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Abstract: Background/Objectives: Glioblastoma (GBM) is an aggressive and lethal pri-
mary brain tumor with a poor prognosis, with a 5-year survival rate of approximately 5%.
Despite advances in oncologic treatments, including surgery, radiotherapy, and chemother-
apy, survival outcomes have remained stagnant, largely due to the failure of conventional
therapies to address the tumor’s inherent heterogeneity. Radiomics, a rapidly emerging
field, provides an opportunity to extract features from MRI scans, offering new insights
into tumor biology and treatment response. This study evaluates the potential of delta
radiomics, the study of changes in radiomic features over time in response to treatment
or disease progression, exploring the potential of delta radiomics to track temporal radia-
tion changes in tumor morphology and microstructure. Methods: A cohort of 50 female
CD1 nude mice was injected intracranially with G7 glioblastoma cells and divided into
irradiated (IR) and non-irradiated (non-IR) groups. MRI scans were performed at baseline
(week 11) and post-radiation (weeks 12 and 14), and radiomic features, including shape,
histogram, and texture parameters, were extracted and analyzed to capture radiation-
induced changes. The most robust features were those identified through intra-observer
reproducibility assessment, ensuring reliability in feature selection. A machine learning
model was developed to classify irradiated tumors based on delta radiomic features, and
statistical analyses were conducted to evaluate feature feasibility, stability, and predictive
performance. Results: Our findings demonstrate that delta radiomics effectively captured
significant temporal variations in tumor characteristics. Delta radiomics features exhibited
distinct patterns across different time points in the IR group, enabling machine learning
models to achieve a high accuracy. Conclusions: Delta radiomics offers a robust, non-
invasive method for monitoring the treatment of glioblastoma (GBM) following radiation
therapy. Future research should prioritize the application of MRI delta radiomics to ef-
fectively capture short-term changes resulting from intratumoral radiation effects. This
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advancement has the potential to significantly enhance treatment monitoring and facilitate
the development of personalized therapeutic strategies.

Keywords: delta radiomics; glioblastoma; radiation therapy; MRI; machine learning; tumor
morphology and texture analysis

1. Introduction
Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor in adults,

characterized by rapid growth, high infiltration into surrounding brain tissue, and resis-
tance to standard therapies. Despite advances in surgical resection, radiotherapy, and
chemotherapy, the prognosis for GBM remains poor, with a median survival of approx-
imately 15 months following diagnosis [1]. The highly heterogeneous nature of GBM
presents a significant challenge in treatment planning and response assessment, as tu-
mors exhibit substantial variability between patients (interpersonal heterogeneity) and
within a single tumor (intrapersonal heterogeneity) due to diverse genetic mutations, mi-
croenvironmental factors, and cellular differentiation. This heterogeneity influences tumor
progression, immune evasion, and therapeutic resistance, making it difficult to predict
treatment outcomes and personalize therapy effectively [2].

MRI is the preferred imaging modality for diagnosing GBM, planning surgeries, and
monitoring therapeutic responses. MRI provides a superior soft tissue contrast and enables
non-invasive assessments of tumor microstructure and heterogeneity. The availability of
multiple imaging contrasts (e.g., T1-weighted, T2-weighted, diffusion-weighted imaging
(DWI), magnetization transfer imaging, and chemical exchange saturation transfer (CEST))
enhances the ability to visualize the tumor environment at a voxel-by-voxel level, allowing
for a more comprehensive evaluation of tumor evolution. However, despite these advan-
tages, the assessment of treatment response in brain tumors remains limited by current
MRI-based evaluation criteria, which primarily rely on tumor size measurements rather
than capturing the full biological complexity of tumor progression.

Radiomics has emerged as a promising approach to enhance GBM imaging analysis by
extracting high-dimensional features from MRI scans that describe tumor heterogeneity, tex-
ture, shape, and intensity variations [3–6]. These quantitative imaging biomarkers provide
a more objective, reproducible, and comprehensive assessment of tumor behavior com-
pared to conventional methods [7–11]. However, traditional radiomics captures imaging
features at a single time point, failing to reflect temporal changes in tumor characteristics
that occur during therapy.

To overcome this limitation, delta radiomics incorporates time-dependent feature
analysis, allowing for the evaluation of tumor evolution over multiple imaging time points.
Unlike traditional radiomics, delta radiomics considers variations in imaging features
between multiple MRI scans acquired at different time points, enabling a longitudinal as-
sessment of tumor evolution during treatment. By tracking therapy-induced modifications,
delta radiomics offers a more precise, patient-specific evaluation of tumor response, which
can aid in treatment adaptation and personalization.

Delta radiomics has demonstrated promising results in treatment planning, under-
standing tumor growth patterns, and monitoring therapeutic responses; however, there
is a scarcity of studies assessing its effectiveness relative to single-time-point radiomics.
Zhang et al. [12] reported that delta features derived from two follow-up MR images of
brain metastases after radiosurgery, when analyzed using an ensemble classifier model,
achieved an accuracy of 73.2% and an AUC of 0.73 in distinguishing between radiation
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necrosis and tumor progression. This study investigated changes in radiomics features
during radiation therapy for non-small-cell lung cancer and their impact on prognosis,
observing significant changes, with delta radiomics improving survival and metastasis
predictions. Despite its potential, the integration of delta radiomics into clinical work-
flows remains a major challenge. The methodologies for calculating and interpreting
voxel-by-voxel changes in tumor parameters are poorly standardized, computationally
intensive, and not widely understood. Furthermore, while high-resolution MRI and ad-
vanced signal processing methods have facilitated histogram-based tumor analysis, the use
of delta radiomics for assessing tumor radiosensitivity and predicting treatment response
remains underexplored.

This study aims to utilize delta radiomics features at different time points to evaluate
the effects of early radiation therapy in a preclinical mouse model of glioblastoma. By
leveraging MRI-based radiomic analysis, we aim to characterize temporal changes in
tumor morphology, texture, and heterogeneity following radiation treatment. The study
will focus on longitudinal feature extraction, allowing for a more detailed assessment of
tumor evolution across multiple imaging time points. Additionally, we will apply machine
learning techniques to classify irradiated (IR) tumors at different stages based on delta
radiomic features. To our knowledge, there are no published studies that have explored MR
delta radiomics in brain tumors, nor ones that have examined lesion response to radiation
with different endpoints.

The goal is to develop predictive models that can identify patterns of tumor response
to radiation therapy, providing insights into treatment efficacy and resistance mechanisms.
By using AI analysis, we seek to establish imaging biomarkers that correlate with ther-
apeutic effectiveness, which could eventually be translated into clinical applications for
glioblastoma and other brain tumors.

2. Materials and Methods
2.1. Animal Model

Fifty female CD1 nude mice were intracranially injected with G7 glioblastoma cells and
divided into the following two groups: irradiated (IR, n = 42) and non-irradiated controls
(non-IR, n = 8). Tumors were allowed to grow for 11 weeks before MRI scanning (Figure 1).
The mice were monitored twice daily for signs of distress, including >20% weight loss,
lethargy, neurological deficits, or feeding abnormalities, and were euthanized if they met
humane endpoint criteria using CO2 asphyxiation followed by cervical dislocation. All pro-
cedures were performed under isoflurane anesthesia, with buprenorphine (0.05 mg/kg SC)
for analgesia. The mice were housed in controlled conditions with a 12 h light/dark cycle,
ad libitum food and water, and nesting material for enrichment. All 50 mice were eutha-
nized based on humane endpoints. The study was approved by the Institutional Animal
Ethics Committee (REC-HSD-205-2023) at Prince Sattam Bin Abdulaziz University and
followed the ARRIVE guidelines and NC3Rs principles.

2.2. MRI Imaging

MRI experiments were conducted using a 7 Tesla Bruker Biospec Avance system
(Bruker Biospin, Ettlingen, Germany). Homogeneous radiofrequency excitation was
achieved with a 72 mm birdcage volume resonator, while signal detection was performed
using an actively decoupled 4-channel phased array receive-only head surface coil (Rapid
Biomedical, Wurzburg, Germany). The mice were initially anesthetized with 5% isoflurane
and a 30:70 O2/N2O ratio, positioned prone on an MRI cradle. A hot water circulation
jacket regulated the animal’s temperature at 37 ± 1 ◦C, monitored via a rectal probe. The
head was secured laterally with conical ear rods and longitudinally with a nose cone for
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anesthetic gas delivery. The animals breathed spontaneously through a facemask that
delivered a constant flow of isoflurane mixed with a 40:60 ratio of O2/N2O (1 L/min−1).
The isoflurane concentration was adjusted between 1.5% and 3% to maintain stable respira-
tion rates within normal physiological ranges (40–70 bpm). Respiration was continuously
monitored throughout the experiment using a pressure sensor connected to an air-filled
balloon placed under the animal’s abdomen (Topspin software 3.1, Bruker, Ettlingen, Ger-
many, https://www.bruker.com/en/products-and-solutions/mr/nmr-software/topspin.
html, accessed on 24 March 2025).
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Figure 1. Experimental protocol. At week zero, 50 mice were orthotopically implanted with G7
glioblastoma cells. Mice were divided into two groups (non-IR and IR) and were imaged in different
time points (weeks 11, 12, and 13).

MRI was conducted at the following three time points: week 11 (pre-radiation base-
line), week 12, and week 13. Post-radiation MRI scans were also conducted in week 13 to
assess tumor progression and the effects of radiation therapy. T2-weighted rapid acquisi-
tion with relaxation enhancement (RARE) sequences were used to obtain high-resolution
images with the following parameters: repetition time (TR) of 2500 ms, echo time (TE) of
33 ms, field of view (FOV) of 25 mm × 25 mm, slice number (n = 8), resolution of (176 × 176)
pixels, and thickness of 0.5 mm. These settings ensured the optimal visualization of tumor
boundaries, enabling accurate tumor segmentation for radiomic analysis.

2.3. Irradiation Procedure

Targeted radiation was delivered using the Small Animal Radiation Research Platform
(SARRP), which allows for precise irradiation with beam sizes as small as 0.5 mm, min-
imizing radiation exposure to surrounding normal tissues. The SARRP system (Xstrahl,
Version 5.0) uses cone-beam computed tomography (CBCT) for guidance, ensuring the
precise localization of the radiation beam within the brain, mimicking clinical treatment
protocols. The IR group received a fractionated radiation dose of 6 Gy, delivered in three
2 Gy fractions over three consecutive days. This fractionation scheme was chosen to min-
imize acute toxicity while delivering an effective therapeutic dose. The entire brain was
irradiated to account for the diffuse nature of GBM tumors, which exhibit highly infiltrative
growth patterns.

https://www.bruker.com/en/products-and-solutions/mr/nmr-software/topspin.html
https://www.bruker.com/en/products-and-solutions/mr/nmr-software/topspin.html
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2.4. Radiomics Features Extraction and Selection

T2-weighted MRI images were used for radiomics analysis. Tumor regions of interest
(ROIs) were manually segmented using 3D Slicer (version 5.2.1) by two observers with
10 years of experience in neuroimaging analysis. Care was taken to exclude surrounding
normal brain tissue to ensure accurate tumor segmentation by the two observers after
applying a normalizing image filter. The segmentation pipeline is illustrated in Figure 2.
Following segmentation, a total of 107 radiomic features were extracted from each MRI
scan, capturing tumor morphology (14), texture (75), and intensity variations (18). Feature
extraction was performed using 3D slicer, ensuring compliance with the Image Biomarker
Standardization Initiative (IBSI). Additionally, inter-class correlation coefficient (ICC) calcu-
lations were performed to extract robust radiomics features assessed by the two observers,
which were categorized based on their reliability, where a good reliability was defined as
ICC ≥ 0.8, a moderate reliability as ICC = 0.5–0.8, and a poor reliability as ICC < 0.5. Only
features with a good reliability (n = 58, Table S1) were retained for further analysis. The
radiomics processing pipeline, including segmentation and feature extraction, is depicted
in Figure 2.

Biomedicines 2025, 13, x FOR PEER REVIEW 5 of 15 
 

minimizing radiation exposure to surrounding normal tissues. The SARRP system 
(Xstrahl, Version 5.0) uses cone-beam computed tomography (CBCT) for guidance, ensur-
ing the precise localization of the radiation beam within the brain, mimicking clinical 
treatment protocols. The IR group received a fractionated radiation dose of 6 Gy, deliv-
ered in three 2 Gy fractions over three consecutive days. This fractionation scheme was 
chosen to minimize acute toxicity while delivering an effective therapeutic dose. The en-
tire brain was irradiated to account for the diffuse nature of GBM tumors, which exhibit 
highly infiltrative growth patterns. 

2.4. Radiomics Features Extraction and Selection 

T2-weighted MRI images were used for radiomics analysis. Tumor regions of interest 
(ROIs) were manually segmented using 3D Slicer (version 5.2.1) by two observers with 10 
years of experience in neuroimaging analysis. Care was taken to exclude surrounding 
normal brain tissue to ensure accurate tumor segmentation by the two observers after ap-
plying a normalizing image filter. The segmentation pipeline is illustrated in Figure 2. 
Following segmentation, a total of 107 radiomic features were extracted from each MRI 
scan, capturing tumor morphology (14), texture (75), and intensity variations (18). Feature 
extraction was performed using 3D slicer, ensuring compliance with the Image Biomarker 
Standardization Initiative (IBSI). Additionally, inter-class correlation coefficient (ICC) cal-
culations were performed to extract robust radiomics features assessed by the two observ-
ers, which were categorized based on their reliability, where a good reliability was defined 
as ICC ≥ 0.8, a moderate reliability as ICC = 0.5–0.8, and a poor reliability as ICC < 0.5. 
Only features with a good reliability (n = 58, Table S1) were retained for further analysis. 
The radiomics processing pipeline, including segmentation and feature extraction, is de-
picted in Figure 2. 

 

Figure 2. Schematic diagram of the radiomics analysis pipeline steps after injecting the G7 model. 
The procedures include image acquisition, applying normalization image filter, tumor segmenta-
tion, radiomic features (shape, histogram, and texture) extraction, and then delta radiomics features 
analysis using predictive model construction and validation. 

2.5. Delta Radiomics Feature Analysis 

To capture temporal changes in tumor characteristics, delta radiomics was applied 
by analyzing variations in radiomic features across multiple time points (week 11, with 
post-radiation follow-ups in week 12 and week 13). Changes in radiomic features over 
time were computed using p-values of < 0.05. By quantifying changes in feature 

Figure 2. Schematic diagram of the radiomics analysis pipeline steps after injecting the G7 model.
The procedures include image acquisition, applying normalization image filter, tumor segmentation,
radiomic features (shape, histogram, and texture) extraction, and then delta radiomics features
analysis using predictive model construction and validation.

2.5. Delta Radiomics Feature Analysis

To capture temporal changes in tumor characteristics, delta radiomics was applied
by analyzing variations in radiomic features across multiple time points (week 11, with
post-radiation follow-ups in week 12 and week 13). Changes in radiomic features over time
were computed using p-values of <0.05. By quantifying changes in feature distributions
over time, delta radiomics provides a longitudinal assessment of treatment response,
allowing us to identify key biomarkers that distinguish responders from non-responders to
radiation therapy.

2.6. Machine Learning-Based Predictive Modeling

To classify tumors as irradiated (IR) at the time points of week 11, 12, and 13 to assess
radiation response, machine learning models were implemented using Python (3.12.7).
Delta radiomics features were used to distinguish between IR in weeks 11, 12, and 13
to ensure robustness and generalizability after applying the z score. Then, 5-fold cross-
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validation was conducted. The models were assessed by the area under the receiver
operating characteristic curve.

2.7. Statistical Analysis

Statistical analyses were performed using MATLAB R2024b to identify robust radiomic
features with interobserver concordance correlations (ICCs > 0.8). A two-sided Wilcoxon
signed-rank test was employed to extract and compare variations in delta radiomic features
across different time points. Graphs were created using GraphPad Prism 10, while Python
code was utilized for training, testing, and evaluating the machine learning models.

3. Results
3.1. Radiomics Features Analysis

The analysis revealed significant differences in the shape, histogram, and texture
features between the irradiated (IR) and non-irradiated (non-IR) groups. The shape features
in the IR group, particularly the major axis length and compactness, showed a marked
reduction in week 14 compared to the non-IR group, indicating tumor shrinkage after
radiation therapy. Other shape metrics, such as spherical disproportion, which quantifies
how much a three-dimensional shape deviates from a perfect sphere, commonly used
in medical imaging analysis in radiomics to describe the irregularity of tumors or other
anatomical structures and volume density, were also significantly different in the IR group,
capturing the morphological impacts of radiation (p < 0.05 for all shape features) (see
Table 1, shape features).

Table 1. Delta radiomics features that demonstrate significant differences (p-values < 0.05) between
the intervention groups in weeks 11, 12, and 13.

IR (Week 11 VS. Week 12) IR (Week 12 VS. Week 13) Category

Elongation Elongation shape

LeastAxisLength LeastAxisLength shape

Maximum2DDiameterColumn Maximum2DDiameterColumn shape

Maximum2DDiameterRow Maximum2DDiameterRow shape

Maximum3DDiameter Maximum3DDiameter shape

MeshVolume MeshVolume shape

MinorAxisLength MinorAxisLength shape

SurfaceArea SurfaceArea shape

SurfaceVolumeRatio SurfaceVolumeRatio shape

VoxelVolume VoxelVolume shape

×10Percentile ×10Percentile histogram

×90Percentile ×90Percentile histogram

Energy Energy histogram

Entropy Entropy histogram

InterquartileRange InterquartileRange histogram

Mean Mean histogram

Median Median histogram

Minimum --------------- histogram

RootMeanSquared RootMeanSquared histogram

TotalEnergy TotalEnergy histogram
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Table 1. Cont.

IR (Week 11 VS. Week 12) IR (Week 12 VS. Week 13) Category

ClusterProminence ClusterProminence histogram

ClusterShade ClusterShade GLCM

ClusterTendency ClusterTendency GLCM

Contrast Contrast GLCM

Correlation Correlation GLCM

DifferenceAverage DifferenceAverage GLCM

DifferenceEntropy DifferenceEntropy GLCM

DifferenceVariance DifferenceVariance GLCM

Idn GLCM

Imc1 Imc1 GLCM

Imc2 Imc2 GLCM

InverseVariance InverseVariance GLCM

JointEnergy JointEnergy GLCM

JointEntropy JointEntropy GLCM

SumEntropy SumEntropy GLCM

SumSquares SumSquares GLCM

DependenceNonUniformity DependenceNonUniformity GLDM

GrayLevelNonUniformity GrayLevelNonUniformity GLDM

GrayLevelVariance GrayLevelVariance GLDM

LargeDependenceEmphasis LargeDependenceEmphasis GLDM

SmallDependenceEmphasis SmallDependenceEmphasis GLDM

LargeDependenceEmphasis GLDM

SmallDependenceHighGrayLevelEmphasis --------------- GLDM

GrayLevelNonUniformity_1 GrayLevelNonUniformity_1 GLDM

GrayLevelVariance_1 --------------- GLDM

LongRunEmphasis LongRunEmphasis GLDM

RunEntropy RunEntropy GLDM

RunPercentage --------------- GLDM

RunVariance RunVariance GLDM

ShortRunEmphasis --------------- GLDM

ShortRunHighGrayLevelEmphasis ShortRunHighGrayLevelEmphasis GLDM

LargeAreaEmphasis LargeAreaEmphasis GLSZM

LargeAreaLowGrayLevelEmphasis LargeAreaLowGrayLevelEmphasis GLSZM

Busyness Busyness NGTDM

Complexity Complexity NGTDM

Contrast_1 --------------- NGTDM

Histogram features showed substantial variations as well, with the IR group displaying
a decrease in global intensity peak, mean intensity, and intensity range, suggesting changes
in tumor density and cellularity. In particular, global and local intensity peaks, along
with the interquartile intensity range, exhibited statistically significant declines (p < 0.05)
between the IR and non-IR groups at weeks 1 and 14. These changes reflect radiation-
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induced necrosis and a reduction in viable tumor cells, which alter the intensity distribution
within the tumor region (see Table 1, histogram features).

Texture features also indicated distinct patterns between the IR and non-IR groups. No-
tably, features such as Gray-Level Non-Uniformity, Dependence Entropy, and Gray-Level
Variance were significantly higher in the IR group, capturing the increased heterogeneity
within the tumor matrix post-radiation. This aligns with expected biological responses, as
radiation causes cell death and disrupts tumor structure, leading to a more heterogeneous
texture profile (p < 0.05) (see Table 2, texture features).

Table 2. Presents the performance metrics of various machine learning models, including Random
Forest, Decision Tree, and Logistic Regression, evaluated across training, testing, and AUC (area
under the curve) measures.

Model Name

Training Accuracy % Testing Accuracy %

AUCIR wk 11 vs.
wk 12

IR wk 12 vs.
wk 13

IR wk 11 vs.
wk 12

IR wk 12 vs.
wk 13

SVM 86 77 74 78 0.83 0.82

Logistic regression 77 74 77 72 0.96 0.7

3.2. Tumor Growth Analysis Pre- and Post-Irradiation

The analysis of tumor growth over time utilized T2-weighted MRI images, with tumors
being manually delineated. At baseline (week 11), there were no significant differences
(p-value < 0.05) in tumor volume measured by 3D analysis between the non-irradiated (non-
IR, mean = 13.37 ± 5.95) and irradiated (IR, mean = 13.82 ± 9.12) groups, indicating initial
equivalence. However, by weeks 12 and 13 post-irradiation, non-significant differences in
tumor growth were observed at these time points, as follows: in week 12, the non-IR group
had a mean of 30.71 ± 16.17, while the IR group had a mean of 27.74 ± 22.64; in week 13,
the non-IR group had a mean of 24.64 ± 6.72, compared to the IR group with a mean of
39.86 ± 29.07 (see Figure 3).
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Figure 3. Tumor regions were manually outlined from T2-weighted slices where they were visible.
(a) Illustrates tumor growth for both the IR and non-IR groups across three time points (weeks 11, 12,
and 13), revealing no significant difference between the two groups (unpaired t-test). (b,c) Present a
comparison of tumor growth between the non-IR and IR groups at various time points.
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3.3. Quantitative Analysis

The radiomics features assessed by two observers in the pre-radiation groups (n = 47)
were analyzed using the intraclass correlation coefficient (ICC) to identify robust features
(ICC > 0.8, n = 55) for subsequent analysis, as shown in Table 1. The robust radiomics fea-
tures extracted from the T2-weighted images exhibited high ICCs, including shape (78.56%),
histogram (72.22%), GLCM (62.5%), GLDM (42.86%), GLRLM (50%), GLSZM (12.5%), and
NGTDM (60%). Moderate ICCs were observed for shape (21.43%), histogram (27.78%),
GLCM (25%), GLDM (57.14%), GLRLM (43.75%), GLSZM (68.75%), and NGTDM (40%).
Poor ICCs were recorded for shape (0%), histogram (0%), GLCM (12.5%), GLDM (0%),
GLRLM (6.25%), GLSZM (18.75%), and NGTDM (%0), as shown in Figure 4.
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The findings indicated that most shape, histogram, GLDM, and NGTDM features
exhibited high and moderate ICC values in the pre-radiation groups for both non-IR and
IR. These features also displayed a good variability, making them suitable for subsequent
analysis steps.

3.4. Delta Radiomics Features in IR and Non-IR Groups

To assess the statistical significance of differences between the IR and non-IR groups
at different time points, a p-value analysis was calculated by MATLABR2024b (Wilcoxon
method) for each radiomics feature. The non-IR group in weeks 11, 12, and 13 was not
statically significant at all time points. The IR group in week 11 and week 12 (n = 53)
was non-statistically significant (shape features 10%, histogram 18.18%, and texture 2.7%)
and statistically significant (shape features 90%, histogram 81.81%, and texture 97.29%)
(Figure 5a), and the IR group in week 12 (n = 47) and week 13 was non-statistically
significant (shape features 10%, histogram 27.27%, and texture 18.91%) and statistically
significant (shape features 90%, histogram 72.72%, and texture 81%) (Figure 5b).

3.5. Machine Learning Classification and PCA

For classification purposes, machine learning models were employed with a 70–30 split
for training and testing data. Principal Component Analysis (PCA) was applied to the
extracted MRI radiomics features after Z-score normalization. The first two principal com-
ponents were selected, accounting for 95% of the total variance, to reduce dimensionality
and retain the most informative features, leading to a robust set of predictive features used
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in the machine learning model. Support vector machine (SVM) and logistic regression
models were applied and distinguished IR from weeks 11 and 12 and IR from weeks 12
and 13, which allowed for effectively identifying the structural and intensity-based changes
induced by radiation, as shown in Table 1.

The AUC results demonstrated the model’s overall reliability in differentiating be-
tween irradiated (IR) samples at week 11 versus week 12 and week 12 versus week 13
(Figure 6). Collectively, these metrics confirm the effectiveness of integrating radiomics
features with machine learning to accurately evaluate treatment effects in this glioblastoma
(GBM) model.
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4. Discussion
This study’s findings underscore the capability of MRI-based delta radiomics to

detect notable temporal alterations in glioblastoma (GBM) morphology and microstructure
post-radiation therapy. Prior radiomics studies have typically analyzed single time points,
lacking the temporal dimension needed to capture dynamic tumor changes. Delta radiomics
addresses this gap by examining how radiomic features evolve across multiple imaging time
points, providing a longitudinal view of tumor progression. Unlike static radiomics, which
may miss transient treatment-induced effects, delta radiomics tracks radiation-related
changes in tumor heterogeneity, shape, and texture over time. This dynamic approach
could potentially offer a more precise and patient-specific assessment of tumor response,
informing adaptive treatment strategies and identifying robust imaging biomarkers for
early therapeutic effects. By employing delta radiomics in our GBM mouse model, we
introduce a promising methodology to detect subtle microstructural changes post-radiation
that traditional imaging might overlook.

Our observations align with and extend prior radiomics research. For instance,
Núñez et al. (2020) demonstrated that radiomic texture and intensity features from MRIs
could distinguish chemotherapy-treated vs. control GBM in mice [13]. While their study
was cross-sectional and specific to temozolomide (with a different GBM model), both their
work and ours highlight that imaging features capture subtle therapy-induced changes,
such as an altered heterogeneity. Notably, the specific delta features we identified differ
(reflecting radiation’s unique effects versus chemotherapy), yet both studies underscore
heterogeneity measures as key indicators of treatment effects. Our approach using delta
radiomics provides additional insights beyond static radiomics by revealing how these
features evolve, a capability that static, single-time-point analyses lack. Moreover, our
findings echo the notion expressed by Hooper and Ginat (2023) that radiomics augments
conventional MRI by yielding quantitative markers linked to genotype, response, and prog-
nosis [14]. However, delta radiomics offers further granularity, capturing early temporal
shifts that may forecast longer-term outcomes. This dynamic approach has been lauded as
a tool for early therapy adaptation in radiation oncology. By comparing our results with
these studies, we demonstrate that delta radiomics not only corroborates known radiomic
signatures of treatment response, but also provides a richer, time-resolved perspective that
static radiomics cannot, thereby enhancing the ability to personalize and adjust treatments
earlier in the care pathway. A notable observation of this study was the diminished voxel
intensity uniformity and increased tumor heterogeneity in the IR group following radiation
therapy. These findings align with prior research highlighting the significance of radiomics
in delineating intra-tumoral heterogeneity, which has been associated with tumor growth
and treatment resistance [15]. The utilization of delta radiomics enabled us to monitor these
alterations over time, offering a more dynamic and thorough evaluation of tumor response
in contrast to traditional static imaging methods. The integration of machine learning
models improved our capacity to distinguish between irradiated and non-irradiated tu-
mors at different time intervals, thereby validating the efficacy of AI-driven radiomics in
treatment assessment [16].

Ensuring the robustness of radiomic feature selection was a critical aspect of our
methodology. Initially, we identified features with a high reproducibility in intra-observer
analyses, minimizing variability from image acquisition and segmentation differences. This
approach ensured that only reliable and stable features were selected for further analysis.
Subsequently, we focused on dynamic delta features that captured temporal variations
in tumor characteristics. By utilizing these comprehensive delta radiomic features, we
enhanced the sensitivity of our analysis in detecting radiation-induced changes in tumor
morphology and texture [17]. This methodological framework adheres to established
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principles in radiomics research, ensuring that our findings are statistically significant
and reproducible.

Despite these promising outcomes, several challenges remain in the clinical application
of delta radiomics. A constraint is the absence of uniformity in radiomic feature extraction
and machine learning pipelines, which can impact reproducibility and generalizability.
Our research employed rigorous feature selection techniques and strong quality control
protocols to ensure the dependability of the derived radiomic characteristics. Nonetheless,
as previously addressed in systematic reviews of delta radiomics, multicenter validation
and standardized methods are crucial for enhancing clinical translation [17]. Moreover,
although our machine learning models showed a commendable accuracy in distinguishing
between the IR and non-IR groups, additional validation in larger, independent datasets is
essential to verify their predictive efficacy. Another factor is the biological interpretation
of radiomic characteristics. Although radiomics offers quantitative metrics of tumor form
and texture, the fundamental biological mechanisms responsible for these alterations have
yet to be completely clarified. Integrating radiomic analysis with supplementary genetic
and histopathological data may provide an enhanced understanding of the biological
associations of radiomic features. Prior research has underscored the necessity for multi-
modal strategies that integrate radiomics with genomes, transcriptomics, and pathology to
enhance the predictive efficacy of imaging biomarkers [13,14]. In our study, the entire brain
was irradiated (as opposed to focal beam targeting) due to the highly infiltrative nature of
G7 glioblastoma tumors, which lack clear borders. This approach ensured that radiation
was delivered to all regions of tumor cell infiltration and avoided under-dosing microscopic
disease. We acknowledge that whole-brain irradiation is different from clinical practice
(where focal radiotherapy is standard), and it may induce changes in normal brain tissue.
However, whole-brain irradiation is often employed in preclinical GBM studies for consis-
tency when dealing with diffuse tumor models [18]. The precision of the SARRP system
was utilized to confine the doses to the cranium and minimize off-target exposure. We also
chose to exclude chemotherapy in this study to isolate radiation-induced effects on the MRI
features; adding temozolomide (TMZ) would make it difficult to discern whether radiomic
changes were due to radiation or the drug. We agree that future experiments should
explore focal irradiation and chemo–radiotherapy combinations to more closely mimic
clinical treatment and assess how such factors might alter radiomic signatures. Another key
limitation of this study is the use of immunodeficient (nude) mice, which lack functional
T-lymphocytes. While this was necessary to permit human GBM cell implantation, the
absence of an adaptive immune response means that we could not capture immune-related
effects on tumor growth or radiomic features. This limitation likely precludes observations
of radiation-induced inflammatory or immunological changes in the MRI data. Future
studies should consider immunocompetent or humanized GBM models to assess how the
immune system’s involvement may influence radiomic patterns after therapy. Additionally,
our use of a 9.4T small-animal MRI scanner differs from the 3T scanners commonly used
in clinical settings, which may affect the translatability of our findings. Investigating the
performance of these radiomic markers at clinical field strengths is essential for potential
clinical application.

5. Conclusions
In summary, this study demonstrates that MRI-based delta radiomics provides a

dynamic, sensitive measure of GBM tumor response following radiation. By capturing
temporal shifts in tumor morphology and texture, delta radiomics identified early mi-
crostructural alterations that preceded visible size changes. This approach addresses a key
gap in traditional imaging by offering time-resolved insights into treatment efficacy. Our
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delta radiomic features, validated with machine learning, successfully differentiated irradi-
ated from non-irradiated tumors across time points, underscoring the promise of AI-driven
radiomic models in oncology. While challenges in standardization, reproducibility, and
clinical translation remain, our findings contribute to the growing evidence that radiomics
can serve as a non-invasive biomarker for early treatment monitoring. With continued
research to validate and refine this methodology, delta radiomics could be integrated into
clinical practice to guide personalized GBM treatment, adapting therapies in real time
to improve patient outcomes. The robust and dynamic nature of delta radiomics marks
a significant advancement in our ability to non-invasively track, predict, and ultimately
improve cancer therapy responses.
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//www.mdpi.com/article/10.3390/biomedicines13040815/s1, Table S1: The robust radiomic fea-
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