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Peptides can be used as research tools and for diagnostic or therapeutic applications.
Peptides, alongside small molecules and antibodies, are used and are gaining further
interest as protein-protein interaction (PPI) modulators. Peptides have high target
specificity and high affinity, but, unlike small molecule modulators, they are not able to
cross the cell membranes to reach their intracellular targets. To overcome this limitation,
the special property of the cell-penetrating peptides (CPPs) could benefit their cause.
CPPs are a class of peptides that can enter the cells and with them also deliver the
attached cargoes. Today, with the advancement of in silico prediction tools and the
availability of protein databases, designing new and multifunctional peptides that are able
to reach intracellular targets and inhibit certain cellular processes in a very specific manner
is reachable. Although there are several efficient CPP sequences already known, the
discovery of new CPPs is crucial for the development of efficient delivery methods for both
biotechnological and therapeutic applications. In this work, we chose 10 human nuclear
proteins from which we predicted new potential CPP sequences by using three different
CPP predictors: cell-penetrating peptide prediction tool, CellPPD, and SkipCPP-Pred.
From each protein, one predicted CPP sequence was synthesized and its internalization
into cells was assessed. Out of the tested sequences, three peptides displayed features
characteristic to CPPs. These peptides and also the predicted peptide sequences could
be used to design and modify new CPPs. In this work, we show that we can use protein
sequences as input for generating new peptides with cell internalization properties. Three
new CPPs, AHRR8-24, CASC3251-264, and AKIP127-37, can be further used for the delivery
of other cargoes or designed into multifunctional peptides with capability of internalizing
cells.

Keywords: cell-penetrating peptides, AKIP1, CASC3, AHRR, prediction

INTRODUCTION

There are many macromolecules with high potential in therapeutic and biotechnological
applications. Nonetheless, their use is limited due to their inability to efficiently cross cell
membranes to reach intracellular targets. Successful modulation of various cellular processes
would broaden the possibilities in both fields. For the delivery of macromolecules, different
physical, biological, and chemical delivery methods have been developed. One of the chemical
methods is the use of CPPs. CPPs are generally defined as 4–40 amino acid (aa) long peptides that can
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enter cells and with them enhance the cellular uptake of
associated cargo. The first reporting of protein transduction
was already over 3 decades ago, when two independent groups
described the cellular uptake of Tat protein of HIV-1 (Frankel
and Pabo, 1988; Green and Loewenstein, 1988). Over the years,
many more CPP sequences have been successfully discovered and
designed. There are over 1,700 sequences of experimentally
validated CPPs (Agrawal et al., 2016). The most common CPP
is a linear, synthetic peptide containing L-aa. The majority of
validated CPPs are either synthetic or protein derived
(Supplementary Figure S1A). Attachment of fluorophore to
the CPP sequence is often used to confirm the cell penetration
ability (Supplementary Figure S1B), although different cargoes,
such as nucleic acids, proteins, and PNAs, are possible. For
further modification, peptide sequences or other cargo can be
attached to mediate other bio functions, such as PPI modulation
and cell proliferation.

Themain advantages of the peptides and CPPs are their ease of
synthesis and possibility to include variety of modifications; and
as they are biocompatible, they are generally well tolerated by the
cells. In addition to these, due to the advancement of in silico
prediction approaches and the availability of different databases,
designing new and unique CPPs with the possibility to affect cells
in a specific manner is tangible. Protein databases, with over
200,000 entries, can be used as sources for predicting new CPPs.
Different parameters, like protein cellular location, association
with diseases, known structure, and so forth, could be used to
refine the choice of input. Protein sequences often include specific
motifs, which encode functions like their intracellular trafficking
or their interactions with other nucleic acids or other proteins.
Nuclear trafficking sequences, such as nuclear localization
sequences (NLS) or nuclear export signals (NES), are found in
several proteins. They direct the protein transport or shuffling
between the cytoplasm and nucleus. The NLS motifs, with some
exceptions, are characterized by one or more clusters of positively
charged residues with the consensus sequence of K-K/R-X-K/R
(Xiong and Blainey, 2016). These are preceded by helix-breaking
residue or separated by several residues. Molecular sleds, which
have been shown to slide along DNA (Zhang et al., 2017a) and
may influence interactions with it, consist of spans of arginines or
lysines or combinations of these. The inclusion of NLS sequences
in the CPP would be beneficial if the peptide and its associated
cargo must reach the nucleus. Additional molecular sled motif
would benefit when the interaction with the nucleic acid is
desired.

In this work, we aimed to find new CPPs from human proteins
by using different prediction programs followed by the synthesis
and assessment of internalization of these peptides.

MATERIALS AND METHODS

Prediction of Cell-Penetrating Peptides
For the CPP predictions in this work, 10 FASTA format reviewed
human nuclear protein sequences were selected from UniProtKB
database (https://www.uniprot.org/) and screened for potential
CPP sequences.

For the first round of predictions, only one prediction program
was used, based on the works of Hällbrink et al., 2005, and
Hansen et al., 2008. This predictor uses Z-scales for each aa based
on their physicochemical descriptors, followed by subjection to
partial least squares (PLS) and principal component analysis
(PCA). For training, 85 non-CPP and CPP sequences were
used. The advantage of this predictor is that the whole protein
sequence can be inserted for prediction, whereas most of other
predictors have limited input sequence lengths. This helps to
identify specific regions in the protein where most probable CPP
sequences could be located. The protein sequence was fractioned
into peptides with the length from 5 to 30 aa and screened. The
output of the predictor is a .txt file with scored sequences. The
data was refined with Notepad++ by extracting only the
sequences that were scored “2” or “3,” as they are more likely
to have CPP properties. These sequences were used as an input
for other predictors and for further selection for peptide
synthesis. Both NLS and sled motifs were screened from these
predicted CPP sequences. Motifs included were K-K/R-X-K/R,
where X is any amino acid or span of amino acids, known NLS
regions (UniProt database), and YYYY or YYY, where Y is K or R
in any combination.

CellPPD (Gautam et al., 2013) takes into account the aa
composition, physicochemical properties, pattern profiles, and
motifs, and it uses machine learning algorithm that is based on
the support vector machine (SVM) method. For training, a much
larger dataset of 708 CPPs was used. It was reported that the
prediction accuracy is increased compared to the previous
predictors. The “Multiple Peptides” was used for SVM based
screening as well as SVM+motif-based method, with e-value cut-
off set at 10 and SVM threshold at 0.0. The output is a table with
prediction and score and, if chosen, the physicochemical
properties were also calculated.

SkipCPP-Pred is a predictor developed by (Wei et al., 2017). It
is a further development of the CPP predictors. It is a two-layer
predictor, which uses features of dipeptides instead of single
residues. Four feature descriptors were used and then ranked
using the minimum redundancy maximum relevance (mRMR)
algorithm. The optimal feature subset was selected and used to
train random forest (RF). In the SkipCPP-Pred, compared to
CPPred-RF, the peptide sequence is processed by a k-skip-n-
grammodel. The predictor does not allow setting any other values
and only sequence will be used as input. The output is a
prediction (CPP or non-CPP) and the confidence of the
prediction (0–1).

All sequences that were predicted as non-CPP or had a very
low score in SkipCPP-Pred (score below 0.7) were excluded. Out
of these, 10 sequences from 10 proteins were chosen for synthesis.

Synthesis of Peptides
The peptides were synthesized on an automated peptide
synthesizer (Biotage Initiator+ Alstra) using the
fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide
synthesis strategy with Rink-Amide ChemMatrix resin
(0.45 mmol g−1 loading) to obtain C-terminally amidated
peptides. For fluorescently labelled peptides, the fluorescent
label (FAM) 5(6)-Carboxyfluorescein was coupled manually to
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the N-terminus of the peptide overnight at room temperature
with 5 eq. The reaction was carried out using HOBT/HBTU as
coupling reagents in DMF, with DIEA as an activator base.

Cleavage was performed with trifluoroacetic acid, 2.5%
triisopropylsilane, and 2.5% water for 2 h at room
temperature. The peptides were purified by reversed-phase
high-performance liquid chromatography on a C4 column
(Phenomenex Jupiter C4, 5 μm, 300 Å, 250 × 10 mm) using a
gradient of acetonitrile/water containing 0.1% TFA. The
molecular weight of the peptides was analyzed by matrix-
assisted laser desorption-ionization/time of flight mass
spectrometry (Bruker microflex LT/SH, United States). The
concentration of the peptides was determined based on the
dilutions of accurately weighed substances.

Cell Experiments
U87 (human glioblastoma like cells) and HeLa (human cervical
cancer) were maintained at 37°C and 5% CO2 in Dulbecco’s
Modified Eagle’s Medium (DMEM) (Sigma, Germany). PC3
(human prostate cancer) and CHO cells were maintained in
Ham´S F12 media and incubated at 37°C and 5% CO2. Cell
media were supplemented with 0.1 mM non-essential amino
acids, 1.0 mM sodium pyruvate, 10% fetal bovine serum (FBS)
(Sigma, Germany), 100°U ml−1 penicillin, and 100 mg ml−1

streptomycin (Invitrogen, Sweden). U87 cell dishes were
treated with 0.1% gelatin solution prior to addition of cells
and media.

Internalization of the Fluorescently Labelled Peptides
For assessing the internalization of the peptides from the cell
lysate, 50,000 cells were seeded on a 24-well plate 1 day prior to
the experiment. On the experiment day, cell media was changed
to 450 µl of fresh serum free media followed by the addition of
50 µl of fluorescently labelled peptide solution. The peptide’s final
concentration on the cells was 10 µM. The cells were incubated
with the peptides for 2 h, following washes with PBS buffer and
cell lysis with 100 µl of 0.1% Triton X100. The cell lysate was
transferred to black 96-well plate and the fluorescence signal from
the fluorescently labelled peptide was measured.

Total DNA was measured from U87 cells 48 h after the
addition of the peptide solutions. After the incubation, the
cells were washed with PBS and lysed as described above.
From the cell lysate, DNA was quantified with Quant-iT™
PicoGreen™ dsDNA Assay Kit. The results are shown as the
average of measurements from three wells and normalized to
untreated cells.

The percentage of the fluorescent cells after peptide treatment
was assessed using flow cytometry. For flow cytometry, 10,000
cells were seeded on a 96-well plate 1 day prior to the experiment.
On the experiment day, the cell media was changed to 90 µl of
fresh serum free media followed by the addition of 10 µl of the
fluorescently labelled peptide solution. The peptide’s final
concentration on the cells was 10 µM. The cells were
incubated with the peptides for 2 h, following washes with PBS
buffer. 0.25% Trypsin-EDTA was added to detach the cells from
the plate and 200 µl of PBSmixed with 1% FBS was added. Shortly
before the analysis, 50 µl of 0.4% trypan blue was added to quench

the fluorescence outside the cells. The fluorescence detected from
the untreated cells was used to set the signal threshold. The results
are shown as the percentage of the fluorescent positive cells.

48 h prior to the addition of the cells, 20,000 HeLa cells were
seeded on 8-well Nunc™ Lab-Tek™ (Thermo Scientific™,
United States) chamber plates. Before the addition of the
peptide solutions media was changed to 225 µl of fresh media.
The final concentration of the peptide on the cells was 10 µM.
After 4 h incubation, the cells were washed with PBS and
counterstained with Hoechst 33342. Confocal images were
acquired from live cells with Zeiss LSM710 (Carl Zeiss AG,
Germany). For detecting the fluorescent label from the
peptide, 488 nm laser with 493–490 filter was used, and for
detecting nuclei 405 nm laser with 416–503 filter was used.
The images were taken with 20x magnification.

Toxicity Assay (MTS)
The cell proliferation was analyzed with the CellTiter 96®
Aqueous Non-Radioactive Cell Proliferation Assay (MTS)
(Promega Biotech AB, Sweden) according to the
manufacturer’s instructions. For this, 10,000 U87 or CHO cells
were seeded 1 day prior to the experiment on transparent 96-well
plates. On the experiment day, media was replaced with 90 μl of
fresh serum free media. Peptides in the concentration range from
0 to 32 µM were added to the cells. The cells were incubated with
the peptides for 20 h or 46 h, following the addition of the reagent
and further incubation to reach 24 h or 48 h timepoints. The
absorbance of the formazan product was measured at 490 nm
with Tecan Sunrise microplate absorbance reader (Tecan Group
Ltd., Switzerland) and the percentage of viable cells was calculated
using the GraphPad Prism software 5.0 (GraphPad Software, CA,
United States).

Statistical Analysis
Two-way ANOVA was used for the statistical analysis of the
treatment groups. ns indicated p > 0.05; * indicated p < 0.05; **
indicated p < 0.01; *** indicated p < 0.001. The groups that were
compared are indicated in the figure captions.

Results
Prediction of CPPs From the Protein Sequences
For this work, the amino acid sequences of one isoform from 10
human nuclear proteins were selected (Table 1 and
Supplementary Table S1) and screened with the CPP
predictor (Hällbrink et al., 2005; Hansen et al., 2008). The first
round of predictions allowed screening of the whole protein
which was made into peptides of a length of 5–30 aa and then
individually predicted for the probability of being a CPP. We
limited the length of the predicted CPPs to 30 aa, as other
prediction programs have size limitations for the sequences.
Additionally shorter peptides would be preferred as the CPP if
cargoes, such as bioactive peptides, will be further added. From
each protein, all the predicted CPP sequences that scored higher
than 1 (scale from 1 to 3, where 2 or 3 are more probable of being
a CPP, number of suitable sequences shown in Table 2, and
scored sequences in Supplementary Table S3) were
further screened with the online predictors CellPPD and
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TABLE 1 | Chosen proteins and parameters (data from UniProtPK or The Human Protein Atlas).

Database

UniProtPK The Human Protein Atlas

Protein/encoding gene,
aliases

Isoforms Length
(aa)a

Structure
available
(yes/no)

Data
available

Location Cancer prognostic
or protein

expression in
malignant tissues

AKIP1 (BCA3, C11orf17) 5 210 N RNA Intracellular,
nucleoplasm

Prognostic marker for liver and endometrial
cancer

CASC3 (BTZ, MLN51) 3 703 Y RNA/
protein

Intracellular, nuclear
membrane

Gliomas, testicular, urothelial, stomach,
colorectal and liver cancers: moderate

CCNL2 (ania-6b, CCNM, CCNS,
HLA-ISO, PCEE, SB138)

5 520 N RNA/
protein

Intracellular,
nucleoplasm

Prognostic marker in urothelial and renal
cancer

DAPK1 (DAPK, ROCO3) 4 1,430 Y RNA/
protein

Membrane,
centrosome

Prognostic marker for colorectal cancer

ING4 (my036, p29ING4) 8 249 Y RNA/
protein

Intracellular,
nucleoplasm

Prognostic marker for lung cancer

DMAP1 (DNMAP1, DNMTAP1, EAF2,
FLJ11543, KIAA1425, MEAF2,
SWC4)

6 467 Y RNA/
protein

Intracellular,
nucleoplasm, and
cytosol

Prognostic marker for liver cancer. Moderate
staining in breast, thyroid, and testicular
cancers

NOP53 (GLTSCR2, PICT-1, PICT1) 5 478 N RNA/
protein

Intracellular, nucleoli Prognostic marker for endometrial cancer.
Weak-to-moderate staining in most
malignant cells

AHRR 3 701 Y RNA Intracellular,
nucleoplasm, and
cytosol

Low cancer specificity

CUL4B 3 913 Y RNA/
protein

Intracellular,
nucleoplasm

Moderate staining in few cases of most
cancers

FBXO32 2 355 N RNA Intracellular,
nucleoplasm, and
cytosol

Prognostic marker in renal cancer

aLength of the isoform shown in ST2, if not marked differently. The longest available sequence is chosen.

TABLE 2 | Predicted CPP sequence, calculated molecular weight, and prediction scores for peptides.

Predicted CPP
sequencea

Peptide name Mwb Prediction scores

Possible CPPs
from proteinc

CellPPDd SkipCPP-Prede

GRKKRRQRRRPPQ Tat48-60 1719.21 — 1.37/CPP 0.98
VLERAKRRAV AKIP127-37 1997.58 322 0.14/CPP 0.94
PDDIKPRRIRKPRY CASC3251-264 1810.32 86 0.24/CPP 0.79
NTKRRLEGAKKA CCNL2354-365 1371.77 319 0.11/CPP 0.93
AAKFIKKRRTKSS DAPK140-52 1521.01 152 0.13/CPP 0.95
TQKEKKAARARSK ING4134-145 1501.92 476 0.03/CPP 0.9
RKRRESASSSSSVKKAKKP DMAP1459-467 2117.68 348 0.31/CPP 0.92
KRKGRLRSKGKK VP8 1441.96 — 0.63/CPP 1
AEADKPRRLGRLK NOP53397-410 1509.95 1,178 0.06/CPP 0.93
GECTYAGRKRRRPLQK AHRR8-24 1919.46 197 0.31/CPP 0.87
TPPTSAKKRKL CUL4B48-59 1226.63 309 0.34/CPP 0.97
VAAKKRKKDML FBXO3259-69 1287.78 47 0.26/CPP 0.73

aAll synthesized peptides are amidated at C-terminus.
bMolecular weight calculated with CellPPD.
cNumber of predicted CPP sequences between 5 and 30 aa, shown only number of sequences that scored 3. Scale 0–3, where 3 is most likely to have CPP properties. The program is
based on the works of Hällbrink et al., 2005, and Hansen et al., 2008.
dSVM score and based on prediction it is a non-CPP or a CPP. It must be noted that CPP Tat is included in the CellPPD training set, explaining the score above 1, although the range is 0–1
(Gautam et al., 2013).
eScore between 0 and 1, where 1 is most likely to be a CPP (Wei et al., 2017).
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SkipCPP-Pred (Gautam et al., 2013; Wei et al., 2017; Porosk et al.,
2020). From each protein, one potential CPP sequence was
chosen for the synthesis and characterization (Table 2 and
Supplementary Table S2). As a control, a known CPP, Tat48-
60, was included. The prediction of new CPPs is becoming a more
relevant tool for pre-screening of protein sequences, with a recent
example of SARS-COV-2 proteome screening (Kardani and
Bolhassani, 2021).

The 10 chosen proteins have distinct functions in the cells,
although their specific functions were not the basis of selection.
A-kinase-interacting protein 1 (AKIP1) is a protein located in the
cell nucleoplasm (Sastri et al., 2005), and its known function is
related to enhancement of the NF-kappa-B transcriptional
activity. It regulates the nuclear localization of the NF-kappa-B
subunit RELA and promotes the phosphorylation of RELA by
PRKACA. Additionally, it regulates the effect of the cAMP-
dependent protein kinase signaling pathway on the NF-kappa-
B activation cascade (Gao et al., 2008; Gao et al., 2010). It is also
related to the liver and endometrial cancer (Zhang et al., 2018;
Fang and Lu, 2020) and their prognosis. The metastatic lymph
node 51 (CASC3, MLN51) protein is a required component of the
spliceosome (Zhang et al., 2017b) which is responsible for pre-
mRNA splicing in the cells. It is located mainly in the nuclear
speckles (Ballut et al., 2005; Zhang et al., 2017b). The nuclear
speckles or the splicing speckles are where the splicing factor
storage and modification in the nucleus take place. The exon
junction complex (EJC) is a multiprotein complex, where CASC3,
through interacting with eIF3, activates translation (Chazal et al.,
2013). It is also related to the stress response in the cells,
promoting its recovery following stress (Baguet et al., 2007).
The Aryl hydrocarbon receptor repressor (AHRR) protein is
found in the cell nucleoplasm and cytoplasm. AHRR is
enriched in the testis tissues. It is a regulator of transcription
(Haarmann-Stemmann et al., 2007) and is involved in the
regulation of the cell growth and differentiation. It represses
the transcription activity of the aryl hydrocarbon receptor. AHRR
has been considered a regulator in the cancer cells and a possible
target for treatment (Zudaire et al., 2008).

Cyclin-L2 (CCNL2) is a protein belonging in the cyclin family,
which controls the passage of the cell cycle. CCNL2 functions as a
regulator for pre-mRNA splicing. It interacts with several
proteins, including RNA polymerase II, cyclin-dependent
kinases, and splicing factors. It is in the nucleoplasm and the
nuclear speckles of the cell. Additionally, it may induce apoptosis
through the modulation of the apoptotic/antiapoptotic protein
expression (Yang et al., 2004; Loyer et al., 2008). Death-associated
protein kinase 1 (DAPK1) is a calcium/calmodulin-dependent
serine/threonine kinase involved in several cellular signaling
pathways, which are responsible for the cell survival,
apoptosis, autophagy (Singh et al., 2016), and suppression of
the necroptosis (Wu et al., 2020). The protein is located in the
cytoplasm. Inhibitor of growth protein 4 (ING4) is a member of
ING family, and it is located in the cell nucleus. It is involved in
several cellular processes as both positive and negative regulator.
It has been shown to be involved in the inhibition of the cell
growth (Soliman and Riabowol, 2007) and is possibly a regulator
of the rRNA synthesis (Trinh et al., 2019). It is known to interact

with p53 and NF-κB (Jafarnejad and Li, 2012; Hou et al., 2014),
affecting the cell proliferation. DNA methyltransferase 1-
associated protein 1 (DMAP1) is located in both the cell
cytoplasm and the nucleus. It is involved in several cellular
functions as a transcription repressor and activator (Xin et al.,
2004; Lee et al., 2010). Ribosome biogenesis protein NOP53
(NOP53) is located in the cell nucleus and is involved in the
regulation of several cell functions, including integration of 5S
RNP into ribosomal large subunit, ribosome biogenesis, sensor
regulating the activation of p53/TP53 in response to stress
conditions, and tumor suppression (Sloan et al., 2013; Chen
et al., 2016a; Chen et al., 2016b). Cullin-4B (CUL4B) is a core
component of the cullin-RING-based E3 ubiquitin-protein ligase
complex. The complex mediates the ubiquitination and
subsequent proteasomal degradation of the target proteins.
Among other functions, CUL4B regulates the mTOR pathway
which is involved in the control of the cell growth, the cell size,
and the metabolism (Higa et al., 2006; Zou et al., 2009;
Badertscher et al., 2015). F-box only protein 32 (FBX32) is a
substrate recognition component of a SCF (SKP1-CUL1-F-box
protein) E3 ubiquitin-protein ligase complex which mediates the
ubiquitination and the subsequent proteasomal degradation of
target protein (Tintignac et al., 2005). It is located in both the
cytosol and the nucleus (Julie et al., 2012; Al-Hassnan et al., 2016).

The prediction was based on the prediction program
(Hällbrink et al., 2005; Hansen et al., 2008). In AKIP1, most
of the predicted CPPs were in the N-terminal part of the protein
sequence, more specifically in the first quarter of the 210 aa
protein. In CASC3, there are three potential regions predicted
with the highest number of possible CPPs (roughly aa 50–70,
200–250, and 400–450). In AHRR, two regions had the most
predicted CPP sequences, N-terminal region aa 20–50 and
middle region aa 280–320. In CCNL2, two regions from aa
140–190 and 330–390 had the highest number of predicted
CPPs. In DAPK1, the region aa 30–65 included mainly the
predicted CPPs. In ING4, there were three regions aa 120–170
(includes bipartite NLS), 270–310, and 650–700 that included
most of the predicted CPP sequences. In DMAP1, only one
distinct region included most of the predicted CPPs sequences,
aa 250–320. In NOP53, three regions aa 80–120, 330–370, and
400–424 included the most predicted CPP sequences. In CUL4B,
there were five regions with predicted CPP sequences: aa
190–210, 550–580, 600–620, 770–800, and 850–870. In FBX32,
aa 270–310 included most of the predicted CPP sequences. The
regions are marked in Supplementary Table S1.

In the second round, we used as an input the sequences from
the first round which scored 2 and 3 (sequences shown in
Supplementary Table S3). CellPPD and SkipCPP-Pred
(Gautam et al., 2013; Wei et al., 2017) were used for this.
Interestingly, for batch analysis, the peptide sequences from
AHRR were predicted as non-CPP with CellPPD, but when
predicting individually, most of the peptides were predicted as
CPPs (Supplementary prediction data). The CellPPD size limit
for prediction was 10 aa; therefore, shorter peptides were
excluded. All the CPP sequences predicted from the first
round were also predicted to be CPP with high probability
(Supplementary Table S3).
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The main advantage of the first prediction program is that the
whole protein sequences can be used as the input, and specific
regions, which have high probability of being CPPs, can be
mapped in the protein. These regions, when they co-locate
with protein PPI sites or other functional sites, could be used
to design multifunctional peptides or be used for creating fusion
peptides between predicted CPP sequences and peptides with
known functions, both from the same protein. Most of the
peptides that scored 3 in the first prediction round had a high
probability score also with CellPPD and SkipCPP-Pred, which
may encourage limiting the predictions to only the first prediction
round. The advantage of CellPPD is that it also calculates other
parameters for the peptide sequence and the prediction
parameters can be further defined. The additional advantage is
the possibility to introduce one amino acid changes to the
sequence to predict if this could result in a better score. The
input data is also easy to handle. In SkipCPP-Pred, the peptide
sequences must be converted in a specific format, which requires
additional steps before the predictions. All three have their own
limitations and advantages, discussed in the work of (Porosk
et al., 2020).

Internalization of the Fluorescently Labelled Peptides
Into the Cells
CPPs are peptides that can enter the cells. We tested the
internalization of the predicted and synthesized peptides by
measuring the fluorescence signal from the cell lysates after
the treatment with the fluorescently labelled peptides. It
should be noted that measuring signal from lysate is unable to
distinguish the internalization between the labelled peptide and
the peptides attached on the membrane. Out of all the tested
peptides, AKIP127-37, CASC3251-264, and AHRR8-24 showed the
highest fluorescence intensities, although all the peptides had
higher fluorescence than the untreated background (Figure 1A),
albeit only 1-2-fold. The internalization of the peptides was
confirmed also with flow cytometry and with confocal
microscopy (Figures 1B, 2 respectively). Interestingly, in
addition to AKIP127-37, CASC3251-264, and AHRR8-24, other
peptides showed fluorescent signal in more than 10% of the
cells. The differences between the measurement from the cell
lysate and the flow cytometry may be explained with differences
in the sensitivity of detection. Nevertheless, in both the cell lysate
and flow cytometry, mainly the same peptides AKIP127-37,

FIGURE 1 | (A) Internalization of the FAM-labelled peptides into the U87, PC3, and HeLa cells. The peptide’s concentration on the cells was 10 µM. The
fluorescence signal measured from the cell lysate 2 h after the addition of the peptide to the cells. The results are expressed as fold over untreated cells. The peptides
names on the graph are shown as the protein names they are derived from (e.g., without location in the protein sequence). (B) Percentage of the labelled cells after the
addition of the fluorescently labelled peptides. Measured from the U87, PC3, and HeLa cells. The peptide’s concentration on the cells was 10 µM. The fluorescent
signal detected 2 h after the addition of the peptides to the cells. The untreated cells were used to set the threshold for the fluorescent signal. Two-way ANOVA with
Bonferroni post-test was used for the statistical analysis of the treatment groups to untreated control. ns (not marked) indicates p > 0.05; * indicates p < 0.05; ** indicates
p < 0.01; *** indicates p < 0.001.
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CASC3251-264, and AHRR8-24 were highlighted. In the cell lysate
experiment, the signal fromDMAP1 was also considered as above
control (Figure 1A). In flow cytometry (Figure 1B), in addition
to what was previously mentioned, all the peptides except the
CCNL2, ING4, and FBXO32 derived peptides had a detectable
signal. In the confocal microscopy, the incubation time was
increased from 2 to 4 h, as at 2 h the signal was hardly
distinguishable from the background.

When comparing the treated cell population, the
percentages between U87 and HeLa cells did not
significantly differ in the total fluorescence measured from
the cell lysates, whereas the percentages were higher in PC3
cells (statistical analysis results in Supplementary Table S4).
In the cell lysate analysis, there were no statically significant
differences between the cell lines. In the confocal images
(Figure 3), the fluorescence signal from the peptides can be
seen in the cells treated with AKIP127-37, CASC3251-264, and

AHRR8-24 and CPP Tat. Interestingly, at given experimental
conditions, the strongest and well dispersed signal was
detected with CASC3251-264 (Figure 2). We additionally
tested 20 µM concentrations for CASC3251-264
(Supplementary Figure S2) in HeLa cells and compared it
to CPP Tat at the same concentration and in the same
experimental setup as described for 10 µM confocal images.
At 20 µM concentration, both peptides were able to enter into
almost all the cells, although the intensities varied.

Effect of the Peptides on the Cell Proliferation
The amount of DNA may reflect the proliferation of cells
(Supplementary Figure S3). At 5 µM concentration, AKIP127-
37 treated group had a decreased amount of total DNA after 48 h.
In U87 cells and after 24 or 48 h, the CPP Tat treated cells did not
show a considerable amount of toxicity (Figure 3 and
Supplementary Figure S4, statistical analysis results in

FIGURE 2 | Internalization of the fluorescently labelled peptide into the HeLa cells. The images are taken from live cells 4 h after the addition of the fluorescently
labelled peptide to the cells. The peptide’s final concentration on the cells was 10 µM. Hoechst was used to stain the nuclei.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7162267

Porosk et al. CPPs Predicted From Proteins

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Supplementary Table S4). Interestingly, the CASC3251-264
treated cell proliferation decreased at higher 8 and 32 µM
concentrations in both the CHO and U87 cells. In the U87
cells and after 48 h, the AHRR8-24 treated cells showed
decreased viability. The CHO cells are affected less by the
peptides. Although the U87 cells show a decrease in the
proliferation after the peptide treatment, the cells themselves
are more sensitive to different manipulations, compared to, for
example, the CHO cells. We chose the CHO and U87 cells as
representatives of the widely used cell line (CHO) and sensitive
cell line (U87-MG).

When compared to the CPP Tat treated group instead of the
untreated group, there was no statistically significant difference
between other peptide treated groups at the same concentration,
except for 0.5 µM CASC3251-264 at 24 h and 0.5, 2, and 8 µM
AHRR8-24 at 48 h in the U87 cells (Figure 3), where a decrease in
the proliferation was observed.

The mechanism behind the decrease of the total DNA amount
and the proliferation assessed by MTS might be related to the
delayed damage to the cell membranes, although the peptides are
considered relatively safe. It should be noted that theMTS assay is

carried out in serum free media, as the addition of serum may
decrease the effect of the peptide on the cells.

DISCUSSION

There are many diseases where the modulation of PPI could
alleviate the disease state. Additionally, it has a broad applicability
in research to investigate different cellular processes. Although
today there are several prediction programs available, with their
own limitations and advantages (Porosk et al., 2020), there is a
strong predicament to test the predicted sequences. Still, with so
many prediction tools and databases available, designing proteins
and peptides into CPPs is easier than ever before. The availability
of large databases has made the discovery and characterization of
new CPPs and, more importantly, the design of multifunctional
peptides feasible. For example, many CPPs have been predicted
and characterized from SARS-COV-2 using bioinformatics
approaches (Kardani and Bolhassani, 2021).

The key in the current state of the CPP field is including more
than one function into one peptide. This would open new

FIGURE 3 |MTS assay on the U87 cells in serum free media. The absorbance was measured at 24 and 48 h time points after the addition of the peptides to the
cells. The tested peptides’ range was between 0 and 32 µM. The results from the absorbance measurement are normalized to the untreated cells (100%). Two-way
ANOVA with Bonferroni post-test was used for the statistical analysis of the treatment groups to control CPP Tat treated group at the same concentration. ns (not
marked) indicates p > 0.05; * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001.
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opportunities for designing efficient multifunctional peptides, for
example, CPPs that are PPI inhibitors. In this work, we show,
based on 10 chosen proteins and their sequences, that, by using
CPP prediction tools, we can successfully find new CPPs. The
predicted CPP sequences from each protein of interest can be
chosen based on different aspects, for example, to include specific
motifs and include specific regions from the protein. The
availability of abounding modification possibilities, such as
stapling and inclusion of non-coded amino acids, offers
immense prospects for using peptides as biomimetic or PPI
modulators.

The peptides derived from all three proteins could be potential
PPI regulators to alleviate disease states and possibly regulate the
growth of the cancer cells. By incorporating CPP activity into the
peptide sequence, the need for additional cellular delivery
methods decreases. It is possible to design PPI inhibitors/
activators from these protein sequences by fusing the CPPs to
the peptides derived from other regions of the protein to form
multifunctional peptides.

CONCLUSION

In this work, we aimed to find new CPPs from nuclear proteins by
using different prediction programs followed by the synthesis and
the experimental testing of internalization. We assessed if the
peptides have any effect on the cellular processes leading to the
decrease of their proliferation. From each protein sequence, we
had several hundreds of potential CPP sequences predicted. We
can define the regions from the proteins, from which new
peptides with high probability of being CPPs could be derived.
Out of these, we chose one candidate per protein. The peptides
were able to enter the cells and could be used further as delivery
vectors. In this work, we found three peptides, AKIP127-37,

CASC3251-264, and AHRR8-24, which can enter the cells and
could be further used to design new multifunctional bioactive
peptides with internalization capability.
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