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Aims. The preferential dependence on glycolysis as a pathway of energy metabolism is a hallmark of cancer cells. However, the
prognostic significance of glycolysis-related genes in head and neck squamous cell carcinoma (HNSCC) remains obscure. The
purpose of this study was to identify glycolysis-related genes of prognostic value in HNSCC. Results. Transcriptional and clinical data
of 544 HNSCC samples were obtained from The Cancer Genome Atlas (TCGA) dataset. By gene set enrichment analysis (GSEA) and
by employing a univariate and subsequently a stepwise multivariate Cox proportional regression model, eight glycolysis-related genes
of prognostic significance in HNSCC (KIF2A, JM]D8, HMMR, STC2, HK1, EXT2, GPR8, and STCI) were identified. The patients
were clustered into two groups (high and low risk) based on the expression of these genes. High-risk patients had significantly a
shorter overall survival than low-risk patients. Furthermore, a new prognostic indicator based on selected glycolysis-related genes was
developed by multivariate Cox analysis that proved to be a better predictor of patient outcome compared to other clinical factors.
Conclusion. Our findings provide new insights into the role of glycolysis in HNSCC. The identified genes predict the patient prognosis

and might substantially contribute to the development of individualized treatments.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a fatal
malignancy and one of the leading causes of cancer death
worldwide [1]. In particular, over 830,000 people are di-
agnosed with head and neck cancer each year, and more than
430,000 die from the disease [2]. HNSCC accounts for 90%
of all head and neck cancers [3]. Although various treatment
options are available, such as surgery, radiotherapy, che-
motherapy, immunotherapy, targeted therapy, and combi-
nation therapy [4], patient survival is still poor. The five-year
survival time ranges between 40 and 50% [5]. Given the high
lethality of the disease, better tools for prognosis may help
improve HNSCC management.

To date, HNSCC prognosis still mainly relies on his-
topathologic examination and tumor staging. However,
these approaches are unsuitable for reliable prediction of

patient outcome. Previous studies have reported accurate
and quantitative paradigms for prognosis prediction based
on molecular markers or critical gene profiles that may help
optimize therapeutic regimens. However, additional mo-
lecular biomarkers for individualized therapy are urgently
needed. Compelling evidence has suggested that increased
glycolysis is a hallmark of cancer cells [6]. Even under
normal oxygen concentrations, the rate at which cancer cells
metabolize glucose through glycolysis increases compared to
normal cells [7, 8]. This metabolic change increases glucose
uptake and lactate production, thereby affecting cell growth,
proliferation, angiogenesis, and invasion [5, 9, 10]. Gly-
colysis is a complex and rigorous process, which is strictly
and finely regulated by related genes.

Similar to most aggressive tumors, HNSCC exhibits
a high rate of glycolysis to meet its metabolic de-
mands [11, 12]. Consistently, molecular imaging studies
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using 18F-fluoro-2-deoxy-d-glucose positron emission to-
mography demonstrated increased glucose uptake and
glycolysis in HNSCC [13-15]. Moreover, an increasing
number of studies have demonstrated that, in HNSCC, the
changes in glycolysis are associated with alterations in on-
cogenes, tumor suppressor genes, as well as with the
overexpression of glycolytic enzymes and glucose trans-
porters [16]. Several studies have also attempted to predict
the relationship between patient survival and glycolysis. For
example, Grimm et al. demonstrated that the overexpression
of TKTLI is negatively correlated with the survival of pa-
tients with oral squamous cell carcinoma [17]. These findings
substantiate the involvement of glycolysis in HNSCC and
highlight the potential of glycolysis-related genes as prog-
nostic markers in this disease. Notably, the association
between single glycolysis-related genes and HNSCC pro-
gression has already been addressed. However, screening
and identification of molecular markers that predict
the prognosis of HNSCC by using a wide range of glycolysis-
related gene expression profiles has not been studied.
The objective of our study was to explore the latent applied
value of glycolysis-related genes in the stratification of
HNSCC patients and in the development of personalized
treatments. We systematically analyzed the expression status
of glycolysis-related genes and combined these data with
clinical information, to verify the effect of the above genes on
the prognosis of HNSCC.

2. Materials and Methods

2.1. Patients and Datasets. The mRNA expression profiles
and clinical data from The Cancer Genome Atlas (TCGA)
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database (https://cancergenome.nih.gov/) are available to
download. The clinical information of 528 patients is shown
in Supplementary Table 1. These data were retrieved from
the publicly available TCGA database; therefore, all in-
formed consents were available.

2.2. Gene Set Enrichment Analysis. GSEA (http://www.
broadinstitute.org/gsea/index.jsp) uses statistical methods
to determine whether the genes in the gene set are enriched
in the expression matrix, so as to speculate on the enrich-
ment of the gene set in a certain biological state, and can also
compare the expression difference of the gene set between
groups [18]. We analyzed whether 44 nontumor tissues and
502 tumor tissues in the HNSCC cohort of the TCGA da-
tabase are different in the identified gene sets. Normalized P
value (P <0.05) and normalized enrichment score (NES)
were used as evaluation criteria.

2.3. Statistical Analysis. The expression profiles of 546
mRNAs and clinical information for 528 HNSCCs were
retrieved as raw data for further analysis. We used the “caret”
package in R language to divide the HNSCC samples into a
training cohort and a test cohort in a ratio of 1:1. The
expression matrices were combined with survival data. Then,
univariate Cox regression analysis was performed on the
training set with P < 0.05 to identify genes evidently related
to patient survival. Next, the candidate genes were analyzed
by stepwise multivariate Cox proportional regression to
establish the best risk prediction model. The risk score of
each sample was calculated as follows:

risk score = coefgene 1 x expression level of gene 1 + coefgene 2 x expression level of gene 2 + coefgene 3x

(1)

expression level of gene 3 + - - - + coefgene n x expression level of gene n,

where coefgene represents the regression coefficient.

An individual risk score was calculated for each sample
in the training cohort. The median risk score was used as the
cut-off for defining a high-risk and a low-risk group.
Kaplan-Meier analysis was conducted to compare the
survival difference in the two groups. The area under the
receiver operating characteristic (roc) was used to evaluate
the specificity and sensitivity of the model. Univariate Cox
regression and multivariable Cox regression analyses were
used to examine whether the risk score was an independent
prognostic factor. Subsequently, the test cohort was used to
verify the accuracy of the model. Finally, stratified analysis
was applied to evaluate the suitability of the risk scores for
prediction of patient outcomes. In addition, changes in the
identified genes in each sample were analyzed using the
cBioPortal database (http://www.cbioportal.org/). All

analyses were carried out based on the R software (Version
3.6.3). P<0.05 was set as the threshold for statistical
significance.

3. Results

3.1. Initial Screening of Genes Using GSEA. To detect dif-
ferences in glycolytic metabolism during the progression of
HNSCC, clinical data of 528 HNSCC patients and tran-
scriptome data of 546 samples from the TCGA database,
as well as five glycolysis-related gene sets from the molecular
signature database (MSigDB), were used as the original data
for further analysis. Based on GSEA enrichment analysis,
we found that mRNA expression in 44 normal tissues and
502 tumor tissues was significantly different in 3 of the 5
glycolysis-related gene sets (Figure 1 and Table 1). This
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FIGURE 1: Gene set enrichment analysis (GSEA). Significant alterations in glycolysis-related gene expression were observed in head and neck

squamous cell carcinoma as compared to normal tissue.

suggested that head and neck squamous cell carcinoma had a
distinct glycolytic metabolism compared to corresponding
normal tissue. Subsequently, 298 genes contained in the
three glycolysis-related gene sets were further analyzed
(Supplementary Table 2).

3.2. Identification of Prognostic Glycolysis-Related Genes.
To identify novel biomarkers for outcome prediction
in patients with HNSCC, 492 HNSCC patients were

randomly assigned to the training and test groups at a ratio
of nearly 1:1 (Table 2), and 298 glycolysis-related gene
expression matrices were combined with survival data from
the two groups. Transcriptional information and survival
information for the training and test cohort are shown in
Supplementary Table 3 and Supplementary Table 4,
respectively. A subsequent univariate Cox regression anal-
ysis showed that 24 genes were associated with the prognosis
of HNSCC patients in the training cohort (Supplementary
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TaBLE 1: Enrichment results of 5 glycolysis-related gene sets.

Name Size ES NES NOM P-val FDR g-val FWER P-val
HALLMARK_GLYCOLYSIS 200 0.5581 2.0104 0 0 0
REACTOME_GLYCOLYSIS 72 0.6599 1.9791 0 0 0
GO_GLYCOLYTIC_PROCESS 106 0.5277 1.6752 0.0161 0.0161 0.01
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 62 0.3501 1.1905 0.2145 0.2145 0.071
BIOCARTA_GLYCOLYSIS_PATHWAY 3 0.5512 0.8949 0.6477 0.6477 0.342

ES, enrichment score; NES, normalized enrichment score; NOM P-val, nominal P-value; FDR g-val, false discovery rate q-value; FWER P-value, family-wise

error rate P-value.

TaBLe 2: Comparison of clinical characteristics between the
training cohort and the test cohort.

Training Text
cohort cohort
Cases 248 244
Age <65 168 155
8 >65 80 90
Female 63 67
Gender Male 185 177
Gl 32 28
G2 141 153
Grade G3 62 55
G4 2 0
Stage I 15 10
Stage 1I 33 36
Stage Stage I1I 0 36
Stage IV 124 128
T1 25 19
T2 61 69
T (tumor) T3 49 47
T4 86 80
NO 79 88
N1 38 27
N (lymph node) N2 78 0
N3 5 2
HPYV status by pl16 Negative 42 30
testing Positive 12 18

Table 5). These prognostic glycolysis-related genes were then
included in a stepwise multivariate Cox proportional re-
gression analysis. Finally, a total of 8 genes were found to be

significantly correlated with the prognosis of HNSCC and
were involved in subsequent model construction. Among
them, KIF2A and JM]D8 were the protective genes (HR < 1),
and HMMR, STC2, HK1, EXT2, GPRS, and STCI were the
risk genes (HR > 1).

Given the potential clinical implications of the eight gene
markers, their expression was compared in normal and
HNSCC tissues. Except the expression of HK1 was down-
regulated, the other seven genes were significantly upre-
gulated in tumor tissues (P<0.05, Figure 2(a)).
Subsequently, changes in the eight selected genes were
analyzed in HNSCC samples based on the cBioPortal da-
tabase, revealing that amplification and deep deletion were
the most common of all mutation types (Figure 2(b)). GPR87
exhibited a mutation rate greater than 5% (9%). Finally, the
eight genes were examined by clinical correlation analysis.
The expression of STCI and STC2 was found to significantly
increase with the clinical stage (Figure 3(a)). A high ex-
pression of STC2 was associated with larger tumors
(Figure 3(b)) and the presence of lymph node metastases
(Figure 3(c)). Notably, the expression of EXT2, HK1, JM]D8,
KIF2A, and HMMR was significantly correlated with the
HPV status (Figure 3(d)).

3.3. Generation of the Prognosis Prediction Model. The ex-
pression values of the eight genes identified above were
combined with the multivariate Cox regression coeflicient to
obtain the risk score of each patient:

risk score = 0.096146079 x expression level of HMMR + (—0.134494599)
x expression level of KIF2A + 0.034033864 x expression level of STC2 + 0.008524517
x expression level of HK1 + (—0.047903542) x expression level of JMJD8 + 0.011711524 (2)
x expression level of EXT2 + 0.026067236 x expression level of STC1 + 0.007433349

x expression level of GPR87.

Using the median risk score as the cut-oft point, HNSCC
patients in the training cohort were divided into high-risk
and low-risk groups. Subsequent Kaplan-Meier analyses
showed that overall survival was significantly lower in the
high-risk group than in the low-risk group (P <0.001,
Figure 4(a)). For each sample, the results of ROC analysis
showed that the prognostic index based on glycolytic-related

genes was a potential survival predictor, with an AUC of
0.749 and 0.712 for 3- and 5-year survival, respectively
(Figure 4(b)). The samples were then sequenced from low to
high based on the risk score to identify whether the gene
expression level and patient’s survival varied with the risk
score (Figure 4(c)). With an increase in risk score, the ex-
pression levels of KIF2A and JMJD8 decreased, whereas
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FIGURE 2: Mutations and differential expression of the 8 marker genes in normal and HNSCC tissues were investigated. (a) All eight genes
showed significant differences between tumor and normal tissues. ***, **, *, and ns represent P <0.001, P <0.01, P <0.05,and P > 0.05,

respectively. (b) GPR87 was the most frequently mutated gene.

those of HMMR, STC2, HK1, EXT2, GPRS, and STCI in-
creased. Moreover, the number of patient deaths increased
with the risk score.

To compare the ability of risk scores and conventional
clinical indicators to predict the outcome of patients with
HNSCC, univariate and multivariate Cox hazard analyses
were used to examine the value of these indicators. Uni-
variate analysis showed that age, clinical stage, and risk score
were effective prognostic indicators (Figure 4(d)). In the
multivariate analysis after correcting the clinical charac-
teristics included in the analysis, age, clinical stage, and risk
score still had significant prognostic significance and could
be used as independent prognostic indicators, among which
the risk score had the best prognostic ability (Figure 4(e)).

3.4. Evaluation of the Prognosis Prediction Model. First, risk
scores were calculated using the expression of eight selected
genes in the test cohort and prognosis models based on the
training cohort. Then, the samples were sequenced from low
to high according to the risk score, and the expression
pattern of 8 genes is shown in Figure 5(a). Similarly, the

samples were divided into the high- and low-risk groups
with the median risk score as the cut-off point. Again,
Kaplan-Meier analysis showed that the overall survival of
the two groups was also significantly different (Figure 5(b),
P <0.001). Finally, we observed that both with univariate
(Figure 5(c)) and multivariate Cox hazard analyses
(Figure 5(d)), risk scores based on eight genes did have
significant prognostic power. These results are in accordance
with the results of the training cohort, which proves that the
model based on 8 genes is stable and reliable.

3.5. Role of Survival Prediction Based on the Risk Score of the
8-mRNA Signature. The Kaplan-Meier curves revealed that
age (=65, P = 0.049), clinical stage (III and IV, P = 0.004),
tumor size (T3 and T4, P<0.001), and lymph node
metastasis (N, P <0.001) were correlated with poor prog-
nosis (Figures 6(a)6(d)). Notably, the risk score based on the
8-gene signature was better at predicting the survival of
HNSCC patients, as compared to the above clinical factors
(Figures 4(a) and 5(b)). Subsequently, we performed a hi-
erarchical analysis of patients to validate the reliability of the
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FI1GURE 3: Correlation of the eight genes with different clinical characteristics: (a) clinical stage; (b) tumor size; (c) lymph node metastasis;
(d) HPV status by pl6 testing. ***, **, *, and ns represent P <0.001, P <0.01, P <0.05,and P > 0.05, respectively.

risk score in predicting HNSCC prognosis. As shown by the
K-M curve, when the patients were stratified based on age,
gender, histologic grade, and clinical stage, the risk score
retained stable prediction power among HNSCC patients in
various states (Figures 7(a)7(e)). Crucially, the risk score also
had an excellent prognostic power on the early stage of
HNSCC (Figure 7(e)).

4. Discussion

The metabolic switch from oxidative phosphorylation
(OXPHOS) to aerobic glycolysis is an emerging hallmark of
cancer cells [19]. Although the amount of ATP generated by
glycolysis is low, several advantages inherent in aerobic
glycolysis may explain this metabolic switch in cancer cells.
First, glycolysis produces ATP 100 times faster than
OXPHOS [20] and could provide sufficient energy for cell
survival. Second, glycolytic intermediates could be trans-
ferred to various biosynthetic pathways, providing material

for the synthesis of biological macromolecules and organ-
elles [21, 22]. Moreover, the intermediates that cancer cells
accumulate during glycolysis promote the pentose phos-
phate pathway, ensuring that it grows in an environment
with adequate reduced glutathione levels. The latter mole-
cule plays a key role in protecting cancer cells from oxidative
damage and antitumor drugs [23, 24]. Finally, the formation
of an acidic microenvironment associated with lactic acid
accumulation owing to increased glycolysis provides a tissue
environment for tumor recurrence and tumor metastasis
potential [25, 26]. These factors increase the dependence of
tumor cells on glycolysis and provide a biochemical basis for
prioritizing the killing of cancer cells by using glycolysis as a
therapeutic target, which potentially improves the thera-
peutic effects.

HNSCC is a refractory tumor, one of the deadliest
malignancies in humans, and its overall survival rate is
extremely low. This is due to the high incidence of local
recurrence and distant metastasis [27]. In order to improve
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Figure 5: HNSCC samples from the test cohort demonstrated the stability of the prognostic model: (a) analysis of the prognostic differences

after classification in the testing cohort; (b) the expression levels of 8 g

enes in the test cohort varied with the risk score; (c) forest plot of

univariate Cox regression analysis in the test cohort; (d) forest plot of multivariate Cox regression analysis in the test cohort.

HNSCC treatment, reliable clinical biomarkers are urgently
needed, which will be helpful for the clinical diagnosis,
prognosis, assessment of relapse prediction, and clinical
intervention. Glycolysis is closely related to HNSCC [28].
Although majority of researchers have concentrated on the
molecular mechanisms of glycolysis in tumorigenesis,
proliferation, and invasion, evidence for a potential asso-
ciation between glycolysis and the survival of HNSCC pa-
tients has also been reported. For example, high expression
levels of TKTL1, GLUT-1, MCT1, and MCT4 are associated
with unfavorable prognosis in HNSCC patients [17, 29-31].
Given the importance of glycolysis in HNSCC, it is rea-
sonable to speculate that glycolysis-associated genes hold
great promises as predictors of HNSCC outcomes. More-
over, multiple-gene signatures derived from reliable

algorithms are superior to single molecules in predicting
overall survival [32]. In this study, the mRNA expression
profiles of 298 glycolysis-associated genes were analyzed in a
TCGA head and neck squamous cell carcinoma cohort.
Eight genes related to glycolysis were selected as candidate
prognostic predictors in HNSCC. These genes are potential
molecular biomarkers of prognosis and therapeutic targets
and may help develop individualized treatments based on
patient risk.

For most of the eight glycolysis-related genes identified
herein, a prognostic role in HNSCC or other malignancies
has been previously reported. GPR87 is a cell surface G
protein-coupled receptor that is highly expressed in a variety
of tumors and plays a crucial role in the survival of tumor
cells [33]. Nii et al. reported that the overexpression of
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FIGURE 6: Kaplan-Meier survival analysis based on several different clinical characteristics of all HNSCC patients. Age (a), clinical stage
(b), tumor size (c), and lymph node metastasis (d) can predict patients’ survival to some extent.

GPR87 in non-small cell lung carcinoma is significantly
correlated with poor patient survival [34]. Hyaluronan-
mediated motility receptor (HMMR) is a regulator of ho-
meostasis, mitosis, and meiosis, and its dysfunction may
promote tumorigenesis and cancer progression [35]. The
expression of HMMR may be an effective prognostic marker
in progression-free survival of patients with the papillary
subtype of bladder cancer [36]. Hexokinase (HK), a rate-
limiting enzyme catalyzing the first step of glycolysis, has
four known subtypes: HK1-HK4 [37]. Although most
studies focused on HK2, some studies found that the ex-
pression of HKI is connected with disease progression,
invasion, and poor survival in patients with esophageal
squamous cell carcinoma [38]. JMJD8, a member of the
Jumonji C domain-containing (JMJD) protein family, reg-
ulates glycolysis metabolism by interacting with pyruvate

kinase M2 and becomes upregulated during in vitro en-
dothelial cell differentiation and stimulates angiogenic
sprouting [39]. Similarly, JMJD8 downregulation reduces
the viability of DU145 prostate cancer cells [40]. Exostosin
(EXT) proteins are glycosyltransferases, which regulate in-
tracellular signaling, cell-cell interactions, and tissue mor-
phogenesis [41]. Mutations in exostosin-2 (EXT2) often
cause multiple osteochondromas [42, 42]. At the same time,
Huang et al. showed that EXT?2 is an independent prognostic
factor for hepatocellular carcinoma [43, 43]. Stanniocalcin
(STC) is a glycosylated peptide hormone involved in calcium
and phosphate homeostasis [44]. Among them, STC2 can
regulate glucose homeostasis [45]. Studies have found that
high expression of STC2 is associated with tumor invasion,
metastasis, and poor prognosis [46]. STC1 uncouples the
process of oxidative phosphorylation via an increased
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Figure 7: Continued.



Journal of Oncology

Stage I

+— + 4+

—
(=3
(=)

e
N
G

Survival probability
o o
[N} w1
w (=]

P =10.005

S
=
S

Survival probability
S
g

0 1 2 3 4 5 6 7 8 9 10
Time (years)

—— Highrisk (n=9)
—+— Low risk (n = 16)

11

Stages II-1V

—
(=3
(=)

e
N
G

o
[}
G

P <0.001

e
=
S

012345678 91011121314151617181920
Time (years)

—+— High risk (n = 205)
—+— Low risk (n =193)

FIGURE 7: Predictive power of risk scores after stratification of various clinical features: (a) age; (b) histologic grade; (c) lymph node

metastasis; (d) tumor size; (e) clinical stage.

TaBLE 3: Introduction and summary of eight genes constructing the prognostic model.

Gene . . . Risk

symbol Full name Encoding protein Function coefficient

GPR87 G protein-coupled A cell surface G protein-coupled Glycolysis-related proteins 0.007433349
receptor 87 receptor

HMMR Hyalur.o.nan—medlated Hyaluronan-mediated motility Regulate homeostasis, mitosis, and meiosis  0.096146079

motility receptor receptor

HK1 Hexokinase-1 A member of the hexokinases The first rate-limiting enzyme in glycolysis  0.008524517

JMJDS Jumonji C domain- A member of the Jumonji C domain-  Regulating glycolysis metabolism by ~0.047903542
containing 8 containing (JMJD) protein family interacting with pyruvate kinase M2 ’

EXT2 Exostosin-2 A member of the exostosin family An enzyme that harl.)o.r.s 0.011711524

glycosyltransferase activities
STC1 Stanniocalcin 1 A glycosylated peptide hormone Uncouples the brocess of oxidative 0.026067236
phosphorylation
STC2 Stanniocalcin 2 A glycosylated peptide hormone Regulating glucose homeostasis 0.034033864
Kipza ~ Kinesin family protein e ber of the kinesin-13 family Glycolysis-related proteins ~0.134494599

2A

expression of mitochondrial UCP2 [47]. Su et al. reported
that STC1 is a valuable biomarker for the diagnosis of
malignant glioma and the evaluation of prognosis after
surgery [48]. In Table 3, we briefly summarized the eight
glycolysis-related genes.

The emphasis of this study was to investigate the role of
the expression of glycolysis-related genes in the prognosis of
HNSCC. The mRNA expression of eight genes was signif-
icantly different between tumor and normal tissues, and
these changes were consistent with a role of glycolysis in the
development of HNSCC. Genetic changes may affect mRNA
expression, and gene amplification is usually correlated with
mRNA upregulation, in line with our results. In addition,
our clinical correlation study revealed that the expression of
certain genes was significantly correlated with specific
clinical characteristics, especially those related to HPV,
which may inspire future studies focusing on the role of
glycolytic genes in cancer.

However, our research has certain limitations: first, the
prognostic model we developed needs to be validated in
additional independent samples; second, the pathogenic role

of the identified glycolysis-related genes was not charac-
terized at the molecular level; third, our research was a
retrospective study and may contain inherent biases; fourth,
the prediction model reported in this study needs to be
improved in actual clinical tests.

In conclusion, we have identified eight prognostic genes
and constructed a new risk scoring model for HNSCC
patients based on a series of bioinformatics analyses, cor-
relating the expression profiles of glycolysis-associated genes
with various clinical features. Our study was the first to
demonstrate that glycolysis-related transcriptional patterns
may affect the prognosis of patients with HNSCC. The
identified genes may also inspire the development of new
therapeutic approaches for HNSCC. In conclusion, our
findings may help improve prognosis and diagnosis, as well
as develop personalized therapies for patients with HNSCC.
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