
RON.This means that reports capture the electrical activity at specific electrode locations,
rather than at individual compartments within the neural model.

An extracellular report is requested by adding an lfp block to the report section of the
simulation configuration file (see [9] for a full description of this file).

”reports”:{
”report_name”:{
”type”:”lfp”,
”cells”:”Mosaic”,
”variable_name”:”v”,
”dt”:0.1,
”start_time”: 0.0,
”end_time”: 5000.0,
”sections”:”all”

}
}

The name-value pairs ”type”:”lfp” and ”variable_name”:”v”must be present
verbatim; the others are user-configurable.

3. Results
3.1. Verification

3.1.1. Unit tests. Unit tests, with 70% code coverage, are provided in our Github reposi-
tory, in the folder tests. These ensure, for example, that the weights files are outputted with
the correct format, that segment positions are interpolated correctly for a morphology with 10
sections, and that weights are calculated correctly for a simple two-compartment model. They
can be run with pytest.

3.1.2. Comparison of calculation methods. We provide a small verification example in
our Github repository (https://github.com/BlueBrain/BlueRecording), comparing the gen-
eralized reciprocity approach, dipole-based reciprocity approach, line-source approxima-
tion, and point-source approximation, in a large homogeneous medium. We simulate the sig-
nal from a single Layer 5 pyramidal cell from the BBP somatosensory cortex (SSCx) model.
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The cell is driven with Ornstein-Uhlenbeck noise with an amplitude of 100% of the spiking
threshold and a standard deviation of 1% (c.f. S2 Methods). We chose such a low standard
deviation in the noise process to facilitate visualization of the differences between the signal
calculation methods. In principle, a deterministic input could also have been used, but as the
goal of this experiment is to verify that our calculation methods perform as expected (insofar
as the differences between them match theoretical considerations), and given that Ornstein-
Uhlenbeck noise input is used in larger-scale simulations described in Sects 3.2–3.4, we elect
to use Ornstein-Uhlenbeck noise here as well.

The noise input triggers an action potential in the neuron, which is observed as a large
transient in the recorded signal (Fig 2A–2B). Based on theoretical considerations outlined
in the introduction, we expect a weaker signal and disappearing differences between the
approaches at larger distances. We confirm that when the recording and reference electrode
are located far from the neuron (30 mm and 40 mm, respectively), the signals recorded using
each of the methods are very similar (Fig 2A). In contrast, when the recording electrode is
placed 218.5 𝜇m from the neuron, the signals recorded using the different methods begin to
diverge (Fig 2B), with the signal calculated using the dipole-reciprocity method diverging the
most. This is the results of differences in the weights calculated for individual compartments
(Fig 2C and 2D). For the electrode closer to the neuron, the full reciprocity approach yields
more positive weights (relative to the soma) for the apical tuft and more negative weights for
the basal dendrites than the simplified dipole approach. The higher polarity between tuft and
basals explains the larger amplitude of the signal observed.

We further observe, as expected, that the signal recorded with distant electrodes (Fig 2A)
has substantially lower amplitude than the signal recorded with nearby electrodes (Fig 2B).
We do not expect that the former signal would be detectable in the presence of activity from
other cells, but as the intent of this experiment is merely to compare the outputs of the differ-
ent signal calculation methods, we do not consider this a limitation.

3.2. Biological application: Resting state EEG
We simulated a resting-state EEG, ECoG, and LFP signal originating from the Blue Brain
Project reconstruction of the rat somatosensory cortex [10]. The model consists of 4.2 million
biologically detailed neuron models, positioned in space according to the Paxinos Watson rat
brain atlas [20], rescaled to the size of a juvenile animal. It has been shown to produce realistic

Table 3. The format of the simulation reports
Group Field Type Requirement Description
/report
/{population_name}

data float32 Mandatory The reported values. Units is defined by the
“units” attribute.

/report
/{population_name}/
mapping

node_ids uint64 Mandatory The set of node ids (no duplicate).

/report
/{population_name}/
mapping

index_pointers uint64 Mandatory The offset for each node in the data field.

/report
/{population_name}/
mapping

element_ids uint32 Mandatory Represent the compartments as in NEURON,
ordered by compartment IDs and grouped by
nodes. For the ‘lfp’ report type, it represent the
electrode IDs.

/report
/{population_name}/
mapping

time float64 Mandatory 3 values defining start time, end time, and
time step. end time is not part of the report.

https://doi.org/10.1371/journal.pcbi.1013023.t003
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Fig 2. Extracellular signals recorded in a large homogeneous medium. A: Signals recorded with recording electrode (not visible in panel C) distant from the neu-
ron. B: Signals recorded with recording electrode (green dot in panel D) near the neuron. C: Difference in per-compartment weight between generalized reciprocity
and dipole-based signal calculations, for electrode far from the neuron (adjusted for constant offset, and normalized to the range of compartment weights in general
reciprocity approach). D: The same, for electrode close to the neuron.

https://doi.org/10.1371/journal.pcbi.1013023.g002
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firing activities [21]. In order to calculate EEG from this model, we developed a FEMmodel
of a rat head that is spatially aligned to the BBP somatosensory cortex (c.f. S1 Methods).

EEG is calculated from a recording electrode, positioned in the skull, directly above the
forelimb region. A reference electrode is positioned over the hindlimb region. ECoG is pro-
duced by moving the recording electrode downward such that it is in contact with the cortical
surface (Fig 3A). LFP is calculated by moving the electrode 1 mm into the cortex. This will
place it inside cortical layer 3.

“Resting state” activity is achieved by injecting noisy conductance to neurons, which repre-
sents uncorrelated resting-state inputs from neurons extrinsic to the model (c.f. S2 Methods).
The simulation is run for 5 seconds of biological time; data from the first two seconds is dis-
carded in order to exclude an initial transient. The signal is sampled at a rate of 1 kHz. Gener-
ation of the weights file take approximately 1 hour, and the simulation runs in 7 hours on 400
nodes; each node has two 2.30 GHz, 18 core Xeon SkyLake 6140 CPUs, and 382 GB DRAM.

The model is simulated with an extracellular calcium concentration of 1.05 mM, result-
ing in bursts of activity over the entire somatosensory cortex (Fig 3B). Originating at discrete
points, these bursts spread as travelling waves through the entire model (Fig 3B). They occur
at a frequency of 0.66Hz (Fig 3C.i), which is reflected in the EEG signal recorded over the
forelimb region (Fig 3C.ii). The EEG signal is largely generated by the contribution of neu-
rons from the forelimb region (FL) and the upper lip region (ULp), with smaller contributions
from the dorsal zone (DZ) (Fig 3C.iii). Neurons in the hindlimb (HL) and trunk (Tr) area cre-
ate a deflection with around a 10% of the amplitude, but opposite sign. The ECoG signal is
still dominated by contributions from FL, with contributions from other regions significantly
reduced, and without sign inversion in the HL and Tr regions (Fig 3C.iv).

To explain the difference, we investigate the weights files specifying how much the mem-
brane current of each neuronal compartment affects the respective signal. For the EEG elec-
trode, we found that most neurons had more positive weights associated with the apical tuft,
while neurons underneath the reference electrode (corresponding to region HL) had more
positive weights for their perisomatic compartments than for their tufts (Fig 4A). For ECoG,
the difference in weight between apical and basal neurites is more pronounced directly under
the recording electrode (corresponding to region FL), and less pronounced more laterally
(corresponding to region ULp) (Fig 4B).

We confirmed this trend by considering the distribution of weights associated with basal
and apical dendrite compartments (Fig 4C–4H). Specifically, apical compartments had more
positive weights than basal compartments in forelimb and upper lip associated regions. For
the EEG electrode, but not the ECoG electrode, basal compartments have more positive
weights then apical compartments in the hindlimb region (Fig 4D vs. 4G).

If membrane currents in this highly excitable state are dominated by active currents
around the soma, compensated by return currents of the apical dendrites, this explains the
observed inversion between contributions from the forelimb and hindlimb regions in EEG.
This also demonstrates that although the EEG and ECoG signal appear very similar under the
simulated conditions, their neuronal origin is very different.

3.2.1. Utility of the generalized reciprocity approach. We compare the EEG, ECoG, and
LFP signals obtained with the generalized reciprocity approach to those obtained with the
dipole-based reciprocity approach and the line- and point-source approximations (Fig 5A–
5C). The dipole-based approach overestimates the amplitude of the EEG and ECoG signal by
a factor of ∼1.5 relative to the generalized reciprocity approach (Fig 5A). This is attributable to
differences in the contribution from the upper lip and hindlimb regions (Fig 5D). These dif-
ferences can in turn be explained by differences between the generalized and dipole approach
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Fig 3. BlueRecording simulates resting-state EEG in the rat SSCx model. A. Rat head model. i: 3D view of the
surface-mesh of the rat head model. ii: Comparison between the FEMmodel brain (green) and the BBP somatosen-
sory cortex model. Locations of EEG electrodes over the forelimb region (dark red) and hindlimb region (blue) and
ECoG electrode over the forelimb region (bright red) marked (not to scale). iii. Somatosensory cortex model, with
approximate electrode locations as in ii. B: Top down view of mean firing rate
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over the somatosensory cortex at i. 3200 ms ii. 3250 ms iii. 3300 ms iv. 3350 ms v 3400 ms vi. 3500 ms. C: i: Raster plot of firing over
the entire SSCx. Arrows indicate snapshots in panel B. Red arrow indicates start of window highlighted in panels C.iii and C.iv, and
Fig 5. ii: EEG and ECoG recorded over the forelimb region. Green and red lines as in C.i. We note that due to baseline current noise
injection, the signal is nonzero even in the absence of spiking activity. As the time course of recovery from hyperpolarization at the
single-cell is longer than that of the action potential, we observe that the extracellular signal peak is broader than the firing burst.
iii. Contributions of different regions of SSCx to the EEG recorded in ii. iv: Contributions of different regions of SSCx to the ECoG
recorded in ii.

https://doi.org/10.1371/journal.pcbi.1013023.g003

in the compartment weights in the upper lip and hindlimb regions (Fig 5G vs. 5J). The differ-
ences in compartment weights between the two methods arise due to the spatial heterogene-
ity of the E-field on the scale of the transmembrane current sources represented by a single
dipole, which is accounted for by the generalized reciprocity approach (based on the finite ele-
ment model of a virtual current applied between the recording electrodes), while the dipole
approach assumes negligible field homogeneity , which can be inaccurate (S2 Fig). The field
heterogeneity depends on the geometry of the dielectric environment.

Surprisingly, the dipole approximation provides a better fit to the generalized reciprocity
signal for ECoG (Fig 5B) than for EEG. This is because, in ECoG, the dipole approximation
induces a larger error in the signal contribution from the forelimb region, in the opposite
direction as the error in the contribution from the other regions (Fig 5E). Thus, while the gen-
eral reciprocity and dipole approaches produce similar signals, their interpretation is very
different.

For LFP recordings, not only does the dipole-based approach overestimate the signal
amplitude – it also changes the shape of the signal, leading to a loss of information and
reduced interpretability. A smaller change in shape is also observed for the point- and line-
source approximations (Fig 5C).

While the line-source and point source approaches provide a reasonable approximation
of the EEG and LFP signals obtained using the generalized reciprocity approach (Figs 5A
and 5C), they lead to even greater error than the dipole approximation for the ECoG sig-
nal. Therefore, the generalized reciprocity approach is the only method capable of producing
realistic results in all cases.

We emphasize that the dipole reciprocity approach is derived from the generalized
approach under the additional simplifying assumption that the E field is constant over the
range of the neural source, which is not true near the electrode (S2 Fig). The point and line
source approaches similarly involve approximations that are not required by the reciprocity-
based approaches, namely, that the extracellular medium is infinite and homogeneous, and
that the recording electrodes are infinitesimally small. The generalized reciprocity approach,
which does not rely on such simplifications, is inherently more accurate. While the line-
source approach has the benefit of accounting for the finite extent of neural segments, it is evi-
dent, e.g., from Fig 2B, that the associated error is negligible, even relatively close to neurons.

Several previous studies have investigated the adequacy of different methods for calculat-
ing extracellular signals in neural models. It has been established that, even for homogeneous
tissues, within a millimeter of a neuron, the dipole approximation can produce substantial
errors, but that it holds for electrode positions several millimeters from the neuron [5]. This
is in accordance with our observations in Figs 2, 5C and 5F.

Naess et al. [5] found that in an analytically solvable four-sphere human head model, the
dipole reciprocity approach performed well for EEG, but resulted in substantial errors com-
pared to a multi-dipole approach for ECoG recordings.Halnes et al. [17] found that, unlike for
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Fig 4. Differences in compartment weights explain differences between EEG and ECoG. A–B: Weights for EEG and ECoG recordings,
respectively, calculated using the reciprocity approach, for a sample of L5 pyramidal cells in the forelimb (compartments represented as cir-
cles), hindlimb (compartments represented as triangles, enclosed in pink box) and upper lip (compartments represented as squares, enclosed
in red box) regions. Electrodes are represented as red circles. Note the varying color scale ranges. C–E: Histogram of compartment weights for
EEG recording, for L5 pyramidal cells in the forelimb, hindlimb, and upper lip regions, respectively. Dashed lines indicate mean values. F–H:
Same as C–E, but for ECoG recording. Note that the x-axis range is different in each figure column.

https://doi.org/10.1371/journal.pcbi.1013023.g004
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Fig 5. Simplified calculation methods produce inaccurate signals. EEG (A), ECoG (B), and LFP (C) signals, recorded over,
or within, the somatosensory cortex, calculated with the point-source and line-source approximation, with the generalized
reciprocity theorem (ground truth), and with the simplified dipole-based approaches. D-F: Contribution of each region to
EEG, ECoG, and LFP signals, respectively. Solid lines indicate general reciprocity approach, dashed lines indicate dipole
approach. G-I: Weights for EEG, ECoG, and LFP recordings, respectively, calculated using the reciprocity approach, for a
sample of L5 pyramidal cells in the forelimb (compartments represented as circles), hindlimb (compartments represented as
triangles, and enclosed in pink box) and upper lip (compartments represented as squares, and enclosed in red box) regions.
Electrodes are represented as red circles. Note the varying color scale ranges. J-L: As in G-I, but calculated using the dipole
approach

https://doi.org/10.1371/journal.pcbi.1013023.g005
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the four-sphere human head model, the dipole reciprocity approach resulted in poor perfor-
mance for EEG compared to a multi-dipole approach. In both human ECoG and mouse EEG,
the dipole approximation fails when the electrode is too close to the neural current source.
These findings are in accordance with our observation that in a realistic rat head model, the
dipole approach results in substantial errors for both EEG and ECoG compared to the ana-
lytically correct generalized reciprocity method. Obviously, even in a realistically hetero-
geneous human head model, the dipole approach incurs less simplification error than in a
rodent model, because of the much larger electrode-source distance. Furthermore, validation
using the four-sphere human model, while advantageous because of the existence of an ana-
lytical solution, is very likely to underestimate the dipole method error: For example, scalp-to-
cortex distances in real heads can vary by up to 10mm depending on location [22] and bone
thickness and composition also shows a strong variation, negatively affecting the agreement of
EEG signals predicted using the dipole approximation and the ground truth [5].

Previous studies have also examined signal calculation methods that are not currently
available in BlueRecording, but which may be implemented in the future. For example,
Ness et al. [23] found that the Method of Images accurately approximates results using a
forward finite element approach in a model of a microelectrode array. However, unlike
reciprocity-based approaches, the Method of Images depends on highly restrictive assump-
tions on the structure of the dielectric medium: the neural source is assumed to be sur-
rounded by semi-infinite homogeneous media. Beltrachini [24] showed that a finite element
subtraction approach using a quadripolar neural source outperformed a similar approach
using only dipoles. While this method was able to accurately approximate a distributed
source for EEG recordings in a human head model, the error will necessarily be greater
when the electrodes are closer to the source – which is the case for ECoG or rodent EEG –
as the second-order Taylor series approximation that underlies the quadripolar approach,
while superior to the lower-order dipolar approximation, will break down close to the neural
source, where higher-order terms must be considered.

3.3. Biological application: Whisker flick
In a seven-column subvolume of the somatosensory cortex, we simulate a whisker flick stimu-
lus, as in [21]. Briefly, a population of virtual (i.e., not biophysically modeled) thalamic fibers,
projecting primarily to the central column of the subvolume (Fig 6A), is activated. We repeat
the experiment for a circuit in which all cortico-cortical connections have been removed. EEG
is recorded from the same electrodes used in the previous section, and averaged over 10 trials.

While stimulus triggered more sustained spiking in the connected circuits than in the
disconnected circuit (Fig 6B.i), the EEG signal is remarkably similar (Fig 6B.ii). Differences
are observed in the EEG contributions of different layers, particularly L4 (Fig 6B.xi), L5 (Fig
6B.xiv), and L6 (Fig 6B.xvii). However, these differences largely compensate.

We calculate the Pearson correlation between firing rates (in the original circuit) of excita-
tory and inhibitory cells in each layer, and the difference between the original and the discon-
nected circuit in the EEG contributions of cells in each layer. Because EEG is driven primarily
by synaptic input [25], the correlation between the firing rate of a specified presynaptic pop-
ulation and the EEG difference in a specified postsynaptic population provides information
about the functional connectivity between the two populations – a strong correlation between
presynaptic firing rate and the difference in postsynaptic EEG suggests that the presynaptic
population provides (not necessarily direct) synaptic input to the postsynaptic population.
Of course, it is possible that both the firing rate of the presynaptic population and the EEG
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Fig 6. BlueRecording simulates whisker-flick EEG. A: Selected cells from the 7-column subvolume (blue) and activated
thalamic projections (orange). B: Firing rate (first column) and EEG (second column) for the original and the disconnected
circuit (red and blue traces, respectively) and the difference in the EEG between the two circuits (third column), for both
the full circuit (first row) and each of the layers (subsequent rows). C: Correlation matrices between excitatory (first row)
and inhibitory (second row) firing rates in each layer, and the differences in EEG contributions from each layer. In each
correlation matrix, firing rates are represented along the rows, and EEG differences along the columns. Correlations are
calculated for the full window (first column) and for windows 12-45 ms after the stimulus, and 40-200 ms after the stimulus
(second, and third columns, respectively). Start and end times of the windows are marked by red arrows in panel B.

https://doi.org/10.1371/journal.pcbi.1013023.g006
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difference in the postsynaptic population are driven by a hidden third population, but this is
a limitation of most functional connectivity metrics.

Over the entire time window, excitatory firing rates tend to correlate more strongly with
EEG differences than inhibitory firing rates (Figs 6C.i and 6C.v). Between 12 and 40 ms after
the stimulus, inhibitory firing rates in all layers besides L2/3 correlate negatively with the dif-
ference in the L5 contribution to the EEG between the original and disconnected circuit (Fig
6C.v), suggesting that the negative deflection the L5 EEG difference (Fig 6B.xv) may be due
to inhibitory inputs to L5 cells that are absent in the disconnected circuit. Between 40 and
175 ms after the stimulus, there is a positive correlation between L2/3 and L4 inhibitory fir-
ing rates and the EEG difference in Layer 5 (Fig 6C.vi). This suggests that the positive deflec-
tion in the L5 EEG difference (Fig 6B.xv) may be due to inhibitory inputs from layers 2-4 to
L4 that are missing in the disconnected circuit. BlueRecording thus provides a method to sug-
gest possible interpretations of EEG signals in terms of functional connectivity, and to predict
firing rates from EEG.

We do not claim that the results presented here provide general insight into the organiza-
tion of cortical circuits more broadly; the extent to which the SSCx whisker flick results gener-
alize to other regions and conditions is an empirical question beyond the scope of this paper.
Rather, this study demonstrates the ability of BlueRecording to simulate neural recording in
silico and to leverage this to disentangle and shed light on signal contributions for different
subpopulations, and to elucidate the role of the functional organization of neural microcir-
cuits. Such results can serve to formulate testable hypotheses and to constrain putative mech-
anisms of action. Extending this approach to other regions and regimes is a promising future
application for BlueRecording.

3.4. Biological application: Hippocampal theta oscillations
As in [11], we simulated medial septal input to a subvolume of the hippocampal CA1 model
consisting of a cylinder with diameter 600 𝜇m. We are also able to simulate LFP recordings
from the full circuit of ∼456000 neurons. In both cases, we apply a depolarisation current of
120% of the spiking threshold to all cells. A sinusoidal current of -0.2 nA and frequency of 8
Hz is injected in PV+ cells using a NONSPECIFIC_CURRENT in Neuron (c.f. S2 Methods).
We mimic the effect of 1.0 uM ACh on synapses and cell excitability as described in [11].

We calculate the LFP signal in both circuits using BlueRecording, with the line-source
approximation. We are able to replicate the finding in [11] that the simulated medial septal
input results in LFP oscillations at ∼ 8 Hz (Figs 7C–7G). The LFPs calculated for the two cir-
cuits (Fig 7D), as well as the resulting power-spectral densities (Figs 7E) and current-source
densities (Figs 7F–7G), are very similar in both circuits, albeit with higher power in the full
hippocampal circuit (Fig 7). These results suggest that the findings in [11] generalize to a
larger circuit model.

3.5. Comparison with existing tools
In Table 4, we compare BlueRecording with several existing tools. We estimate the amount
of time required by these tools to run a simulation the size of the SSCx model on equivalent
hardware, under the assumption that computational time is directly proportional to network
size and inversely proportional to the number of available CPU cores. Thus, for a network of

size N cells run on C cores, computational time t = tBCBN
NBC

, where tB, NB, and CB are reported

times, network sizes, and numbers of cores reported in [28] and [29] for LFPy and Bionet,
respectively. We do not account for differences in CPU clock speed or available RAM. We
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Fig 7. BlueRecording simulates hippocampal LFP. A: Visualization of the hippocampus and cylindrical subvolumes. B: Visualization of recording electrode
placement. C: Raster plot of activity in the full hippocampus (i) and the cylindrical subvolume (ii). D: LFP recorded from a representative electrode in the hip-
pocampus. E: Power-spectral density calculated for the signals in panel D. F: Current source density (CSD) calculated in the full hippocampus simulation. G:
Current source density calculated in the cylindrical circuit. CSD maps are calculated using the standard CSD method with Vankin correction [26], as implemented
by Rimehaug et al. [27]

https://doi.org/10.1371/journal.pcbi.1013023.g007

Table 4. Comparison of BlueRecording with existing tools
Feature Human Neocortical

Neurosolver
BioNet LFPy BlueRecording

Line-Source Approximation No Yes Yes Yes
Analytic Calculation with Simplified Head No No Yes No
Reciprocity Calculation with Dipole
Approximation

No No Yes Yes

Detailed Reciprocity Calculation No No No Yes
Morphologies Simplified morphology tem-

plates built-in; creating other
morphologies nontrivial

Arbitrary Arbitrary Arbitrary

Circuit specification Built-in templates;
user-editable connectivity

SONATA Ad hoc;
instantiated
in code

SONATA

Estimated Simulation Time for SSCx-sized
Circuit (∼4.2 million neurons, assuming
14400 cores)

Insufficient published data to
estimate

23.3 hours 28.8 hours 7 hours

https://doi.org/10.1371/journal.pcbi.1013023.t004

show that both in terms of available signal calculation methods and in terms of performance,
BlueRecording outperforms the state of the art by a significant margin. However, we were
unable to assess the performance of HNN, and we note that LFPy supports several analytical
methods for the calculation of extracellular signals that are not supported by BlueRecording.
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Because the calculation of extracellular signals itself is not a significant source of computa-
tional cost, either in BlueRecording or in the alternatives described above, the performance
advantages of BlueRecording can be attributed to its tight integration with CoreNEURON,
which is optimized for computational performance for large networks. In contrast, neither
LFPy nor BioNet use CoreNEURON. Compared to legacy Neuron, CoreNEURON speeds up
computations up to 7-fold [8]. Unlike BlueRecording, where the calculation of extracellular
signals is performed within CoreNEURON, both LFPy and BioNet pass membrane currents
from Neuron to a Python API at each time step in order to calculate extracellular signals. Per-
timestep calls to the Python interpreter are not possible in CoreNEURON.Thus, achieving
the same speeds as BlueRecording in LFPy or BioNet would require significant refactoring.

4. Availability and future directions
4.1. Code availability and dependencies

• The source code for BlueRecording, and instructions for generating the figures in Sects
3.1.2, 3.2, 3.3, and 3.4 are available at https://github.com/BlueBrain/BlueRecording.

• The seven column subvolume of the BBP circuit model is available under the follow-
ing DOI: https://doi.org/10.5281/zenodo.11113043. The full BBP circuit model is avail-
able on Harvard Dataverse under the following DOI: https://doi.org/10.7910/DVN/
HISHXN, and the hippocampus model is available on Harvard Dataverse under the
following DOI: https://doi.org/10.7910/DVN/TN3DUI.

• Membrane mechanism files used in the neuro-simulations are available at https://
github.com/BlueBrain/neurodamus-models.

• The specification for the version of the SONATA format used at BBP is available at
https://github.com/BlueBrain/sonata-extension/.

• Neurodamus is available at https://github.com/BlueBrain/neurodamus.
• CoreNEURON itself is fully integrated into the NEURON simulation environment,
which is available at github.com/neuronsimulator/nrn.

• Code for the generation of FEMmodels, as well as a list of dependencies, is available
at https://github.com/BlueBrain/BlueBrainHeadModels. The required finite element
meshes are available on Zenodo (https://doi.org/10.5281/zenodo.10926947). As this
pipeline is specific to the demonstration application presented in this work, we do not
consider it to be part of the core BlueRecording package.

• Finite element meshes and FEM output files used in the simulations in Sects 3.1.2, 3.2,
and 3.3 are available on Zenodo (https://doi.org/10.5281/zenodo.14419388).

4.2. Long-term outlook
We anticipate that BlueRecording can be easily extended to permit simulation of linear sig-
nals from other recording modalities, both electromagnetic, such as MEG, and optical, such
as VSDI, by simply writing the appropriate coefficients to the weights file, and in the case of
VSDI, multiplying the weights by the segment voltage rather than the transmembrane current.
A weights file could also be generated to directly calculate the current source density, or the
current dipole itself, rather than an electromagnetic signal.

Because BlueRecording is compatible with the SONATA format, it can readily be used
in hybrid models, where the dominant contributors are modeled in morphological detail,
while other contributors are represented by simplified point neurons (similar to HNN) or
neural masses. Such hybrid models permit the simulation of even larger models, or to run
SSCx-sized models on less performant computational infrastructure.
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Supporting information
S1 Methods. Methods for the generation of finite element meshes and simulation of elec-
tric fields.
(PDF)

S2 Methods. Methods for the input of current or conductance noise to the model.
(PDF)

S1 Fig. Procedure for aligning the NeuroRat head model underlying the FEM simulations
with the BBP circuit model. Blue blocks represent input and output files, while pink blocks
represent processes. For processes that generate transformations between two images, blue
arrows represent the moving image, while red arrows represent the target image. Black arrows
represent inputs that are transformed by processes and the resulting outputs. For processes
that apply a transformation to an image, purple arrows represent the transformation object
used.
(TIFF)

S2 Fig. A. E-Field magnitude, in a cross section of the rat head, induced by current applied
to an ECoG recording electrode.The scalp (beige), cancelous skull (white), and somatosen-
sory cortex (blue) are displayed for context. B. Zoom in on the boxed area in panel a, with
scalp and skull removed. Somatosensory cortex is displayed in blue. The E-field magnitude
within the somatosensory cortex varies significantly (highlighted in the green box), demon-
strating that the dipole approximation is not valid for ECoG recordings.
(EPS)

S1 Table. The format of FEM output. We list only those fields which are used by BlueRe-
cording.The format is identical to output files from a Sim4Life Electro-ohmic Quasi-static
simulation.
(PDF)
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