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SUMMARY

Humans have elegant bodies that allow gymnastics, piano playing, and tool use, but understanding

how they do this in detail is difficult because their musculoskeletal systems are extremely compli-

cated. Previous studies have shown that commonmovements such as reaching for a coffee cup, cycling

a bicycle, or playing the piano have common patterns across subjects. This paper shows that an arbi-

trary set of whole-body movements used to trace large closed curves have common patterns both in

the trajectory of the body’s limbs and in variations within those trajectories. The commonality of the

result should spur the search for explanations for its generality. One such principle could be that hu-

mans choose trajectories that are economical in energetic cost. Another synergistic possibility is that

common movements can be saved in segments that can be combined to facilitate the process of

deployment.

INTRODUCTION

In difficult movement tasks, such as retrieving an object from a cluttered environment or choosing balance

positions for transporting a large unwieldy object, humans are inventive problem solvers, but at the other

end of the movement spectrum in most everyday repetitive movements such as walking, sitting, and reach-

ing humans exhibit large degrees of regularity (Bongers et al., 2012; Smeets et al., 2010; Flash and Henis,

1991; Flash and Hogan, 1985; Multon et al., 1999; Donelan et al., 2002). In the quest to understand the hu-

man movement system, it would be important to know if general movements have regularities across sub-

jects as it would provide an important scaffold in the development of more detailed dynamic movement

models.

There are at least two broad perspectives that suggest such use of regularity principles. One is the Bayesian

perspective. Its adherents argue that this repeatability arises because such movements are committed to

memory with precedence based on the probability of use (Wolpert and Ghahramani, 2000; Ingram et al.,

2008; Körding, 2007). Such familiar movements even incorporate settings that anticipate perturbations.

This repeatability has led to movements being subject to extensive analysis, but the focus has been on

the exogenous constraints of the external task, rather than the much more complex endogenous con-

straints of the internal movement system that come into play more during large-scale movements.

The other perspective comes as a result of advances in models that can compute the joint torques in

human-scale skeletal models. Early models attempted to model dynamics as an inverse problem that

attempted to estimate the torques by modeling regularizing the dynamics equations as under-constrained

systems proved cumbersome and prohibitively expensive. The newer models linearize the dynamic

equations and use feedforward methods that are much better conditioned (Delp et al., 2007; Cooper

and Ballard, 2012; Erez et al., 2015).

These methods show that the kinematics of a movement is directly related to its dynamics, thus raising the

possibility that regularities in energetic cost of a movement may be indicative of regularities in the

kinematics.

We are interested in the principles behind large-scale arbitrary movements, particularly with respect to

variations between different subjects. Creating an experimental setting requires a way of measuring the

kinematics of a movement. Models of humanmovement typically divide anatomical parts into discrete seg-

ments that have their own inertias and are interconnected to other segments by joints that are mostly

rotary. Thus, a movement can be described as the time course of the coordinates of the joints. Our exper-

imental setting uses an equivalent setting of 50 three-dimensional coordinates of a motion capture suit.
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The time course of these coordinates provides an equivalent representation of a movement’s kinematics.

To refer to the kinematics at a specific time we use the term posture. Classically, posture is used for partic-

ular poses such as sitting or standing, but we use it for all body orientations tested.

The posture formalism allows for a particularly straightforward method of testing the similarly between two

postures: compute the Euclidean distance between every matching pair of markers and add them up.

Although this method will not work for cases in which two postures are very contorted with respect to

each other, it is fine for the situations measured in our experiment.

Thus, in this setting, the key question is now: for the larger movements, do the component posture changes

also appear similar as in the case of common everyday movements, or are they very individualized across

different subjects?

We sought a task that would test the extent of variation, especially in the case of whole-body

movements governed by a common task, but one that allowed different subjects freedom in choosing

movements to solve it. The task we chose had subjects tracing large-scale three-dimensional curves in

virtual reality that required a series of whole-body movement sequences. Subjects could freely choose

their starting posture and also were given no instructions as to how to comport themselves during

the tracing process. Their postures were continuously recorded using the fifty-sensor motion-capture

system. The central question was whether or not there would be any similarity in the postures used

during tracing.

Body movements are challenging to study owing to their variation. Bernstein’s famous well-known phrase

characterizing repeated movements in terms of ‘‘repetition without repetition’’ emphasizes that repeated

movements are never exactly the same (Berstein, 1966). However, repeated movement variations are never

completely random. Informed by task goals, subjects can shape the variations in different parts of the body

by co-contracting muscles to achieve desired dynamics in different sections of a trajectory (Latash et al.,

2002). Thus, in looking for regularities in movements one has to deal with both that the trajectories will

vary owing to muscle co-contraction and that the amount of co-contraction itself can be modulated

throughout the movements.

Given these challenges, we developed specialized aggregation methods for data analysis that extracted

similarities of posture sequences in the face of kinematic variations. Additionally, we analyzed the fine

structure of the variations used by subjects during the tracing task. The interesting and unsuspected result

was that both the movement’s posture kinematics and kinematic variations showed striking commonalities

across subjects, but in aggregation. Thus, such correspondences require refined methods for understand-

ing and testing large-scale movement principles. Nonetheless, given the recent development of methods

for extracting muscle torques from human dynamics models, an obvious and straightforward inference that

can be drawn from our observed similarities in posture sequences is that similar movements may be

selected to achieve low energetic costs.
RESULTS

The main result is that, although the locations tracing data exhibit posture variations, both in repeat of a

single subject and in trials by different subjects, the average postures show marked regularities in six

aspects of the data that was subject to analysis:

1. The initial poses chosen by subjects grouped into a small set of preferred postures (see section Initial

Posture Choices and Figure 1);

2. Stances in the specific points of tracing a square curve showed very small standard ellipsoids of all

markers measured (see section Posture Matching during Tracing and Figure 2);

3. Analysis of data from throughout the traced curve showed that the average posture at every point on

the curve was unique with respect to the averages at other points (see section Posture Matching dur-

ing Tracing, Figure 3 and Figure 4);

4. A t test between a proximal relative posture and distal relative posture showed that the difference is

significant at the 0.0001 level (see section Posture Matching during Tracing and Figure 5);
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Figure 1. Classifications of Starting Postures

The view is from the top of 3D space, and the black curves are the nine paths used in our experiment. The yellow dot on

each curve indicates the starting position of the target sphere. The dots around each curve represent the average starting

locations of headmakers of the subjects while tracing this curve. The direction of each arrow is the direction from the head

marker to the right index finger marker for each subject. Colors denote the different clusters classifications. For example,

in Path 5, the square curve, only two starting postures were used. The distribution of the chosen initial postures for each

path was shown in Table S1. For curves 2, 4, 5, and 7, one posture is overwhelmingly preferred over the others. The three-

dimensional view of all nine curves were shown in Figure S2.

862
5. The variance of the markers scales according to their task relevance (see section Marker Variations

during Tracing and Figure 6);

6. The variances in the subjects’ postures were correlated. If at a point on the curve the variance of a

trace calculated from a subject was relatively large, the average of the variance of all the repeated

trials from all subjects would be relatively large also (see section Marker Variations during Tracing

and Figure 7).
Initial Posture Choices

Although the subjects could have chosen very different starting postures, they preferred one of a small

number of specific groups. Small distributions in starting position and orientation can be explained if, at

beginning of a trial, subjects roughly planned the sequences of tracing motions by visually tracking the

path and its position on the target sphere en route. When they advanced to make contact with the target

sphere, they placed their right index finger in a particular location on the path. As there were only so many

ways for subjects to choose a comfortable place to start tracing, together with the constraint of the kine-

matic structure of their skeleton, the foot positions and body facing directions can be expected to show

small distributions.
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Figure 2. Tracing Data Analysis for Path 5

(A) The skeleton clouds of 90 trials (18 subjects each with 5 repeats) when subjects’ right index fingers reaching the two

corners of the square path.

(B) Highly stereotyped postures generated by 90 trials. The spheres with different colors represent different markers. The

central location and the size of a sphere indicate the mean position and the standard deviations of the corresponding

marker, respectively.

Related to Figures S1 and S3.
The postures at the first frame on each curve were taken as the participants’ initial postures. Figure 1

illustrates the results of segmenting the initial postures into small groups. It showed that the paths with

more distinct lobes had more clusters of distinct starting postures. Furthermore, it is obvious that the initial

postures classification is mainly due to the standing locations, which roughly means participants’ postures

can be considered as exhibiting some similarity if they are standing in the same area and their fingers are

attaching to the same point on the curve.

Posture Matching during Tracing

Once tracing has started, the postures of subjects can be compared at any point along the curve. Using one

trace per participant, we calculated the three-dimensional standard deviation ellipsoid for each marker

location. For example, tracing data for path 5 can be seen in Figure 2A, which illustrates all skeletons

when subjects’ index fingers contacted two corners while tracing a square path. Two common postures ap-

peared corresponding to the two initial postures on different sides of the square curve (path 5) shown in

Figure 1. The corresponding mean position of each marker and the standard deviation of marker positions

are shown in Figure 2B. The ellipsoids’ different colors represent different markers on the PhaseSpace suit.

This comparison clearly indicates that subjects used similar postures at corners during tracing square path,

a result that generalizes across positions and curves, as will be shown.

To more rigorously compare postures at all points along a path, the more sophisticated posture-matching

method of comparison described in the tracing posture matching section (see Transparent Methods) was

used. First, the mean posture of overall participants at each frame along the curve is computed by aver-

aging the dataset using one trace from each subject. Thus, each frame has an associated mean posture.
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Figure 3. Posture Matching Results of Square Tracing at Frame 300

At the outset, for each frame, the mean posture at that frame is computed by averaging the postures at that frame. Next,

the relative postures for frame 300 are compared with relative postures for other frames selected at 20-frame intervals.

The colored dot represents themean of Euclidean distances between checking relative postures at frame 300 and relative

postures at other frames. The blue bar indicates the corresponding standard deviation. The colors of dots indicate the

relative height from the laboratory floor with blue being the lowest and red the highest. In this example, the relative

postures at frame 300 are the best match. The fact that all the other matches have higher distance measures indicates that

the chosen match point is dissimilar to all the other points on the traced curve.
Next, each posture at a checking frame is matched against the mean postures for all the frames along the

curve.

For instance, taking frame 300 as the checking frame, each of the postures at frame 300 was matched to all

the mean postures in turn, and then the mean and the standard deviation of all matches at each frame were

calculated. The results of such comparison are shown in Figure 3. The red dashed line illustrates the locus

mean of the match, and the vertical bar in blue demonstrates the standard deviation. The match at frame

300 uses Equation 7, and all other matches use Equation 8 (see Transparent Methods).

As shown, the best match occurs at the frame 300, which means the best match occurs at the frame where

the postures are taken from and its match is more inexact at other frames. It might be argued that the

matches are different owing to the effect of the height of the curves above ground level. Different heights

can make a difference, but there are large regions at the same heights with different matches. Figure 3

shows this by color coding the dots according to the heights of the curve points at the corresponding

frames, with blue representing the lowest height and red the highest. It is readily seen that a large swath

of points on the curve between frames 200 and 500 have very similar heights but their match costs are quite

different. This format shows off the result that, although the matches may have considerable extents, their

means are almost always very distinct.

This method can be extended for each point on every curve. Figure 4 summarizes the postures at each

checking frame were the best matching with the mean posture at the same frame. For instance, as for

path 2, the postures at frame 250 were best matched with the mean posture at frame 250. The plotted

dots almost formed a line with the slope of 1, which is desired. Furthermore, the results for all nine curves

show that the postures at each point are almost all unique.

The few outliers were generated because participants moved back to the initial positions at the end of

tracing, which results in some similar postures at the very beginning and the very end of tracing. For

example, the outlier of path 8 in Figure 4 implies the postures at frame 20 are best matching with the
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Figure 4. Posture Matching Results for Nine Curves

The horizontal axis represents the checking frames, which were taken once every 20 frames. The vertical axis represents

the frames of relative postures that were best matching with the postures at checking frames. Two red points and two

yellow points indicate thematching results of the four fixed points in the virtual 3D. The two colors signify that these points

were constrained to be at the same height. Naturally many subsets of blue points may have the same height, but this

property was not checked. The net result is that almost every relative posture at each frame for each curve is unique. Given

at least 50 samples per path and 9 paths, a total of more than 22,000 comparisons were made. This calculation makes the

result that almost all of the 450 perfect matches are seen, even given that in many of the match pairings the tracing finger

is at the same vertical height, remarkable.
mean posture at frame 1,020. The study focused the results of the posture sequences during the tracing,

which excluded the first 50 frames and last 50 frames. In this region, regardless of the subjects, the best

match occurs at the appropriate location along the curve.

As mentioned earlier, one obvious reason to expect postures to be different is that the curves have many

different heights that the tracing finger has to follow. However, there are many points along the curve at the

same vertical height, including the four special points on each curve that were specifically chosen to be the

same. The heights of the first two fixed points are 1.5 m and the heights of the remaining ones are 0.75 m.

These two pairs are highlighted in red and yellow on Figure 4 and indicate distinct matches, even when the

tracing figure heights are identical.

One final issue concerns the reproducibility of the method. How robust is the margin separating matches

at correct positions and matches at arbitrary mismatched positions? To explore this issue, we averaged all

matches at correct positions for all nine curves and compared this distribution to the corresponding

calculation for incorrect matches. The result is shown in Figure 5, which shows that regardless of the

curve, the posture at any point on a curve is easily distinguished from the postures at any other points
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Figure 5. The Match Column Compares Matches of Postures at Their Original Location to the Mean Posture at

that Location

The non-match column compares matches of postures to matches to the other mean postures on the curves. All nine

curves are used in this comparison. This difference is obviously hugely significant, implying that themethodology is highly

reproducible as postures that are at distal sites on the traced curve are very dissimilar. The t test of these data shows that

the difference is significant at the 0.0001 level.
on the curve. To demonstrate this result we used equal numbers of samples of the Qa and Qb calculated

using Equation 7 and Equation 8, respectively (see Transparent Methods). The huge number of samples,

together with the non-overlapping variances resulted t test level of significance greater than the 0.0001

level.
Marker Variations during Tracing

In concert with earlier observations (van Beers et al., 2012; Latash et al., 2002), the standard deviation of the

task-irrelevant end-effectors was larger than that of task-relevant end-effectors, even when measured

across subjects with different skeleton sizes. To show this relationship, we computed marker standard de-

viations using one trace per subject at four different distances from the tracing locus. Figure 6 shows the

standard deviation of the task-relevant markers and task-irrelevant markers, across subjects with initial

positions from the same cluster. As the most task-relevant end-effector, the right index finger had the

smallest standard deviation, whereas as the most task-irrelevant end effector, the left index finger had

the largest. The right shoulder marker and head marker, which are intermediate task-relevant markers,

had moderate standard deviations along the entire tracing.

That distinctive patterns in the average of the variance data for all subjects have been shown leaves open

the question of the issue of individual differences. Surprisingly it turns out that individual subjects all modu-

late their variations in the same way. To probe this relationship, we computed the standard deviations at

small intervals at each frame of the five repeated trials for each subject using Equation 4 (see Transparent

Methods) and sorted the intervals by standard deviationmagnitude. Next, we computed the average of the

standard deviations for each of the subjects. These calculations produced a series of tracing standard de-

viations for each subject as well as the standard deviation average across all subjects. This allowed the cor-

relation of the standard deviation of each subject with the average of that of the group. A representative

result is shown for the shoulder marker in Figure 7, which shows the mean and standard deviations of the

tracing data sorted for increasing standard deviations. The important conclusion from this figure is that,

although the local variance in tracing markers varies from point to point, it varies in a correlated way. If

the variance is high at a point in tracing for one subject, it will also be relatively high for the average.

The inset table in the figure shows the complete set of correlations for the four markers analyzed for

each of the nine curves. The result is each of the 36 measurements is significantly positively correlated,
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Figure 6. Comparison of the Standard Deviation of Marker Positions

At each frame, the mean position of a marker was first computed, then we calculated the Euclidean distances between each of

the positions of the marker and its mean position; finally, the standard deviation of the positions of the marker was computed.

The corresponding average standard deviations averaged over all the frames of each curve are shown in Table S2.
with R values ranging from 0.40 to 0.87 and an average correlation 0.69. The implication is that subjects

modulate their variance during tracing transit in the same way.
DISCUSSION

The data analyses showed that, for large-scale movements of a constrained task, the observed movement

kinematics are very similar across subjects, both in terms of mean posture values and their variances. At

each point on any of the tested curves, the average posture is easily distinguished from all the other

average postures by a metric that quantitatively compares posture differences.

Although there are local variations at points on the body, these turn out to be co-modulated also.When the

average local standard deviation for all the traces increases, the standard deviation of the individual traces

increases in a correlated way. This correlation may be a consequence of constraining the degrees of

freedom of the task with muscle co-contraction, but further experiments with electromyography would

be needed to settle this definitively.

One possible criticism of the experiment is that its main result might be expected as extensive data show

that movement profiles are almost bell-shaped and there is a clear preference for certain comfortable pos-

tures, but those qualitative considerations fall short of accounting for the exactitude of the matches, given

the extent of possible variations in the unconstrained nature of the task. Another factor in response is that
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Figure 7. The Standard Deviations in Repeated Traces for Four Randomly Chosen Subjects Are Compared with

the Average

To do this, for each ten-frame interval, the standard deviation of points is computed. Using these data the average

standard deviation of these data is computed. Next, the individual variances are correlated with this average. Four colors

signify four random subjects. The high R values indicate that subjects’ variances, which indicate their co-contractions, are

co-varying. All the R values for the four markers computed for all nine curves show positive correlations (see also Table S3).
the tracing target is continually moving at considerable speed, which obviates the use of quasi-static

familiar posture segments.

Another potential criticism focuses on the fact that there are many situations in which humans have individ-

ual differences in their movements. Handwriting is one (Lacquaniti, 1989; Said et al., 2000; Srihari et al.,

2002). However, this case might be accounted for as this situation makes extensive use of motor learning

over a long period. Thus, humans can be expected to have differences in their local musculature that has

trained in an area where variations have small differences in cost. Another possible point of contention is

that humans have differences in gait that readily can be distinguished. However, it is the case that such gait

differences are small compared with large variations in the postures at different tracing sites seen in our

study. Yet another potential confounding issue is that differences in posture used to express emotion

are easily detected (Roether et al., 2009; Troje, 2002; Montepare et al., 1987). The use of posture to express

emotion has been given widespread attention, particularly in the graphics community. However, whether

postures expressing different emotions could be confused could also benefit from a quantitative study. It

could be the case that, in expressing motion, humans choose common postures also.

Given that the kinematics exhibited by tracing subjects is so regular, it is impossible to resist reflecting on

why it might be so. In other words, why do they use these particular posture sequences? The question of
868 iScience 19, 860–871, September 27, 2019



human motion trajectories has been studied for several decades and tackled from two different perspec-

tives. Researchers have for a long time made the distinction between the planning of a movement (Holler-

bach and Atkeson, 1987) and its execution (Rosenbaum et al., 1995; Flash and Hogan, 1985), thinking that

one had to choose between one or the other. However, the tracing data would suggest that these issues

can be separated. The tracing task naturally separates planning and execution into separate phases.

Subjects behave differently when choosing their starting posture, where different groups make different

choices anticipating the whole traverse. Once they have made this choice, they engage in the act of tracing

where they all agree on the postures taken.

Therefore, our preferred hypothesis is that, at least once the tracing starts, the posture sequences mini-

mized metabolic energy. Our reasoning is driven by the fact that over the very recent past, a number of

laboratories have built elaborate models of the human skeleton and its musculature and shown that the

joint torques can be recovered by feedforward integration given the kinematics (Erez et al., 2015; Cooper

and Ballard, 2012). Thus, given such a model, the kinematics is coextensive with the movement cost. Once

the kinematics is given the movement cost is available. It should be emphasized that the assertion that

common kinematics implies common movement cost is based on recent advances in complex three-

dimensional Newtonian computer algorithms as well as earlier and simpler systems like that of (Alexander,

1997). Parenthetically it should be noted that, in anthropomorphic robot models of passive walking, the

kinematics is correlated with the dynamics (Collins et al., 2001). Thus, although much work has to be

done, the result could be suggesting that the subjects are choosing to follow low-cost trajectories.

Although the ability to integrate the dynamics equations given a model puts torques in register with kine-

matics, the reality of the ubiquitous use of vision in motor control planning allows for giving kinematics a

causal status in motor control. This observation also impacts the possibilities for the brain’s representation

of movements. Common movement strategies argue the store of movement segments in the motor

cortices for online transmission to the spinal cord (as opposed to real-time control). Studies by Churchland

et al. (2010) show clear evidence of motor planning before movements. And the cortex is the only place

where allocentric coordinates are converted to posture-centric coordinates.

Although the kinematics result reinforces the suggestion of a place of prominence in the motor plan, the

representation of kinematics cannot simply be a stream of coordinates but has to have an associated

grammar that breaks up this stream into ‘‘sentences’’ that reflect changes in set points mainly due to

changes in physical contact with the world. An important concept for addressing these issues is that of

the ‘‘uncontrolled manifold’’ (Latash et al., 2002), which formulates the control described in terms of

task-relevant constraints. The idea of the uncontrolled manifold is also very sympathetic to an evolving

view of motor representation in motor cortex. The original micro-stimulation experiments elicited localized

body movements that were correlated with the organization of the topography of motor cortical area M1.

However, stimulation with increased stimulus magnitude produced whole-body movements that could be

interpreted as completely task-specific (Graziano and Aflalo, 2007) directed toward large-scale goals such

as eating and defense. These task-orientated sequences suggest that the motor cortex’s specific represen-

tations may include the longer sentences of a movement instead of the local responses that were initially

used to define the sensory-motor homunculus. Our results have shown that the tracing finger’s standard

deviation was the smallest as expected, but the standard deviations of other components of the body

were also affected by the task demands. In contrast, body segments that were less task-critical had larger

standard deviations. In particular, the least task-relevant marker on the unused hand had the largest stan-

dard deviation. This result resonates with a number of previous results (van Beers et al., 2012; Latash et al.,

2002) and suggests that the kinematics alone is not enough to code a movement but that it has to be

augmented with additional parameters that shape its planned use.

The next step forward in the tracing task would be to attempt to make the connection between the kine-

matics and energetic cost. Since classical oxygen consumption methods are impractical and closed form

analytically methods do not scale up, the full body forward integration approach is rapidly becoming

the method of choice since they could compute the torques of participants directly from the motion cap-

ture data. Although themeasurements of kinematics are not the same as joint torques, which are created by

elaborate sequences of muscle contractions, there is considerable evidence showing that they are directly

related. They are linked in computational models that can compute joint torques in a complex multi-joint

human model (Delp et al., 2007). The implication of this recent computational capability is that one can
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think of kinematics as a motor plan that can be converted into an equivalent torque plan when the move-

ment is executed. Fortunately, our laboratory developed a 50 degree of freedom dynamic model (Cooper

and Ballard, 2012) that can calculate the torques of each joint given the motion capture data. We can create

different movement trajectories, such as adding perturbations to the tracing trajectories of each body part,

and see if calculated joint torques minimizing posture sequences for the dynamic human model agree with

observed tracing posture sequences.

In summary, the overall result shows that movements themselves are highly stereotyped. This stereotypi-

cality takes a special form. Although the movements vary, their mean postures across subjects and varia-

tions in repeated trials within an individual subject are highly correlated. Thus, given this methodology,

the pattern of movements selected by different subjects was essentially the same, both in the average

posture sequences and the variation in those sequences.

An important initial choice is the posture. Subjects could choose any starting posture, yet different subjects

limited their choices to a small set, suggesting their tracing plan had a discrete number of solutions.

The tracing loci revealed that the standard deviation of task-relevant motion capturemarkers was observed

to be smaller than that of markers that were not relevant to the task. This pattern is consistent with the

uncontrolled manifold theory (Latash et al., 2002) of control in that the distal degrees of freedom must

be programmed to orient the tracing finger’s axial variance to be minimal.

Finally, the most important result of the experiment is the degree to which similar tracing postures suggest

that there may be a principled objective function used by the subjects. Although many exigencies could

impact any particular movement choice, posture changes that are saved for the long term are likely to

be energy efficient. Future experiments will explore various metrics to see if the role of energy can be

established definitively. If this turned out to be the case, this factor would impact almost every brain sub-

system involved in motor control.
Limitations of the Study

There are three limitations of the study. First, the age scope of participants is within a limited range. Since

the participants are all University students, their ages are between 18 and 28 years. The experimental re-

sults should apply to other age ranges, but this needs to be tested. Second, the movement of the subject

is slightly hampered by the experimental system’s need for cables. Currently, we have an accompanying

person to manage the system’s cables. Last, the tracing curve occupies 1 m 3 1 m to 2 m 3 2 m space.

We would like to test the experimental protocol in a larger workspace that would allow even larger-scale

movements.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.08.041.
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1 Supplemental Tables

classification proportion
posture 1 posture 2 posture 3 posture 4

path1 43 29 20 8
path2 69 21 10 -
path3 31 26 21 22
path4 70 20 10 -
path5 66 34 - -
path6 46 27 15 12
path7 73 27 - -
path8 43 24 20 13
path9 32 28 24 16

Table S1: The proportion of individual subjects in each cluster as a percentage.
For example, for tracing path 5, the square curve, 66 % of the subjects chose
to face the curve from one side and 34 % from the other. Related to Figure 1.

average standard deviation (cm)
right finger head right shoulder left finger

path1 2 12 12 18
path2 2 11 9 16
path3 1 5 6 12
path4 2 10 9 17
path5 2 6 5 12
path6 2 10 9 14
path7 2 9 9 14
path8 2 7 6 11
path9 2 9 9 14

Table S2: The average standard deviation of the marker positions. Related to
Figure 6.



R values for the four markers
right finger head right shoulder left finger

path1 0.87 0.4 0.5 0.53
path2 0.77 0.76 0.77 0.83
path3 0.76 0.57 0.75 0.48
path4 0.74 0.63 0.68 0.67
path5 0.76 0.62 0.49 0.67
path6 0.81 0.71 0.82 0.66
path7 0.7 0.8 0.75 0.64
path8 0.85 0.63 0.52 0.66
path9 0.8 0.64 0.68 0.8

Table S3: All the R values for the four markers computed for all nine curves
show positive correlations. Related to Figure 7.



2 Transparent Methods

The whole-body tracing experiment was designed to elicit natural movements
under common goals. Subjects wore a virtual-reality helmet, Oculus Rift1, to
see a virtual three dimensional interior room with a dojo backdrop via stereo
video. They were required to trace a series of paths positioned at fixed loca-
tions in the virtual environment. The movements of their bodies and variables
relevant to the tasks were simultaneously recorded using the PhaseSpace mo-
tion capture system2. The WorldViz Vizard software package3 both controlled
the experimental protocol and the recording of the motion capture data.

2.1 Tracing protocol

At the beginning of the trial, the subject had the suit markers checked to see
that they were in appropriate positions and adjusted the Oculus Head-mounted
display, which rendered the virtual world.

To allow for choice in initial tracing postures, a subject initially stood at a
position marked by a large white sphere one meter away from the virtual three-
dimensional closed curve suspended in space (see Figure S1 (a)). From this
position, they could freely observe the path and the location of a target sphere
on the curve. Subjects were instructed to use their dominant hand.

To start the tracing phase, software played a bell sound, and then a large
white target sphere was rendered on the path at a specific starting position.
The subject was instructed to stand next to this sphere. Once the subject’s in-
dex finger, represented by a green sphere, intersected the target sphere moved
off along the curve and the tracing portion of the trial began. The target sphere
would traverse the path and the subject traced the path by keeping their index
figure as close as possible to the target sphere. During the trial, the subject
received both visual and auditory feedback indicating target proximity When
the target sphere was intersected with by their index finger, it changed its color
from white to blue, otherwise, it remained white. The software played a sound
of “click” when the target sphere changed color. The trial ended when the tar-
get sphere returned to its original starting position. At that moment, the actual
tracing trajectory generated by the subject was shown so they could evaluate
their performance. Immediately afterward they returned to the starting position
to start the next trial (see Figure S1 (b)).

The experiment was organized in a series of blocks, each of which con-
sisted of nine curves, presented individually in a predefined but randomly gen-
erated order.

Path Design The curves to be traced were chosen to go through a common
region of space, shown in Figure S2. The paths were spread out in a volume

1Oculus Rift https://www.oculus.com/rift/
2PhaseSpace http://www.phasespace.com/
3WorldViz Vizard http://worldviz.com/products/vizard

https://www.oculus.com/rift/
http://www.phasespace.com/
http://worldviz.com/products/vizard


(a) Before tracing (b) After tracing

(c) A subject doing the tracing task (d) The skeleton plot of the subject

Figure S1: the virtual environment setup. (a) shows a full view of a path, de-
noted by a black curve, and the starting position, denoted by a large white
sphere. The small white sphere on the curve at the end of a red segment is the
tracing target sphere. (b) depicts the scene when a trial is finished. The green
curve is the actual tracing trajectory generated by a subject. (c) illustrates a
subject in the act of tracing a curve in the laboratory’s motion capture 2 x 2 x
2 meter volume. and (d) shows the lab coordinate system. The scale on the
graph is in meters. The the subject’s skeleton and the traced path in the 3D
space are plotted. The color dots correspond to a subset of the fifty active-
pulse LED markers on the suit and the virtual-reality helmet. Related to Figure
2.



Figure S2: The nine 3-dimensional paths in the virtual environmentthat were
used in the experiment. For reference, colors denote common segments and
points. For the subjects, the curves were all rendered in black, The scale is in
meters. Related to Figure 1.



of space approximately 2× 2× 2 meters, large enough for that subjects to plan
and execute sequences of full-body movements, including walking, crouching,
and tracing, to complete the task.

Each curve went through four fixed points in the virtual 3D space chosen to
constrain the curves to occupy These points were located at (-1.2, 1.50, -0.31),
(-0.60, 1.50, -0.31), (-0.60, 0.75, -0.31), (-1.2, 0.75, -0.31) meters respectively,
with the reference frame shown in Figure S1(d). This design assured that the
tracing finger went through at least two sets of two points in space at the same
height during each curve trace, providing a special set of references wherein
the postures could be compared.

Target Speed The tracing white sphere’s speed was 0.25 meters/sec, which
was selected during practice trials to be a compromise between a desire to
make the task comfortable to perform and at the same time sufficiently chal-
lenging to be interesting.

2.2 Subjects

Eighteen healthy and right-handed subjects were recruited from a pool of un-
dergraduate and graduate students from The University of Texas at Austin. All
subjects completed five blocks (5 traces per path x 9 paths for 45 trials total) of
the task plus a practice tracing. Each trial normally took about 30 seconds to
complete, thus a single subject spent about 45-60 minutes on completing the
experiment.

2.3 Motion capture

Movements were recorded using a 16-camera PhaseSpace motion capture
system, which measured the 3-dimensional location of each of these markers
at a frequency of 100Hz and with an absolute positional error of approximately
1 millimeter. The motion-capture suit was equipped with 50 active-pulse LED
markers (see Figure S3). Markers are attached in fixed, often anatomically
prominent locations such as the sternum (chest), iliac crest (hips), or patella
(kneecap). As a subject moved their limbs, the locations of the attached mark-
ers are recorded by the cameras, results in an array P ∈ RT×3M of motion
capture marker positions over time, containing T frames of M 3-dimensional
marker locations. A complete data set for each trace comprises all the infor-
mation between the start and end of each tracing portion (i.e., the moments of
contact with the target sphere and the target sphere back to its original position
in the trial). This includes both the 3-dimensional locations of subjects’ LED
makers and the target sphere, resulting in approximately 800-1200 video-rate
frames of motion capture data per trial (see Figure S1 (c and d)).



Figure S3: PhaseSpace suit with 50 active-pulse LED markers. The numbers
next to the LED markers are the marker indexes used for recording the motion
capture data. Related to Figure 2.

Data post-processing For some frames the motion capture system is unable
to determine the 3-dimensional location of some markers, thus raw motion cap-
ture data usually contains some segments of signal loss (dropouts). Dropouts
are relatively infrequent in practice but can occur over significant temporal in-
tervals, which makes linear interpolation a poor choice for reconstructing the
raw motion capture data. In this experiment, trajectory-based singular value
threshold was implemented to reconstruct missing marker data with a minimal
impact on its statistical structure. The data for each subject was interpolated
using a separate matrix completion model.

In addition to the data interpolation process if a participant did not trace the
curve successfully, e.g. their index fingers were too far behind the white sphere
tracing points at a certain frame, we would consider this tracing at this frame
invalid and the data would not be used.

2.4 Data analysis overview

The centerpiece of the analysis depends critically on the definition of a pos-
ture. At each frame, posture is defined as a vector of the positions of each
of M markers (M = 50 in our experiment). The posture p at a frame is a
3m-dimensional column vector presenting the maker positions of the i th par-
ticipant, thus

p = [m1,m2, ...,mM ] (1)



where mi = (xi, yi, zi) represents the position of the i th marker at a frame
and i = 1, 2, ...,M .

The analysis is naturally organized into three separate stages. Initially, we
analyze the subjects’ choice of staring postures, which group naturally into
small sets. The studies of tracing use exemplars chosen from the same group.

Once the starting postures are determined, the next step is to analyze
the tracing process. To measure the similarity of posture sequences across
subjects, we randomly choose one representative trace from all five repeated
traces of each subject.

Finally, when measuring correlations in subjects’ posture sequence vari-
ability, we use all of the five repeated trials for each individual. Markers are
correlated with each other by virtue of being on the same motion capture suit,
but the analysis of posture differences uses marker data from different trials
that are obviously independent.

2.5 Starting posture classification

At the beginning of each trial, the participants could see the initial location of
the target sphere on the curve but were not given any instructions to approach
each curve and choose a starting posture. The initial expectation was that they
all might choose a common starting posture but instead, a small number of
such postures were preferred. These choices were important as the traces
were very sensitive to the choice of starting postures. Using the example of
the square curve (path 5), if starting from one side, the resulting trace will be
very different from the one that would result from starting facing the other side.
However, the traces from a given choice would all be similar.

The different starting points make their resultant sets of traces incompara-
ble with each other and as a result we developed a method of identifying the
clusters of subjects who had chosen similar starts. Principle Component Anal-
ysis was used to get the compressed features of all postures at first frame,
and then Affinity Propagation clustering was used to classify them into different
categories. The details of the process are summarized as follows:

1. Define the initial postures at frame 0 of n participants as P0 = [p1, p2, ..., pR],
where R is the number of postures at frame 0.

2. Apply principal component analysis to all the initial postures that are de-
fined by the matrix P0.

3. Keep the leading r principal eigenvectors in order to construct a 3m × r
matrix Ar, where m is the total number of markers. In this way, the initial
postures are projected from a high-dimensional space (3m-dimension)
into a low-dimensional space (r-dimension) and defined as Ar.

4. Apply Affinity Propagation on the matrix Ar in order to classify the initial
postures into different categories.



Principle Component Analysis and Affinity Propagation clustering were achieved
by using Python machine scikit-learn learning package 4.

2.6 Tracing standard deviation calculation

It will be helpful to start with an easy hypothetical case of n samples of just one
component of one marker. For this case:

x =
1

n

∑
(xi)

and

σx =

√
1

n

∑
(xi − x)2

Where xi is a value, i = 1...n, and x is the mean of {xi}.
To test the uniqueness of of the posture with respect to other postures at

this point one could sample the same marker at another point in time from the
trace and ask if that point is significantly improbable given the x̄, σx just com-
puted. Depending on the outcome of this test one could report a confidence
level that the two locations are similar or different. However one can do much
better than this by including all the three of the coordinates, and much better
still by including all fifty markers. As will be shown, at the marker level, the
distinctiveness of locations are extremely significant, but the calculations are
straightforward generalizations of the scalar case.

First, let’s include the other coordinates. Since a maker position, mi, which
is a vector of three values, xi is changed to mi, the difference between xi and
x is changed to the Euclidean distance between mi and m. Therefore, we
calculated the standard deviation of marker positions as:

σm =

√
1

n

∑
(m−m)2

=

√
1

n

∑[
(xi − x)2 + (yi − y)2 + (zi − z)2

]
=
√
σ2
x + σ2

y + σ2
z

(2)

and the mean as
m = (x, y, z)

Now let’s handle the markers. To completely specify a marker, requires
three indices,one to specify the individual marker, one to specify the trial, and

4scikit-learn http://scikit-learn.org

http://scikit-learn.org


one to specify the time frame of the trace. Thus we use m(i, j, k) where i =
1, . . . ,M , j = 1, . . . , R, and k = 1, . . . , T . In analyzing the repeats of a single
subject, R is the number of repeats. In analyzing the case of one trace per
subject, R indicates the number of subjects. T is the number of frames. To be
economical, we will suppress these the time index when a particular frame is
understood.

To proceed, given some postures at a certain frame while tracing a curve,
let: the average marker m(i) represent the average position of the ith marker;

m(i) =
1

R

R∑
j=1

∆m(i, j).

and a set of average markers constitute an average posture. The average
marker is used to compute a relative marker using

∆m(i, j) = m(i, j)−m(i), (3)

which defines the relative value of the of the ith marker in the jth trace. A set
of relative markers constitutes a relative posture.

Assume a curve was traced R times, then the standard deviation in position
of the relative marker, ∆m at a certain frame k, σ∆m, can be calculated as:

σ∆m(i) =

√√√√ 1

R

R∑
j=1

∆m(i, j)2 (4)

and the relative marker mean as

∆m(i) =
1

R

R∑
j=1

∆m(i, j). (5)

2.7 Tracing Posture matching

Since the approach was conducted in world coordinates, we first translated
each posture before matching such that its right index finger was overlapped
with that of the mean posture. In this way, the distortion generated by matched
postures with location differences was minimized. A final detail is that we chose
one out of every twenty frames along the curve as a specific frame and exam-
ined all the postures at each specific frame by calculating the mean and the
standard deviation of the Euclidean distance.

The final component of the analysis is to develop a method for comparing
postures from different stages in the tracing. The posture matching described
in the following was specifically developed to verify the similarity of posture
sequences (for subjects who started from the same cluster of initial tracing
posture). This scheme matched a posture at a certain frame against mean
postures along the path, and then checked if the posture was the best matching



with the mean posture at the same frame. Specifically, we put the postures at
each specific frame in a single data set and computed the mean postures of
each data set. For checking a posture at a specific frame, we computed the
Euclidean distance between this posture and each of the mean postures of all
specific frames in order to see whether or not the Euclidean distance between
this posture and the mean posture of the same specific frame are minimum.

It is important to note that this methodology does not depend on the sums
or differences being interpretable as a posture. The metrics just have to be
good enough for our similarity comparisons, which are relative. The intent is to
show that the distribution of mean posture matches, using the metric, is quite
contained at a point and very different when compared to distal points on the
traced curve.

Assume a path with N frames was traced R times, then the mean posture
at a particular frame ka can be calculated as:

∆m(i, ka) =
1

R

R∑
j=1

∆m(i, j, ka) (6)

From Eq. 6, the match value Qa at ka can be calculated as

Qa =

√√√√ M∑
i=1

||∆m(i, ka)||2 (7)

Now for the match at a separate time frame kb. The data at frome ka needs
to be compared to the average at this different time. Thus the data from ka
uses the average at kb:

∆m(i, j, kb) = m(i, j, ka)− m̄(i, j, kb)

So that the match value at kb can be calculated as

Qb =

√√√√ 1

M

R∑
j=1

||∆m(i, kb)||2 (8)

When we compare the two frames ka and kb they are always a multiple
of ten frames apart. With this constraint Qa turns out to be very significantly
different from Qb.
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