SYSTEMATIC REVIEW

Efficacy and safety of therapeutic means for postoperative ileus: an umbrella review of meta-analyses

Pengcheng Zhang¹ · Yueying Lin¹ · Keqian Yi¹ · Yu Ma² · Ting Yang¹ · Liya An¹ · Yuxing Qi¹ · Xingzong Huang¹ · Xianming Su¹ · Yinlong Deng¹ · Jian Hu¹ · Wen Li² · Dali Sun¹

Received: 12 December 2024 / Accepted: 10 May 2025 © The Author(s) 2025

Abstract

Background & aims Postoperative ileus is treated using a large number of methods with variable efficacy. This study further clarifies the advantages and disadvantages of existing treatments through umbrella evaluation.

Method This study conducted a systematic search of databases to select and include meta-analyses discussing the treatment of postoperative ileus. We recalculated the estimated values, 95% confidence intervals, heterogeneity estimates, small study effects, excessive significance tests, and publication biases for each included study using both random and fixed effect models. **Results** A total of 24 meta-analyses, including 27 treatment protocols, were reviewed in this study. Among them, chewing gum, coffee, ERAS(Enhanced Recovery After Surgery) protocols, acupuncture, opioid receptor antagonists, Da-Cheng-Qi-Tang, early enteral nutrition, and Zusanli point injection therapy have been shown to significantly improve postoperative ileus (Class II). Opioid receptor antagonists, early enteral nutrition, ERAS, and chewing gum have also been found to significantly reduce the postoperative hospital stay (Class II).

Conclusion Eight treatment options can effectively reduce postoperative ileus, while the effectiveness and safety of other treatment options for postoperative ileus require further confirmation through high-quality research.

Keywords Postoperative ileus (POI) · Intervention · Umbrella review · Meta-analysis

Pengcheng Zhang, Yueying Lin and Keqian Yi contributed equally to this work.

Systematic Review Registration Our study protocol was registered with PROSPERO (registration number: CRD42024580340) (https://www.crd.york.ac.uk/PROSPERO/).

Wen Li 229700084@qq.com

Dali Sun sundali2018@126.com

- ¹ Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming 65010, China
- ² Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming 650101, China

Introduction

Postoperative ileus (POI) refers to a temporary gastrointestinal motility disorder that occurs after surgery and is characterized by abdominal distention, abdominal pain, nausea, vomiting, delayed passage of gas, delayed bowel movement, and delayed initiation of oral intake. This is a common functional gastrointestinal (GI) complication after abdominal surgery, which can impair postoperative recovery and prolong hospital stay [1-3]. Therefore, in health care, the prevention and management of postoperative ileus (POI) are of paramount importance. Moreover, POI has emerged as a significant economic and resource allocation burden on the entire health care system, with annual treatment costs in the United States reaching as high as \$1.46 billion [4]. Therefore, it is critical to improve POI in patients after abdominal surgery in clinical practice, thereby alleviating patient discomfort, shortening hospitalization time, reducing complications, and reducing health care costs.

Postoperative ileus (POI) is the result of multifactorial interactions [5, 6]. Studies have shown that the development

of POI is closely related to patients'nutritional status [7], neuropathologic factors [5, 8] and immunologic factors [9]. Furthermore, the prevention and management of POI have long been challenging for health care professionals [5, 6]. In our earlier randomized controlled study involving patients undergoing major abdominal surgery, implementing strategies to enhance neural function and nutritional status was shown to significantly reduce the occurrence of postoperative ileus [10, 11]. Additionally, several meta-analyses [12–35] have explored various preventative and therapeutic measures for POI, including chewing gum, coffee, opioid receptor antagonists, acupuncture, and early enteral nutrition. However, the efficacy and safety of these treatment approaches vary, which complicates their adoption in clinical practice.

Therefore, this study aims to conduct a comprehensive umbrella review to further evaluate and analyze meta-analyses related to the treatment of postoperative ileus (POI). We will assess the methodological quality of the included studies, delineate the safety and efficacy of various treatment protocols, and examine the level of evidence supporting these interventions, along with any potential sources of bias.

Method

Protocol and registration

This review was prospectively registered in the PROSPERO database. This systematic review was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [36] and Assessing the Methodological Quality of Systematic Reviews (AMSTAR) standards [37].

Search strategy

We conducted a systematic and comprehensive literature search across several databases, including PubMed, Embase, Web of Science, and Ovid, focusing on studies published prior to January 2024 that investigated various factors related to postoperative ileus (POI). This research adhered to the guidelines provided by the SIGN [37] and utilized keywords such as"postoperative ileus,""POI,""umbrella review,"and"meta-analysis"for literature retrieval. Additionally, we performed supplementary searches of reference lists from relevant studies to ensure data completeness. We excluded conference abstracts, editorials, letters, and non-English publications. Manual searches of the references from the included studies were also conducted. Two authors independently screened the titles, abstracts, and full texts, while a third author acted as an arbitrator to resolve any discrepancies.

Eligibility criteria

The inclusion criteria for this study were as follows: (1) the study population consisted of individuals undergoing abdominal surgery; (2) the interventions targeted various approaches for postoperative ileus (POI), including early enteral nutrition, chewing gum, acupuncture, and others; (3) the control group was defined as either a blank control, placebo, or standard clinical treatment; (4) clinical outcome measures included the incidence of postoperative ileus, time to first flatus, time to first defecation, time to first bowel movement, time to first bowel sounds, time to first feeding, time to first liquid diet, time to first solid diet, length of hospital stay, incidence of postoperative nausea and vomiting, and complication rates; (5) the studies were meta-analyses aimed at exploring the treatment of POI; (6) the meta-analyses formally presented risk estimates between various factors and outcome measures, including risk ratios, odds ratios, weighted mean differences, and standardized mean differences with 95% confidence intervals. (7) stand-alone randomized controlled trials or clinical studies that were not part of a secondary analysis. In instances where multiple meta-analyses examined the relationship between the same exposure or intervention factors and outcomes, if the publication date differed by more than 24 months, we selected the most recently published study, typically encompassing the largest number of cases and studies. If the publication dates were within 24 months, we prioritized studies with the highest number of randomized controlled trials or cohort studies included, as these often presented higher AMSTAR ratings. Ultimately, meta-analyses incorporating randomized controlled trials were regarded as the most favorable choice.

The exclusion criteria were as follows: (1) studies involving children, adolescents, or pregnant women; (2) meta-analyses or systematic reviews comparing the efficacy of two distinct treatments for postoperative ileus; (3) meta-analysis that did not formally display the associations between any factors and the outcomes of interest; (4) meta-analyses that did not formally present risk estimates; (5) Non-English articles.

The entirety of the included literature was meticulously reviewed through a dual independent cross-evaluation process conducted by two authors. Any discrepancies were discussed and resolved with the involvement of a third party to ensure accuracy and consistency in the assessment.

Data extraction

Through a thorough review of the full texts, we extracted the following information: the name of the first author, the title, publication year, the main studies and sample sizes included, study design, details of the intervention or exposure, and the methods of group comparisons (high dose vs. low dose, any dose vs. no dose, additional treatment vs. no additional treatment, long-term exposure vs. shortterm exposure), as well as the risk estimates with 95% confidence intervals, significance P values, assessments of heterogeneity, and the evaluation of publication bias. We also extracted the raw data for the summary risk estimates. All data extraction was independently performed by two authors, while a third author resolved any discrepancies encountered during the data extraction process and verified its accuracy.

Data analysis

The impact of all included treatment regimens [12–35] on clinical outcomes were reanalyzed separately, not only to

ensure that risk estimates were calculated to measure the relationships between different interventions and outcomes but also to ensure that all presented data were calculated using a uniform methodology.

Estimation of summary effects, heterogeneity, and 95% prediction intervals

Data were extracted from the included meta-analyses, and summary associations and 95% confidence intervals were reanalyzed [38]. The I² statistic was also used to assess heterogeneity [38, 39]. Finally, the effect estimates of the eligible effect model were summarized in the main analysis based on statistical heterogeneity. A 95% prediction interval was introduced to identify the uncertainty of the individual statistic [40, 41].

Assessment of publication bias, small study effects, and excess significance bias

For every reanalysis, the publication bias and small study effect were calculated [42–44]. A simple proportion of statistical significance test (PSST) and a direct test of excess statistical significance (TESS) were introduced to calculate the expected proportion of statistically significant findings in the absence of selective reporting or publication bias based on each study's standard error (SE) and meta-analysis estimates of the mean and variance of the true-effect distribution [45–47].

Grading of the evidence

Significant evidence in the data was categorized into four levels of subgroups: strongly suggestive evidence, highly suggestive evidence, suggestive evidence, and weak evidence, as previously detailed [38, 40, 48, 49]. (1) Criteria for strongly suggestive evidence were as follows: i. Cases ≥ 1000; ii. Significant P value (from the random effects model) ≤ 10⁻⁶; iii. No significant findings in the largest study (P ≤ 0.05); iv. Absence of high heterogeneity (I² < 50%); v. 95% prediction interval does not include zero; and vi. No excessive significance bias or small study effects. (2) Criteria for highly suggestive evidence must simultaneously meet the following: i. More than 1000 cases included in the meta-analysis; ii. Significant P value from the random effects model ≤ 10⁻⁶; and iii. No significant findings in the largest study. (3) Criteria for suggestive evidence must simultaneously meet the following: i. Patients ≥ 1000; and ii. Significant P value from the random effects model ≤ 10⁻³. (4) Criteria for weak evidence only has to meet the following: i. Significant P value from the random effects model < 0.05.

Based on the aforementioned evidence grading standards, evidence was classified into five categories: Class I (strongly suggestive evidence), Class II (highly suggestive evidence), Class III (suggestive evidence), Class IV (weak evidence), and Class V (nonsignificant).

Fig. 2 Postoperative time to first flatus

Table 1 P	ostoperat	tive tir	ne to fi	rst fla	sn															
Exposure	Events	Studi	es(n.)		Summary mean c	lifference (SMD, 9.	5% CI)	Selected	Tau ²	P value			95% PI	Heterog	eneity	Egg-	Excess	Small-	Evi-	AMSTAR-2
or inter- vention	or cases/ total(n.)	Total	RCT	OE	Fixed effects	Random effects	Largest study	model		Fixed	Ran-] dom 6	Larg- \$st		I ² (%)	I ² -P value	ers P value	sigmin- cance	effect	class	
Drug																				
Metoclo- pramide	NR/876	4	4	0	-0.00(-0.03 to 0.03)	-0.00(-0.03 to 0.03)	0.00(-0.03 to 0.03)	Fixed	0	0.945	0.945	000.1	2.196 to 2.367	0	0.657	0.265	Yes	No	>	Moderate
Erythro- mycin	NR/232	б	3	0	-0.24(-0.54 to 0.06)	-0.24(-0.54 to 0.06)	-0.30(-0.71 to 0.11)	Fixed	0	0.114	0.114 (0.150	1.571 to 3.309	0	0.516	0.863	Yes	Yes	>	Moderate
Da-Cheng- Qi decoc- tion	NR/1040	11	11	0	-3.91(-4.31 to -3.51)	-2.12(-3.07 to -1.17)	-1.34(-1.76 to -0.92)	Random	373.6489	< 0.01	< 0.01	< 0.01	-17.934 to 29.760	99.4	< 0.01	0.028	Yes	Yes	п	Moderate
NSAIDs	NR/431	4	4	0	-7.53(-11.62) to -3.45	-9.44(-17.23 to -1.65)	0.00(-6.30 to 6.30)	Random	43.3924	< 0.01	0.018	000.1	-6.514 to 3.498 $\times 10^{8}$	70.0	0.018	0.063	Yes	Yes	2	Very low
Daiken- chuto	NR/471	9	9	0	-0.67(-0.78 to -0.56)	-0.43(-0.77 to -0.09)	-0.80(-0.93 to -0.67)	Random	0.1016	< 0.01	0.014	< 0.01	0.936 to 5.554	72.8	< 0.01	0.156	Yes	Yes	Ŋ	Moderate
laxatives	NR/328	б	б	0	-0.17(-0.31 to -0.02)	-0.17(-0.60 to -0.26)	-0.37(-0.58 to -0.16)	Random	0.025	< 0.01	< 0.01	< 0.01	1.174 to 4.427	87.8	< 0.01	0.996	Yes	Yes	>	Low
Probiotics/ synbiot- ics	NR/617	~	~	0	-0.33(-0.42 to -0.25)	-0.53(-0.75 to -0.30)	-0.24(-0.35 to -0.13)	Random	0.0555	< 0.01	< 0.01	< 0.01	1.200 to 4.331	73.2	< 0.01	0.020	Yes	Yes	≥	Moderate
Acupunc- ture	NR/1162	16	16	0	-1.04(-1.17 to -0.91)	-1.15(-1.56 to -0.75)	-10.00(-11.89 to -8.11)	Random	55.2268	< 0.01	< 0.01	< 0.01	-6.582 to 3.666 $\times 10^{8}$	91.5	< 0.01	0.423	Yes	No	П	Moderate
EA/TEA	NR/965	15	15	0	-8.29(-9.28 to -7.31)	-11.60(-16.19 to -7.02)	-2.31(-3.86 to -0.76)	Random	69.3003	< 0.01	< 0.01	< 0.01	-7.563 to 3.616 $\times 10^9$	93.7	< 0.01	0.156	Yes	No	2	Moderate
MA	NR/292	4	4	0	-19.98(-22.67 to -17.29)	-14.45(-26.12 to -2.78)	-28.56(-32.45 to -24.67)	Random	131.3286	< 0.01	0.015	< 0.01	-10.138 to 15.256	94.0	< 0.01	0.015	Yes	Yes	2	Moderate
Acupres- sure	NR/114	0	7	0	-19.27(-29.36 to -9.17)	-19.27(-29.36 to -9.17)	-19.92(-32.57 to -7.27)	Fixed	0	< 0.01	< 0.01	< 0.01	1.527 to 6.906 $\times 10^{5}$	0	0.867	NA	Yes	NA	2	Moderate
Coffee	NR/1151	12	12	0	-4.18(-4.96 to -3.40)	-4.27(-8.28 to -0.26)	-8.21(-9.86 to -6.56)	Random	45.0709	< 0.01	0.037	< 0.01	-0.225 to 6.686 $\times 10^7$	95.7	< 0.01	0.947	Yes	Yes	≥	Moderate
Coffee (caf- feine)	NR/846	10	10	0	-3.79(-4.61 to -2.96)	-4.43(-8.80 to -0.06)	-8.21(-9.86 to -6.56)	Random	44.2731	< 0.01	0.047	< 0.01	-0.221 to 6.683 $\times 10^7$	95.8	< 0.01	0.825	Yes	Yes	≥	Moderate
Coffee (Decafe) ST36 injectio	NR/140 on acupoin	t 2	7	0	2.61(-1.96 to 7.18)	-0.13(-12.82 to 12.56)	5.80(0.54 to 11.06)	Random	69.8500	0.263	0.984	0.031	-9.715 to 15.044	82.7	0.016	NA	Yes	NA	>	Moderate
Neostig- mine	NR/1095	15	15	0	-1.90(-2.06 to -1.75)	-2.84(-3.62 to -2.05)	-22.80(-23.57 to -22.04)	Random	82.8208	< 0.01	< 0.01	< 0.01	-7.881 to 2.453 $\times 10^{10}$	97.6	< 0.01	0.881	Yes	Yes	=	Moderate

Table 1 (c	continued	(1																		
Exposure	Events	Studie	s(n.)		Summary mean di	ifference (SMD, 95	5% CI)	Selected	Tau ²	P value			95% PI	Heterog	eneity	Egg-	Excess	Small-	Evi-	AMSTAR-2
or inter- vention	or cases/ total(n.)	Total	RCT	OE	Fixed effects	Random effects	Largest study	model		Fixed	Ran- dom	Larg- est		$l^2(\%)$	r ² -P value	er s P value	cance	effect	class	
Vitamin B1	NR/596	5	S	0	-14.93(-15.76 to -14.11)	-11.22(-17.01 to -5.43)	-20.07(-21.25 to -18.89)	Random	42.2942	< 0.01	< 0.01	< 0.01	-2.278 to 9.085 $\times 10^7$	97.6	< 0.01	< 0.01	Yes	Yes	IV	Moderate
Metoclo- pramide	NR/260	б	3	0	-14.56(-16.40 to -12.72)	-15.65(-24.77 to -6.53)	-18.00(-20.32 to -15.68)	Random	57.2766	< 0.01	< 0.01	< 0.01	-1.961 to 6.467 $\times 10^9$	94.1	0.01	0.967	Yes	Yes	N	Moderate
Normal saline	NR/68	1	1	0	-12.00(-14.43 to -9.57)	-12.00(-14.43 to -9.57)	-12.00(-14.43 to -9.57)	NA	NA	< 0.01	< 0.01	< 0.01	0.109 to 47.545	NA	NA	NA	Yes	NA	N	Moderate
Astragalus mem- brana- ceus	NR/80	-	-	0	-8.91(-13.66 to -4.16)	-8.91(-13.66 to -4.16)	-8.91(-13.66 to -4.16)	NA	NA	< 0.01	< 0.01	< 0.01	0.006 to 861.931	NA	NA	NA	Yes	NA	2	Moderate
Other																				
GDFT	NR/302	7	7	0	-0.16(-0.50 to 0.18)	-0.18(-0.66 to 0.30)	0.04(-0.40 to 0.48)	Fixed	0.0577	0.352	0.454	0.860	1.103 to 4.714	48.1	0.165	NA	Yes	NA	>	Moderate
GDFT +ERAS	NR/37	4	4	0	-0.59(-0.82 to -0.35)	-0.47(-1.38 to 0.44)	-0.75(-1.07 to -0.43)	Random	0.7142	< 0.01	0.312	< 0.01	0.215 to 24.191	90.8	0.01	0.848	Yes	Yes	>	Moderate
ERAS	NR/1072	13	13	0	-0.34(-0.37 to -0.30)	-0.66(-0.86 to -0.46)	-0.31(-0.34 to -0.28)	Random	0.0928	< 0.01	< 0.01	< 0.01	1.038 to 5.009	82.5	< 0.01	< 0.01	Yes	Yes	п	Moderate
Early feed- ing	NR/486	ŝ	б	0	-0.64(-0.81 to -0.46)	-0.64(-0.84 to -0.44)	-0.60(-0.84 to -0.37)	Fixed	0.0074	< 0.01	< 0.01	< 0.01	1.688 to 3.080	22.5	0.275	0.672	Yes	No	2	Low
Early enteral nutrition	NR/2827	19	19	0	-0.65(-0.69 to -0.62)	-0.69(-0.89 to -0.49)	-0.60(-0.64 to -0.56)	Random	0.1618	< 0.01	< 0.01	< 0.01	0.825 to 6.298	94.8	< 0.01	0.941	Yes	No	п	Moderate
Chewing gum	NR/2096	25	25	0	-10.25 (-10.98 to -9.51)	-12.14(-15.71 to -8.56)	-4.10(-7.05 to -1.15)	Random	54.6092	< 0.01	< 0.01	< 0.01	-6.183 to 2.860 ×10 ⁸	92.8	0.01	0.509	Yes	No	п	High

 $\textcircled{ } \underline{ \widehat{ } }$ Springer

(2025) 410:198

Two reviewers evaluated the methodological quality of the included articles using A Measurement Tool to Assess Systematic Reviews (AMSTAR 2), an effective and reliable instrument for assessing the quality of systematic reviews and meta-analyses [50]. This tool consists of 16 items that score aspects such as search quality, reporting, and transparency of analysis and meta-analysis. It generates four final ratings: high, moderate, low, and critically low.

Based on the associations extracted from the included meta-analyses, forest plots were constructed to illustrate the risk estimates. Statistical data were collected and analyzed using EndNote version 20.4, Stata version 17.0, and Graph-Pad Prism version 9.0.

Results

Acupuncture

Acupressure

Probiotics or synbiotics

Laxatives

Coffee Coffee (caffeine) Coffee (Decafe)

GDFT

ERAS

GDFT+ERAS

Chewing gum

EA/TEA

MA

Ultimately, our literature search yielded 2,432 unique studies (Fig. 1). Following a thorough and meticulous review of the full texts, a total of 24 articles were included in the final analysis.

SMD

Evidence class

AMSTAR-2 class

Time to first flatus postoperatively

As illustrated in Fig. 2 and Table 1, six interventions demonstrated significant efficacy in reducing the first postoperative exhaust time compared to placebo or conventional therapy: Da-Cheng-Qi-Tang [12] (SMD -2.12; 95% CI -3.07 to -1.17), acupuncture [13] (SMD -1.15; 95% CI -1.56 to -0.75), neostigmine injection at zusanli [14] (SMD -2.84; 95% CI -3.62 to -2.05), enhanced Recovery After Surgery (ERAS) protocols [15] (SMD -0.66; 95% CI -0.86 to -0.46), early enteral nutrition [16] (SMD -0.69; 95% CI -0.89 to -0.49) and chewing gum [17] (SMD -4.10; 95% CI -7.05 to -1.15). All six interventions were classified as Level II evidence, indicating strong recommendation for clinical application.

Several other modalities showed potential benefits but were supported by lower-quality evidence: non-steroidal anti-inflammatory drugs [18], daikenchuto [19], laxatives [20], probiotics or synthetic agents [21], electroacupuncture or transcutaneous electrical stimulation [22], acupressure [23], manual acupuncture [23], coffee [24], caffeinated coffee [24], early oral feeding [25], and zusanli point injections (normal saline, astragalus, vitamin B1, or metoclopramide) [14].

Table 2 Pc	ostoperati	ve tim.	e to fii	rst def	fecation															
Exposure	Events	Studi	es(n.)		Summary mean d	ifference (SMD, 9;	5% CI)	Selected	Tau ²	P value			95% PI	Hetero	geneity	Egg- er's	Excess	Small-	Evi- dence	AMSTAR-2
vention	total(n.)	Total	RCI	C OE	Fixed effects	Random effects	Largest study	model		Fixed	Ran- dom	Larg- est		$l^2(\%)$	I ² -P value	er s P value	cance	effect	class	
Acupunc- ture	NR/980	13	13	•	-15.65(-16.72 to -14.59)	-17.07(-22.59 to -11.54)	-22.56(-24.36 to -20.76)	Random	75.6347	< 0.01	< 0.01	< 0.01	-5.730 to 1.217 × 10 ¹⁰	94.1	< 0.01	0.915	Yes	Yes	≥	Moderate
EA/TEA	NR/842	13	13	0	-10.04(-11.42 to -8.66)	-12.94(-18.82 to -7.06)	-14.71(-16.93 to -12.49)	Random	72.0989	< 0.01	< 0.01	< 0.01	-4.030 to 8.707 × 10 ⁹	89.8	< 0.01	0.505	Yes	Yes	2	Moderate
MA	NR/292	4	4	•	-21.29(-22.98 to -19.59)	-13.64(-22.68 to -4.60)	-22.56(-24.36 to -20.76)	Random	69.5602	< 0.01	0.003	< 0.01	-9.649 to 3.530 × 10 ¹⁰	81.9	< 0.01	0.057	Yes	Yes	2	Moderate
Acupres- sure Drug	NR/114	7	7	•	-7.75(-18.15 to 2.65)	-7.75(-18.15 to 2.65)	-6.08(-18.35 to 6.19)	Fixed	0	0.144	0.144	0.331	-0.846 to 1.009 ×10 ⁶	0	0.616	NA	Yes	NA	>	Moderate
Laxatives	NR/416	ŝ	ŝ	0	-0.94(-1.07 to -0.80)	-0.76(-1.34 to -0.19)	-1.16(-1.36 to -0.96)	Random	0.3088	< 0.01	< 0.01	< 0.01	0.489 to 10.627	93	< 0.01	0.484	Yes	Yes	N	Low
Probiotics or synbi- otics	NR/571	٢	٢	0	-0.59(-0.73 to -0.44)	-0.78(-1.27 to -0.28)	-0.35(-0.53 to -0.17)	Random	0.3681	< 0.01	< 0.01	< 0.01	0.455 to 11.424	86.2	< 0.01	0.338	Yes	No	2	Moderate
Coffee	NR/1209	13	13	•	-4.79(-5.60 to -3.99)	-10.06(-14.54 to -5.58)	-1.38(-2.38 to -0.37)	Random	53.0334	< 0.01	< 0.01	< 0.01	-6.277 to 3.017 × 10 ⁸	93.7	< 0.01	0.038	Yes	Yes	П	Moderate
Coffee (caf- feine)	NR/829	10	10	•	-12.04(-13.75 to -10.33)	-11.39(-15.43 to -7.35)	-15.27(-18.27 to -12.27)	Random	25.1350	< 0.01	< 0.01	< 0.01	-2.108 to 1.336 ×10 ⁶	74.5	< 0.01	0.705	Yes	Yes	2	Moderate
Coffee (Decafe) Other	NR/215	3	3	•	-1.44(-2.41 to -0.47)	-3.44(-8.64 to 1.76)	-1.38(-2.38 to -0.37)	Random	13.7194	< 0.01	0.194	< 0.01	-1.762 to 1.605 ×10 ⁵	7.97	< 0.01	0.450	Yes	No	>	Moderate
GDFT	NR/199	e	3	•	-0.44(-0.85 to -0.03)	-0.66(-1.53 to 0.21)	0.00(-0.54 to 0.54)	Random	0.4334	0.035	0.135	1	0.326 to 15.950	74.1	0.021	0.169	Yes	No	>	Moderate
GDFT +ERAS	NR/536	ŝ	ŝ	0	-0.68(-0.94 to -0.42)	-1.09(-2.03 to -0.15)	-0.44(-0.74 to -0.14)	Random	0.8206	< 0.01	0.023	< 0.01	0.185 to 28.131	82.5	< 0.01	0.435	Yes	No	V	Moderate
ERAS	NR/539	ŝ	ŝ	0	-1.05(-1.27 to -0.83)	-1.10(-1.74 to -0.47)	-0.50(-0.88 to -0.12)	Random	0.4425	< 0.01	< 0.01	< 0.01	0.373 to 13.948	87.3	< 0.01	0.735	Yes	No	N	Moderate
Chewing gum	NR/141	4	4	•	-0.44(-1.03 to 0.15)	-0.96(-2.75 to 0.83)	-0.70(-1.65 to 0.25)	Random	2.8834	0.141	0.293	0.150	0.020 to 2.561 × 10 ²	88.3	< 0.01	0.228	Yes	Yes	>	High

Notably, no statistically significant effects were observed for: metoclopramide [16], erythromycin [16], decaffeinated coffee [24], goal-directed fluid therapy (GDFT) [26], combined GDFT and ERAS protocols [26].

Time to first defecation postoperatively

As shown in Fig. 3 and Table 2, coffee [24] (SMD -10.06; 95% CI -14.54 to -5.58) demonstrated significant efficacy in accelerating the first postoperative bowel movement compared to placebo or conventional therapy, with its evidence graded as Level II—strongly recommended for clinical practice.

The following interventions showed potential benefits but were supported by lower-quality evidence: acupuncture [13], electroacupuncture or transcutaneous electrical stimulation [22], manual acupuncture [23], laxatives [20], probiotics or synthetic agents [21], caffeinated coffee [24], combined GDFT and ERAS protocols [26] and ERAS protocols [15]. There is no statistically significant difference in acupressure [23], decaffeinated coffee [24], goal-directed fluid therapy (GDFT) [26], and chewing gum [27].

The incidence of postoperative ileus

As summarized in Fig. 4 and Table 3, opioid receptor antagonists [28] (RR 0.73; 95% CI 0.70–0.76) demonstrated significant prophylactic efficacy against postoperative ileus compared with placebo or conventional treatments, achieving Level II evidence classification indicating strong clinical recommendation.

Several interventions showed moderate preventive potential but were supported by limited evidence: non-steroidal anti-inflammatory drugs (NSAIDs) [17], alvimopan [29], probiotics or synthetic agents [21], coffee [24] and caffeinated coffee [24].

However, no statistically significant differences were found in reducing the incidence of postoperative intestinal paralysis among other factors.

Fig. 4 The incidence of postoperative ileus

Exposure or interven-	Events or cases/	Studies	(u.)		Summary ri 95% CI)	sk ratio estir	nate(RR,	Selected effect	Tau ²	P value			95% PI	Heteroge	neity	Egger's P value	Excess signifi-	Small- study	Evi- dence	AMSTAR-2
tion	total(n.)	Total	RCT	OE	Fixed effects	Random effects	Largest study	model		Fixed	Ran- dom	Largest		I ² (%)	I ² .P value		cance	effect	class	
Drug																				
NSAIDs	19/281	7	6	0	0.38(0.15 to 0.96)	0.39(0.15 to 1.00)	0.42(0.15 to 1.13)	Fixed	0	0.042	0.050	0.085	1.369 to 3.797	0	0.642	NA	No	NA	^	Low
Alvimopan	38/531	4	4	0	0.27(0.13 to 0.57)	0.29(0.11 to 0.80)	0.10(0.02 to 0.45)	Fixed	0.2971	0.001	0.016	< 0.01	0.578 to 8.987	29.2	0.237	0.946	No	Yes	2	Moderate
Probiotics or synbi- otics	37/559	4	4	0	0.48(0.23 to 0.97)	0.53(0.25 to 1.13)	0.11(0.01 to 0.92)	Fixed	0	0.041	0.099	0.042	1.439 to 3.612	0	0.396	0.254	No	Yes	>	Moderate
Daiken- chuto	49/939	٢	7	0	0.60(0.33 to 1.07)	0.63(0.34 to 1.15)	0.20(0.02 to 1.77)	Fixed	0	0.082	0.134	0.149	1.439 to 3.612	0	0.596	0.275	Yes	Yes	>	Low
Opioid antago- nist	9471/78971	25	25	0	0.73(0.70 to 0.76)	0.69(0.63 to 0.75)	1.32(1.23 to 1.41)	Fixed	0.0109	< 0.01	< 0.01	< 0.01	1.747 to 2.975	40.2	0.021	< 0.01	Yes	Yes	п	Moderate
Acupuncture																				
MA	4/78	1	1	0	0.35(0.04 to 3.52)	0.35(0.04 to 3.52)	0.35(0.04 to 3.52)	NA	NA	0.373	0.373	0.373	0.259 to 20.069	NA	NA	NA	Yes	NA	>	Moderate
EA	59/241	3	б	0	1.12(0.60 to 2.07)	1.13(0.55 to 2.33)	0.93(0.45 to 1.95)	Fixed	0.0583	0.724	0.737	0.854	0.764 to 6.800	10.7	0.326	0.364	Yes	Yes	>	Moderate
Coffee	103/913	6	6	0	0.41(0.26 to 0.64)	0.42(0.26 to 0.67)	0.27(0.11 to 0.63)	Fixed	0.0031	< 0.01	< 0.01	< 0.01	1.731 to 3.003	0.7	0.424	0.098	Yes	Yes	2	Moderate
Coffee (caffeine)	73/688	~	8	0	0.45(0.26 to 0.76)	0.50(0.26 to 0.96)	0.27(0.11 to 0.63)	Fixed	0.1099	< 0.01	0.037	< 0.01	0.955 to 5.440	14.0	0.323	0.150	Yes	Yes	2	Moderate
Coffee (Decafe)	2/60	-	-	0	1.00(0.06 to 16.74)	1.00(0.06 to 16.74)	1.00(0.06 to 16.74)	NA	NA	1.000	1.000	1.000	1.780 to 7.667 $\times 10^4$	NA	NA	NA	Yes	NA	>	Moderate
Other																				
GDFT	5/142	1	1	0	1.54(0.25 to 9.52)	1.54(0.25 to 9.52)	1.54(0.25 to 9.52)	NA	NA	0.640	0.640	0.640	0.005 to 1.125 $\times 10^{3}$	NA	NA	NA	Yes	NA	>	Moderate
GDFT and ERAS	76/565	9	9	0	1.58(0.95 to 2.62)	1.58(0.74 to 3.38)	0.70(0.25 to 1.99)	Fixed	0.3670	0.077	0.238	0.502	0.371 to 13.999	42.8	0.120	0.691	Yes	Yes	>	Moderate
ERAS	27/1313	13	13	0	1.52(0.74 to 3.16)	1.57(0.70 to 3.53)	3.33(0.88 to 12.68)	Fixed	0	0.257	0.276	0.077	0.502 to 10.353	0	0.622	0.008	Yes	Yes	>	Moderate
Chewing gum	10/83	5	7	0	0.29(0.07 to 1.26)	0.29(0.07 to 1.26)	0.29(0.06 to 1.48)	Fixed	0	0.099	0.099	0.136	1.080 to 4.812	0	0.977	NA	No	NA	>	High

 Table 3
 The incidence of postoperative ileus

🙆 Springer

(2025) 410:198

Time to first bowel movement postoperatively

As demonstrated in Fig. 5 and Table 4, two interventions showed significant efficacy in accelerating the time to first postoperative bowel movement compared to placebo or conventional therapy: chewing gum [17] (SMD -17.32; 95% CI -23.41 to -11.22) and early enteral nutrition [16] (SMD -0.66; 95% CI -0.82 to -0.50). Both interventions were classified as Level II evidence with strong clinical recommendation.

Perioperative intravenous injection of lidocaine [30], metoclopramide [16], non-steroidal anti-inflammatory drugs [18], and early feeding [25] have an effect on shortening the first bowel movement time after surgery, but the evidence grading is relatively low.

Daikenchuto [19] and erythromycin [16] did not find evidence of statistically significant differences.

Time to first bowel sounds postoperatively

As delineated in Fig. 6 and Table 5, the following interventions demonstrated modest efficacy in reducing the time to first postoperative bowel sounds compared to placebo or conventional therapy, albeit with limited evidence quality: acupuncture [13], electroacupuncture or transcutaneous electrical stimulation [22], manual acupuncture [23], coffee [24] and caffeinated coffee [24] and chewing gum [17].

Notably, decaffeinated coffee [24] showed no statistically significant evidence for accelerating bowel sound recovery.

Time to first oral intake postoperatively

According to Fig. 7 and Table 6, it was found that compared with placebo or conventional treatment, electroacupuncture or transcutaneous electrical stimulation [22] has a certain effect on shortening the first postoperative feeding time, but the evidence grading is relatively low. Laxatives [20] and chewing gum [17] did not find evidence of statistically significant differences.

In the subgroup analysis of the first postoperative feeding time, we found that, ERAS protocols [31], non-steroidal anti-inflammatory drugs [18], probiotics or synthetic agents [21], coffee [24], and caffeinated coffee [24] have a certain effect on shortening the first solid diet time after surgery, but the evidence grading is relatively low. However, daikenchuto [32] did not find evidence of statistically significant differences.

Probiotics or synthetic agents [21] and ERAS protocols [31] have a certain effect on shortening the first liquid diet time after surgery, but the evidence grading is relatively low.

Fig. 5 Postoperative time to first bowel movement

Table 4	Postoper	ative ti	meto	first be	owel movement	<i>L</i> `														
Expo-	Events	Studie	es(n.)		Summary mean c	lifference(SMD 95	% CI)	Selected	Tau ²	P value			95% PI	Heterog	eneity	Egg-	Excess	Small-	Evi-	AMSTAR-2
interven- tion	or cases/ total(n.)	Total	RCT	OE	Fixed effects	Random effects	Largest study	model		Fixed	Ran- dom	Larg- est		$I^2(\%)$	I ² -P value	P P value	cance	effect	class	
Drug																				
Periop- erative intra- venous lido-	NR/325	۲	۲	0	-6.53(-7.82 to -5.24)	-13.04(-21.55 to -4.52)	-5.90(-7.22 to -4.58)	Ran- dom	83.6614	< 0.01	< 0.01	< 0.01	-7.165 to 12.355	77.5	< 0.01	0.164	Yes	No	2	Low
Daiken- chuto	NR/787	9	9	•	-0.38(-0.49) to -0.27	-0.29(-0.59 to 0.01)	-0.40(-0.53) to -0.27	Ran- dom	0.0701	< 0.01	0.057	< 0.01	1.078 to 4.823	60.7	0.026	0.323	Yes	Yes	>	Moderate
Metoclo- pra- mide	NR/821	e	e	•	-0.10(-0.13 to -0.07)	-0.10(-0.13 to -0.07)	-0.10(-0.13 to -0.07)	Fixed	•	< 0.01	< 0.01	< 0.01	2.196 to 2.367	0	0.935	0.938	Yes	Yes	2	Moderate
Erythro- mycin	NR/211	6	7	0	-0.05(-0.45 to 0.34)	-0.05(-0.45 to 0.34)	-0.20(-0.75 to 0.35)	Fixed	0	0.799	0.799	0.480	1.394 to 3.729	0	0.455	NA	Yes	NA	>	Moderate
NSAIDs	NR/515	ŝ	ŝ	•	-12.09(-17.16 to -7.02)	-12.09(-17.16 to -7.02)	-12.00(-21.95 to -2.05)	Fixed	0	< 0.01	< 0.01	0.018	0.004 to 1.289 $\times 10^3$	0	0.636	0.956	Yes	No	N	Vrey low
Other																				
Early feed- ing	NR/735	4	4	0	-0.76(-0.93 to -0.58)	-0.63(-1.03 to -0.24)	-0.70(-0.98 to -0.42)	Ran- dom	0.1185	< 0.01	< 0.01	< 0.01	0.859 to 6.055	77.3	< 0.01	0.205	Yes	Yes	2	Low
Chewing	NR/1680	21	21	0	-19.78(-20.67 to -18.88)	-17.32(-23.41 to -11.22)	-26.20(-27.46 to -24.94)	Ran- dom	139.5694	< 0.01	< 0.01	< 0.01	-10.712 to 15.272	95.8	< 0.01	0.438	Yes	Yes	п	High
Early enteral nutri- tion	NR/3468	20	20	0	-0.45(-0.47 to -0.42)	-0.66(-0.82) to -0.50	-0.30(-0.33 to -0.27)	Random	0.0898	< 0.01	< 0.01	< 0.01	1.066 to 4.877	95.4	< 0.01	0.137	Yes	No	п	Moderate

-Ę Ĵ . ÷ A Pc

🖄 Springer

(2025) 410:198

Length of hospital stay postoperatively

According to Fig. 8 and Table 7, several factors significantly impacted the reduction in postoperative hospital stay compared with that of placebo or standard treatment. Opioid receptor antagonists [28] (SMD -1.08; 95% CI -1.47 to -0.69), early enteral nutrition [16] (SMD -1.41; 95% CI -1.80 to -1.03), ERAS protocols [15] (SMD -2.53; 95% CI -3.42 to -1.65), and chewing gum [17] (SMD -1.10; 95% CI -1.71 to -0.50) all demonstrated significant effects, with high-quality evidence classified as Class II.

Additionally, acupuncture [13], electroacupuncture or transcutaneous electrical stimulation [22], probiotics or synthetic agents [21], daikenchuto [19], coffee [24], early feeding [25] and combined GDFT and ERAS protocols [26] also appeared to have some effect in reducing the postoperative hospital stay; however, the evidence quality for these interventions was classified as weak.

Furthermore, we observed that manual acupuncture [23], perioperative intravenous injection of lidocaine [33], erythromycin [16], laxatives [20], caffeinated coffee [24], decaffeinated coffee [24] and goal-directed fluid therapy (GDFT) [26] did not yield evidence of statistically significant differences in shortening the duration of postoperative hospital stay.

Incidence of postoperative nausea and vomiting

According to Fig. 9 and Table 8, compared with placebo or standard treatment, Non-steroidal anti-inflammatory drugs [34] have a certain effect on reducing the incidence of post-operative nausea and vomiting, but the evidence grading is relatively low. However, no statistically significant differences were found in the perioperative intravenous injection of lidocaine [33].

Acupressure [35] has a certain effect on reducing the incidence of postoperative nausea, but the evidence grading is relatively low. However, no statistically significant differences were found when chewing gum [27].

Acupressure [35] has a certain effect on reducing the incidence of postoperative vomiting, but the evidence grading is relatively low. However, no statistically significant differences were found when chewing gum [27].

Postoperative complication rates

According to Fig. 10 and Table 9, compared with placebo or standard treatment, for the reduction of the overall incidence of postoperative complications, ERAS protocols [31] and coffee [24] has a certain effect, but the evidence is poorly graded. Regarding the total incidence of postoperative

SMD SMD>1 0<SMD<1 **AMSTAR-2** class Not significant High -1<SMD<0 SMD<-1 Moderate Evidence class Low SMD>0 plus Class I SMD>0 plus Class II SMD>0 plus Class III Vrey low SMD>0 plus Class IV SMD>0 plus Class V Not significant SMD<0 plus Class I SMD<0 plus Class II SMD<0 plus Class III SMD<0 plus Class IV SMD<0 plus Class V

Fig. 6 Postoperative time to first bowel sounds

Table 5 P	ostoperat	ive tin	ne to f	first bo	wel sounds															
Exposure	Events	Studia	es(n.)		Summary mean	difference (SMD,	, 95% CI)	Selected	Tau ²	P value			95% PI	Hetero	geneity	Egg-	Excess	Small-	Evi-	AMSTAR-2
or muer- vention	or cases/ total(n.)	Total	RCT	, OE	Fixed effects	Random effects	Largest study	model		Fixed	Ran- dom	Largest		$I^2(\%)$	I ² -P value	er s P value	cance	effect	class	
Acupunc- ture	NR/800	11	11	•	-6.78(-7.21 to -6.34)	-6.82(-8.60 to -5.04)	0.00(-4.04 to 4.04)	Random	7.3762	< 0.01	< 0.01	1.000	0.002 to 2.541 $\times 10^3$	90.1	< 0.01	0.915	Yes	No	IV	Moderate
EA/TEA	NR/560	6	6	•	-9.25(-10.21 to -8.30)	-7.26(-10.27 to -4.24)	-11.15(-12.51 to -9.79)	Random	15.0017	< 0.01	< 0.01	< 0.01	3.380 to 6.203 ×10 ⁴	84.6	< 0.01	0.168	Yes	Yes	IV	Moderate
MA	NR/154	7	7	•	-7.28(-7.84 to -6.72)	-9.19(-13.99 to -4.39)	-7.20(-7.77 to -6.63)	Random	9.8663	< 0.01	< 0.01	< 0.01	0.000 to 3.943 ×10 ⁴	78.9	0.029	NA	Yes	NA	12	Moderate
Acupres- sure	NR/193	3	3	•	-7.27(-7.83 to -6.71)	-8.45(-11.88 to -5.01)	-7.20(-7.77 to -6.63)	Random	5.4840	< 0.01	< 0.01	< 0.01	0.002 to 2.955 $\times 10^3$	58.9	0.088	0.616	Yes	No	1	Moderate
Coffee	NR/683	9	9	•	-1.33(-1.77 to -0.89)	-4.31(-7.10 to -1.52)	-0.32(-0.86 to 0.22)	Random	9.1450	< 0.01	< 0.01	0.243	0.001 to 8.200 $\times 10^3$	94.7	< 0.01	0.142	Yes	No	IV	Moderate
Coffee (caf- feine)	NR/413	4	4	•	-0.79(-1.26 to -0.31)	-4.24(-7.43 to -1.05)	-0.32(-0.86 to 0.22)	Random	9.3952	< 0.01	< 0.01	0.243	4.624 × 10^{-4} to 1.124 × 10^{4}	94.9	< 0.01	0.085	Yes	Yes	2	Moderate
Coffee (Decafe)	NR/75	1	1	•	-1.25(-38.99 to 36.48)	-1.25(-38.99 to 36.48)	-1.25(-38.99 to 36.48)	NA	NA	0.948	0.948	0.948	-13.511 to 26.941	NA	NA	NA	Yes	NA	>	Moderate
Other Chewing gum	NR/505	4	4	•	-6.38(-6.68 to -6.08)	-6.02(-7.42 to -4.63)	-6.40(-6.70 to -6.10)	Fixed	0.7062	< 0.01	< 0.01	< 0.01	0.281 to 18.474	26.0	0.256	0.265	Yes	Yes	2	High

🖄 Springer

complications, coffee [24] and decaffeinated coffee [24] similarly did not show evidence of statistically significant differences.

ERAS protocols [31] has a certain effect on reducing postoperative lung infections, but the evidence grading is low. However, chewing gum [27] did not yield evidence of statistically significant differences in reduce the incidence of postoperative lung infections.

Additionally, neither ERAS protocols [15] nor nonsteroidal anti-inflammatory drugs [34] demonstrated evidence of statistically significant differences in reducing the incidence of postoperative surgical site infections.

ERAS protocols [15] and selective nonsteroidal antiinflammatory drugs (NSAIDs) [34], did not yield evidence of statistically significant differences in reduce the incidence of postoperative anastomotic leaks. However, nonsteroidal anti-inflammatory drugs [34] and nonselective nonsteroidal anti-inflammatory drugs [34] have a certain effect on increasing the incidence of postoperative anastomotic leakage, and the evidence grading is Class II.

Finally, nonsteroidal anti-inflammatory drugs [34] did not yield evidence of statistically significant differences in reduce the incidence of postoperative cardiovascular events.

Discussion

Findings

To the best of our knowledge, this is the first umbrella review assessing the efficacy and safety of treatment methods for postoperative ileus through a meta-analysis of randomized controlled trials. In this umbrella review, we provide a comprehensive overview of the existing evidence and evaluate the methodological quality of the included meta-analyses, along with the overall quality of the evidence associated with these treatments. A total of 24 published meta-analyses were included, encompassing 27 treatment modalities, primarily consisting of medications, acupuncture, chewing gum, coffee, ERAS protocols, and other relevant interventions.

The implementation of these treatment factors during the perioperative period may significantly reduce the time to first flatus, time to first defecation, time to first bowel movement, time to first bowel sounds, time to first oral intake, length of hospital stay, incidence of postoperative nausea and vomiting, incidence of postoperative ileus, and overall incidence of postoperative complications. This study provides clear evidence comparing the efficacy and safety of various treatment methods for postoperative

Fig. 7 Time to first feeding postoperatively

Table 6 Ti	me to fi	rst fee	ding p	ostope	sratively															
Exposure or interven- tion	Events or cases/ total(n.)	Stuc	lies(n.)		Summary mean di	ifference (SMD, 95	5% CI)	Selected effect model	Tau ²	P value			95% PI	Heterog	geneity	Egg- er's P value	Excess signifi- cance	Small- study effect	Evi- dence class	AMSTAR-2
		Totá	I RCT	OE	Fixed effects	Random effects	Largest study			Fixed	Ran- dom	Larg- est		I ² (%)	I ² -P value					
Time to first	oral feedin	ы 19																		
Acupuncture EA/TEA	NR/439	9	9	0	-18.77(-23.86 to -13.68)	-15.76(-23.91 to -7.61)	-23.80(-30.65 to -16.96)	Fixed	45.7001	< 0.01	< 0.01	< 0.01	-3.513 to 1.158	46.8	0.094	0.117	Yes	Yes	2	Moderate
ſ													$\times 10^{8}$							
Drug Loveting	001/UN		~	-	0.016 0.13 45	0.017_0.1745	0.00/ 0.11 to	Ewod	c	270 U	2700	1000	1 002 10	0	<i>LL3</i> 0	0.300	Vac	SN SN	A	
Laxatives	NK/288	n	n	•	-0.01(-0.12 to 0.10)	-0.01(-0.12 to 0.10)	0.00(-0.11 to 0.11)	Fixed	D	C08.U	C08.U	1.000	1.983 to 2.621	0	0.0/1	0.380	Yes	No	>	Low
Other																				
Chewing gum	NR/103	7	7	0	-15.94(-31.42 to -0.46)	-14.74(-47.67 to 18.18)	-31.20(-52.15 to -10.25)	Random	438.6615	0.044	0.380	< 0.01	-22.807 to 36.394	<i>T.T</i>	0.034	NA	Yes	NA	>	High
Time to first	solid diet																			
Other																				
ERAS	NR/842	4	4	0	-2.40(-2.62 to -2.19)	-2.38(-2.96 to -1.79)	-2.40(-2.64 to -2.16)	Random	0.2291	< 0.01	< 0.01	< 0.01	0.573 to9.075	68.7	0.022	0.924	Yes	Yes	N	Vrey low
Drug																				
NSAIDs	NR/289	7	7	0	-11.95(-18.66 to -5.24)	-11.95(-18.66 to -5.24)	-12.00(-21.26 to -2.74)	Fixed	0.0000	< 0.01	< 0.01	0.011	5.201×10^{-4} to 9.995 $\times 10^{3}$	0	0.988	NA	Yes	NA	2	Moderate
Daiken- chuto	NR/258	6	7	0	-5.08(-12.61 to 2.45)	3.64(-24.45 to 31.74)	-6.45(-14.15 to 1.25)	Random	291.9025	0.186	0.799	< 0.01	-19.749 to 25.223	63.0	0.100	NA	Yes	NA	>	Moderate
Probiotics or synbi- otics	NR/437	S	S	0	-0.25(-0.39 to -0.12)	-0.25(-0.39 to -0.12)	-0.30(-0.48 to -0.12)	Fixed	0.0000	< 0.01	< 0.01	< 0.01	1.925 to 2.701	0	0.942	0.469	Yes	Yes	IV	Moderate
Coffee	NR/835	×	×	•	-1.94(-2.50 to -1.39)	-10.11(-14.26 to -5.95)	0.26(-0.46 to 0.98)	Random	21.8447	< 0.01	< 0.01	0.478	1.891 to 6.588 $\times 10^{5}$	95.2	< 0.01	0.044	Yes	Yes	2	Moderate
Coffee (caf- feine)	NR/610	٢	٢	0	-1.51(-2.08 to -0.94)	-8.46(-12.65 to -4.27)	0.26(-0.46 to 0.98)	Random	16.3033	< 0.01	< 0.01	0.478	1.861 to 1.656 $\times 10^{5}$	93.9	< 0.01	0.116	Yes	No	2	Moderate
Coffee (Decafe)	NR/60	1	1	0	-22.80(-35.97 to -9.63)	-22.80(-35.97 to -9.63)	-22.80(-35.97 to -9.63)	NA	NA	< 0.01	< 0.01	< 0.01	-6.623 to 3.201 × 10 ⁷	NA	NA	NA	Yes	NA	2	Moderate

(2025) 410:198

ileus, offering effective strategies for clinicians in the prevention and management of this condition.

Moreover, the methodological quality of the included meta-analyses varied significantly. Among the outcome measures, the time to first flatus and time to first bowel movement are critical in assessing gastrointestinal dysfunction and postoperative ileus. These indicators are often regarded as markers of the resolution of postoperative ileus and are important metrics for evaluating the efficacy of interventions [24].

This study revealed that chewing gum, ERAS protocols, acupuncture, early enteral nutrition, Da-Cheng-Qi-Tang, neostigmine injection at the acupuncture point Zusanli, coffee, and opioid receptor antagonists all significantly alleviated postoperative ileus. Notably, ERAS protocols, chewing gum, early enteral nutrition, and opioid receptor antagonists (each classified as Class II) not only relieved postoperative ileus but also reduced hospital stay duration, making them viable treatment options for patients with postoperative ileus. Additionally, this study revealed that coffee significantly reduced the time to first defecation postoperatively.

Possible mechanisms

The pathophysiology of postoperative ileus remains unclear and is likely related to the interplay of various factors [51]. Among these factors, excessive surgical stimulation of the sympathetic nervous system, which leads to gastrointestinal motility inhibition, may be the most significant factor [52]. Additionally, the secretion of substance P and nitric oxide by the enteric nervous system can prolong the duration of postoperative ileus. Surgical intervention triggers an inflammatory cascade, releasing a substantial amount of inflammatory mediators such as interleukin-6, interleukin-1, monocyte chemoattractant protein-1, and cell adhesion molecule-1. These inflammatory mediators can directly damage the intestinal musculature, further impeding the recovery of gastrointestinal function [51, 52].

Opioids are clinically used for pain management during different types of perioperative care; however, these medications significantly impact gastrointestinal motility by activating μ -opioid receptors on intestinal interstitial cells, which can lead to the inhibition of acetylcholine (ACh) release from enteric neurons and a reduction in gastrointestinal transit [53]. Therefore, administering opioid receptor antagonists (such as alvimopan and methylnaltrexone) postoperatively is a promising therapeutic strategy to mitigate the effects of opioids on gastrointestinal function.

In this study, opioid receptor antagonists effectively reduced the incidence of postoperative ileus and shortened the hospital stay (class II). Although there were no reports

Exposure or interven- ion	Events or cases/ total(n.)	Studic	es(n.)		Summary mean di	fference (SMD, 95	5% CI)	Selected effect model	Tau ²	P value			95% PI	Hetero	geneity	Egg- j er's P value	Excess signifi- cance	Small- study effect	Evi- dence class	AMSTAR-2
		Total	RCT	OE	Fixed effects	Random effects	Largest study			Fixed	Ran- dom	Larg- est		I ² (%)	I ² .P value					
lime to first	fluid diet																			
Drug																				
Probiotics or synbi- otics	NR/294	6	3	•	-0.29(-0.47 to -0.11)	-0.29(-0.47 to -0.11)	-0.30(-0.52 to -0.08)	Fixed	0.0000	< 0.01	< 0.01	< 0.01	1.822 to 2.854	0	0.832	0.953	Yes	Yes	≥	Moderate
Other																				
ERAS	NR/735	1	7	0	-2.30(-2.37 to -2.23)	-2.33(-2.54 to -2.11)	-2.30(-2.37 to -2.23)	Fixed	0.0107	< 0.01	< 0.01	< 0.01	1.743 to 2.982	12.1	0.286	VA	Yes	NA	N	Moderate

Table 6 (continued)

regarding adverse events in the included meta-analyses, previous multicenter randomized controlled trials indicated that alvimopan had a similar incidence of adverse events to placebo [54]. Furthermore, in a meta-analysis focusing on opioid antagonist treatment for opioid-induced constipation, opioid antagonists increased the overall incidence of adverse events compared with that of placebo, without increasing the risk of serious adverse events [55].

In summary, opioid receptor antagonists are effective in improving postoperative ileus without causing serious adverse events, making them a relatively safe option.

This study revealed that chewing gum significantly shortened the time to first flatus, time to first bowel movement, and length of hospital stay postoperatively. The mechanism by which chewing gum exerts its effects is not yet fully understood; it is believed to mimic the mechanisms of food intake, thereby significantly stimulating the stomach, duodenum, and rectum [56]; promoting secretory activities in the stomach, pancreas, and duodenum [57, 58]; and enhancing the release of neuropeptides [56]. The physiological mechanism involves activation of the cephalic–vagal axis, which stimulates intestinal myoelectric activity to counteract the activation of gastrointestinal opioid receptors [59].

Additionally, chewing gum may stimulate salivary secretion, leading to the production of adequate amounts of nitric oxide, which can combat pathogens within the oral cavity and intestines [60]. Furthermore, chewing gum may provide a better option for mitigating the potential risks associated with early postoperative enteral or oral feeding. By mimicking the effects of nonnutritive feeding, chewing gum primarily promotes recovery of the neuroendocrine system, and most researchers generally believe that it does not increase the incidence of adverse events.

This study revealed that coffee significantly shortened the time to first defecation postoperatively. The mechanisms by which coffee affects postoperative ileus (POI) are not yet fully understood; however, factors such as caffeine and the phenolic antioxidant compounds predominantly found in chlorogenic acid [61] may play crucial roles. Caffeine is known to exert positive effects on inflammation by facilitating the release of Ca²⁺ from the sarcoplasmic reticulum, inhibiting cyclic guanosine monophosphate (cGMP) degradation, and activating cation channels sensitive to cyanide, thereby promoting the synthesis of nitric oxide in endothelial cells and enhancing caffeine-induced endothelium-dependent vasodilation [62–64]. This vasodilation may subsequently aid in the recovery of gastrointestinal function postoperatively [65, 66].

Given that coffee is a low-stimulus beverage with minimal residue, it is generally regarded as safe by most researchers. Additionally, this study revealed that the consumption of coffee did not increase the incidence of adverse events.

Fig. 8 Length of hospital stay postoperative

or interven- or	vents	Studies	(n.)		Summary mean	difference (SMD	0, 95% CI)	Selected	Tau^2	P value			95% PI	Heterog	geneity	Egg-	Excess	Small-	Evi-	AMSTAR-2
tion tc	r cases/ tal(n.)	Total	RCT	OE	Fixed effects	Random effects	Largest study	effect model		Fixed	Ran- dom	Largest		$I^2(\%)$	I ² -P value	er's P value	signifi- cance	study effect	dence class	
Acupunc- N ture	R/605	×	∞	0	-1.87(-2.13 to -1.61)	-1.68(-2.55 to -0.80)	-2.00(-2.33 to -1.67)	Random	1.2276	< 0.01	< 0.01	< 0.01	0.122 to 42.544	86	< 0.01	0.663	Yes	Yes	N	Moderate
EA/TEA N	R/510	×	8	0	-0.77(-1.09) to -0.45	-1.19(-1.78 to -0.60)	-0.42(-0.83 to -0.02)	Fixed	0.2585	< 0.01	< 0.01	0.042	0.616 to 8.436	4	0.085	0.003	Yes	Yes	N	Moderate
MA N	R/78	1	1	0	0.65(-1.25 to 2.55)	0.65(-1.25 to 2.55)	0.65(-1.25 to 2.55)	NA	NA	0.501	0.501	0.501	0.212 to 24.512	NA	NA	NA	Yes	NA	>	Moderate
Drug Periopera- N tive intra- venous lidocaine	R/220	o،	2 ¹	0	-0.59(-0.94 to -0.25)	-0.58(-1.34 to 0.18)	-0.20(-0.70 to 0.30)	Random	0.4993	< 0.01	0.136	0.429	0.316 to 16.451	72.9	< 0.01	0.778	Yes	No	>	Very low
Probiotics N or synbi- otics	R/880	12	12	0	-0.84(-1.12) to -0.57	-1.43(-2.29 to -0.58)	-0.63(-0.95 to -0.31)	Random	0.9963	< 0.01	< 0.01	< 0.01	0.158 to 32.892	67.3	< 0.01	660.0	Yes	Yes	N	Moderate
Erythromy- N cin	R/232	3	3	0	0.29(-0.31 to 0.88)	0.29(-0.31 to 0.88)	-0.10(-0.92 to 0.72)	Fixed	0	0.346	0.346	0.811	1.087 to 4.782	0	0.385	766.0	Yes	No	^	Moderate
laxatives N	R/416	ß	S	0	0.45(0.22 to 0.68)	-0.06(-1.75 to 1.63)	1.25(0.96 to 1.54)	Random	2.3706	< 0.01	0.942	< 0.01	0.030 to 171.969	95.2	< 0.01	0.726	Yes	No	^	Low
Opioid N antago- nist	R/82598	25	25	0	-0.96(-0.99 to -0.92)	-1.08(-1.47 to -0.69)	-0.60(-0.66 to -0.54)	Random	0.8996	< 0.01	< 0.01	< 0.01	0.212 to 24.503	99.0	< 0.01	0.467	Yes	No	п	Moderate
Daiken- N chuto	R/205	4	4	0	-1.33(-1.52 to -1.14)	-0.96(-1.70 to -0.21)	-1.40(-1.60 to -1.20)	Random	0.2634	< 0.01	0.012	< 0.01	0.476 to 10.913	57.2	0.072	0.228	Yes	Yes	N	Moderate
Coffee N	R/951	10	10	0	-0.77(-0.85 to -0.68)	-1.36(-2.49 to -0.24)	-0.50(-0.62 to -0.38)	Random	3.1047	< 0.01	0.017	< 0.01	0.024 to 213.330	99.1	< 0.01	0.368	Yes	No	N	Moderate
Coffee (caf- N feine)	R/726	6	6	0	-1.08(-1.21 to -0.96)	-1.51(-3.12 to 0.11)	-0.09(-0.27 to 0.09)	Random	5.8909	< 0.01	0.067	0.314	0.004 to 1.216 $\times 10^3$	99.2	< 0.01	0.469	Yes	No	>	Moderate
Coffee N (Decafe) Other	R/60	1	-	0	0.00(-0.43 to 0.43)	0.00(-0.43 to 0.43)	0.00(-0.43 to 0.43)	NA	NA	1.000	1.000	1.000	1.332 to 3.903	NA	NA	NA	Yes	NA	>	Moderate
Early N enteral nutrition	R/4045	28	28	0	-0.87(-0.92 to -0.82)	-1.41(-1.80 to -1.03)	-0.60(-0.66 to -0.54)	Random	0.6642	< 0.01	< 0.01	< 0.01	0.293 to 17.769	86	< 0.01	0.123	Yes	No	=	Moderate
Early feed- N ing	R/785	ŝ	5	0	-3.56(-3.70) to $-3.43)$	-2.33(-4.10 to -0.56)	-3.70(-3.84 to -3.56)	Random	3.4925	< 0.01	0.010	< 0.01	0.014 to 367.962	95.3	< 0.01	0.217	Yes	Yes	N	Low
ERAS N	R/1716	18	18	0	-2.55(-2.70 to -2.40)	-2.53(-3.42 to -1.65)	-1.30(-1.61 to -0.99)	Random	3.4184	< 0.01	< 0.01	< 0.01	0.022 to 241.732	96.8	< 0.01	0.976	Yes	No	п	Moderate
Chewing N gum	R/1714	20	20	0	-0.94(-1.19 to -0.68)	-1.10(-1.71 to -0.50)	0.20(-0.32 to 0.72)	Random	0.9075	< 0.01	< 0.01	0.447	0.196 to 26.511	71.3	< 0.01	0.643	Yes	No	п	High
CDFT N	R/566	۲	~	•	-0.61(-1.27 to 0.05)	-0.73(-1.68 to 0.23)	-0.50(-1.46 to 0.46)	Fixed	0.5003	0.071	0.136	0.309	0.335 to 15.532	38.2	0.152	0.276	Yes	0N	>	Moderate

This study revealed that acupuncture significantly shortened the time to first flatus postoperatively. Some research suggests that the preservation of the functionality of interstitial cells of Cajal and the activation of the vagus nerve through acupuncture may be potential mechanisms underlying this effect [67, 68]. Furthermore, the injection of medications at acupuncture points may enhance and sustain the effects of simple acupuncture. In traditional Chinese medicine, the ST36 point is considered an effective location for treating various gastrointestinal disorders, although further research is needed to elucidate the specific mechanisms of action.

Due to the minimal tissue damage associated with acupuncture itself, some studies have indicated that patients may experience localized pain during or after the procedure [69] and, in rare cases, may face serious adverse events such as needle breakage, visceral injury, or bleeding [70]. However, acupuncture is generally regarded as a relatively safe treatment modality. In this study, it was found that acupuncture is safe in the context of postoperative ileus (POI) and does not increase the incidence of adverse events.

Traditionally, postoperative oral feeding following gastrointestinal surgery has been delayed to protect against anastomoses and prevent postoperative anastomotic leaks and other complications. Although early oral feeding in Enhanced Recovery After Surgery (ERAS) protocols may increase the risk of vomiting and abdominal distension [71], current research indicates that early oral feeding is not only safe but also beneficial for the recovery of intestinal function [72–74]. While certain components of the ERAS protocol, such as nutritional support and carbohydrate loading, may not be feasible in critically ill patients with hemodynamic instability, most elements of the ERAS protocol are considered applicable and appropriate even in emergency situations. Comprehensive preoperative consultations can help mitigate postoperative stress, pain, and anxiety [75], which may not be completely realizable in emergency contexts; however, information regarding surgical details, potential perioperative complications, the need for ostomies, and anticipated hospital stays can still be communicated to patients and their families prior to surgery.

On the other hand, while achieving fully optimized medical conditions may not be possible in emergency settings, objective intravenous fluid administration and antibiotic coverage are crucial and feasible in major emergency abdominal surgeries [76]. This study revealed that early oral enteral nutrition and ERAS protocols significantly shortened the time to first flatus postoperatively, with early oral enteral nutrition also significantly reducing the time to first bowel movement and length of hospital stay without causing serious adverse events, thereby demonstrating relative safety.

This study revealed that Da-Cheng-Qi-Tang (DCQD) significantly shortened the time to first flatus postoperatively. Pharmacological studies and animal experiments have demonstrated that the active components in DCQD can prevent intestinal adhesions by reducing the concentration of fibrinogen in the peritoneal exudate following major abdominal surgery and increasing the concentration of fibrin degradation products [77]. Notably, the active constituent rhubarb can enhance small intestinal motility through mechanisms such as promoting the secretion of motilin, decreasing somatostatin levels, and inhibiting the activity of sodium–potassium exchange ATPase in the small intestinal mucosa [78]. However, the included meta-analyses did not report any adverse events related to the use of Da-Cheng-Qi-Tang.

Advantages and limitations of this study

Advantages: (1) This is the first umbrella review analyzing the efficacy and safety of treatment methods for postoperative ileus. (2) Compared with other studies synthesizing information on postoperative ileus, we employed rigorous evidence evaluation criteria to assess bias and methodological limitations, thereby providing a systematic and comprehensive assessment.

Limitations: (1) Firstly, our analysis results are based on previously published meta-analyses, not our research data;

Secondly, in clinical treatment, due to the implementation of multiple treatment methods, there may be overlapping treatment methods, leading to excessive exaggeration of intervention results; Finally, the intervention subjects included in the meta-analysis of this study were only patients undergoing abdominal surgery, which may be influenced by different abdominal surgeries (such as gynecological surgery, gastrointestinal surgery, etc.) and surgical methods (such as laparoscopic surgery, robotic surgery, etc.), indicating that classification should be emphasized in future research; (2) Many RCTs and meta-analyses have methodological flaws, as blinding may not be applicable to all types of interventions, such as acupuncture and chewing gum; (3) Some studies lack registration of research protocols, particularly in the field of postoperative ileus, which impacts the quality rating, as highlighted in key criterion 2 of the AMSTAR2 assessment; (4) The limited number of studies or sample sizes included in some meta-analyses affects the statistical power and external validity of the findings; (5) Several treatment protocols, such as opioid receptor antagonists and Da-Cheng-Qi-Tang, have not undergone safety assessments; (6) The variability in certain treatment protocols, such as acupuncture techniques (including needle placement, treatment duration, and frequency) and ERAS components (which differ in terms of covered items and timing of interventions),

Fig. 9 Incidence of postoperative nausea and vomiting

vi- AMSTAR-2 ince	ass		/ Very low	Low			/ Moderate	High		/ Moderate	High
- de Ev	t CI8		VI	>			VI	>		VI	>
Smal study	ellec		No	Yes			Yes	No		Yes	NA
Excess signifi-	cance		No	No			No	No		No	No
Egger's P value			0.948	0.034			0.019	0.240		0.019	NA
geneity	I ² -P value		0.955	0.806			0.462	0.403		0.502	0.097
Heterog	$I^2(\%)$		0	0			0	0		0	63.8
95% PI			1.642 to 3.165	1.449 to 3.587			1.821 to 2.855	1.368 to 3.799		1.771 to 2.935	0.191 to 27.168
	Largest		0.145	0.111			0.132	0.770		0.092	0.095
	Ran- dom		0.025	0.105			< 0.01	0.798		< 0.01	0.516
P value	Fixed		0.025	0.076			< 0.01	0.757		< 0.01	0.639
Tau ²			0	0			0	0		0	0.6705
Selected effect	model		Fixed	Fixed			Fixed	Fixed		Fixed	Random
te(RR,	Largest study		0.65(0.36 to 1.16)	0.17(0.02 to 1.51)			0.68(0.41 to 1.12)	1.07(0.67 to 1.71)		0.57(0.30 to 1.10)	0.25(0.05 to 1.27)
k ratio estima	Random effects		0.63(0.42 to 0.94)	0.62(0.34 to 1.11)			0.71(0.55 to 0.91)	0.95(0.62 to 1.45)		0.65(0.48 to 0.89)	0.64(0.16 to 2.49)
Summary ris 95% CI)	Fixed effects		0.63(0.42 to 0.94)	0.59(0.33 to 1.06)			0.70(0.54 to 0.90)	0.94(0.61 to 1.43)		0.64(0.47 to 0.88)	0.88(0.53 to 1.48)
	OE		0	0			0	0		0	0
s(n.)	RCT		4	S		a	9	б		9	5
Studie	Total	vomit	4	5		ve nause	9	б	ve vomit	9	5
Events or cases/	total(n.)	nausea and	122/489	71/170		postoperativ	355/858	145/245	[°] postoperativ	220/858	81/221
Exposure or inter-	vention	Incidence of	NSAIDs	Periop- erative intra-	venous lido- caine	Incidence of	Acupres- sure	Chewing gum	Incidence of	Acupres- sure	Chewing gum

Table 8 Incidence of postoperative nausea and vomiting

leads to inconsistent conclusions regarding their impact on clinical outcomes related to postoperative ileus. High-quality trials with large sample sizes are needed to further validate these findings.

Conclusion

Overall, although there are numerous treatment options for postoperative ileus, this study's quantitative analysis indicates that effective treatment approaches include chewing gum, coffee, ERAS protocols, acupuncture, opioid receptor antagonists, Da-Cheng-Qi-Tang, early enteral nutrition, and injections at the Zusanli point. The evidence supporting these treatment options for postoperative ileus is stronger and more reliable than that for other interventions assessed in this study. Notably, ERAS protocols, chewing gum, early enteral nutrition, and opioid receptor antagonists (each classified as Class II) not only alleviated postoperative ileus but also reduced hospital stay duration, making them viable treatment options for patients with postoperative ileus. Furthermore, coffee was identified as the treatment option that significantly reduced the time to first defecation postoperatively among all interventions.

The included meta-analyses evaluated the safety of chewing gum, coffee, acupuncture, and ERAS; however, the safety of opioid receptor antagonists and Da-Cheng-Qi-Tang requires further validation through high-quality research.

Fig. 10 Postoperative complication rates

RR<1 plus Class V

IdDIE 7 F	ostoperati	ve comp	llcation	Tales																
Exposure or inter-	Events or cases/	Studies(n.)		Summary ri. 95% CI)	sk ratio estin.	late(RR,	Selected effect	Tau ²	P value			95% PI	Heterog	eneity	Egger's P value	Excess signifi-	Small- study	Evi- dence	AMSTAR-2
vention	total(n.)	Total	RCT	OE	Fixed effects	Random effects	Largest study	model		Fixed	Ran- dom	Largest		$1^{2}(\%)$	I ² -P value		cance	effect	class	
Total postof	berative com	plications																		
ERAS	351/964	5	S	0	0.65(0.51 to 0.84)	0.59(0.40 to 0.87)	0.75(0.56 to 1.01)	Fixed	0.0547	< 0.01	< 0.01	0.054	1.205 to 4.314	25.6	0.251	0.308	Yes	No	2	Moderate
Coffee	125/861	10	10	0	0.63(0.42 to 0.94)	0.67(0.38 to 1.19)	0.27(0.11 to 0.63)	Fixed	0.2151	0.024	0.171	< 0.01	0.699 to 7.434	38.9	0.133	0.475	Yes	Yes	2	Moderate
Coffee (caf- feine)	123/831	10	10	0	0.62(0.41 to 0.93)	0.65(0.37 to 1.14)	0.27(0.11 to 0.63)	Fixed	0.1941	0.020	0.135	< 0.01	0.739 to 7.039	36.1	0.153	0.616	Yes	Yes	2	Moderate
Coffee (Decafe)	3/60			0	2.00(0.17 to 23.25)	2.00(0.17 to 23.25)	2.00(0.17 to 23.25)	NA	NA	0.580	0.580	0.580	1.240 to 4.290 ×10 ⁶	NA	NA	NA	Yes	Yes	>	Moderate
Pulmonary (complication	IS																		
ERAS	84/1496	15	15	0	0.46(0.29 to 0.73)	0.48(0.30 to 0.76)	0.25(0.07 to 0.94)	Fixed	0	< 0.01	< 0.01	0.039	1.325 to 3.922	0	0.997	0.368	Yes	Yes	Π	Moderate
Chewing gum	12/443	7	7	0	0.99(0.31 to 3.14)	0.99(0.31 to 3.18)	0.75(0.17 to 3.38)	Fixed	0	0.983	0.981	0.704	0.306 to 16.995	0	0.567	NA	Yes	Yes	>	High
Surgical site	infection																			
ERAS	38/1555	15	15	0	0.75(0.41 to 1.40)	0.78(0.40 to 1.51)	0.40(0.08 to 2.14)	Fixed	0	0.373	0.457	0.284	0.628 to 8.278	0	0.953	0.650	Yes	Yes	>	Moderate
NSAIDs	214/1973	9	9	0	0.79(0.53 to 1.18)	0.80(0.53 to 1.19)	0.83(0.54 to 1.26)	Fixed	0	0.249	0.265	0.384	1.454 to 3.576	0	0.747	0.403	Yes	No	>	Very low
Anastomotic	c leakage																			
ERAS	29/1414	13	13	0	0.75(0.37 to 1.51)	0.88(0.39 to 1.99)	0.08(0.00 to 1.40)	Fixed	0	0.422	0.763	0.763	0.953 to 5.452	0	0.450	0.580	Yes	Yes	>	Moderate
NSAIDs	157/2236	10	10	0	2.76(1.98 to 3.86)	3.29(1.83 to 5.89)	1.74(1.09 to 2.76)	Fixed	0.2629	< 0.01	< 0.01	0.020	0.445 to 11.689	41.4	0.092	0.483	Yes	Yes	п	Very low
Non- selective NSAIDs	112/1466	×	8	0	2.69(1.81 to 4.00)	2.97(1.62 to 5.45)	1.89(1.13 to 3.16)	Fixed	0.1626	< 0.01	< 0.01	0.016	0.455 to 11.418	25.9	0.231	0.545	Yes	Yes	Π	Very low
Selective NSAIDs	76/1264	4	4	0	2.43(1.46 to 4.05)	2.17(0.71 to 6.62)	1.16(0.50 to 2.70)	Random	0.7213	< 0.01	0.173	0.731	0.188 to 27.592	64.5	0.038	0.765	Yes	Yes	>	Very low
Cardiovascu	ılar events																			
NSAIDs	63/1784	ε	ε	0	0.52(0.23 to 1.14)	0.52(0.23 to 1.16)	0.50(0.20 to 1.27)	Fixed	0	0.102	0.110	0.144	1.169 to 4.447	0	0.907	0.911	Yes	NA	>	Very low

(2025) 410:198

🖄 Springer

Acknowledgements Thank you to Professor Ji Gang's team from the Department of Gastroenterology at the Air Force Medical University Affiliated Hospital for their assistance in the research design and paper writing process.

Author Contribution Pengcheng Zhang, Yueying Lin, Keqian Yi, Wen Li, and Dali Sun designed research; Pengcheng Zhang, Yueying Lin, Keqian Yi and Wen Li, contributed to collect and analyze the data; Pengcheng Zhang, Yueying Lin, Wen Li and Dali Sun wrote and revised the manuscript. All authors contributed to the article and approved the submitted version.

Funding This study was supported by the National Natural Science Foundation of China (NSFC) (No. 82460115) to Dali Sun, the Yunnan Province Joint Special Project of Science & Technology Department of Yunnan Province and Kunming Medical University(No.202401 AY070001-076, 202301 AY070001-274 and 202301 AY070001-297) to Yueying Lin, Ting Yang, Dali Sun and the Yunnan young academic and technical leaders reserve talent project (No. 202105 AC160049) to Dali Sun.

Data availability No datasets were generated or analysed during the current study.

Declarations

Provenance and peer review Not commissioned, externally peerreviewed.

Competing interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Iyer S, Saunders WB, Stemkowski S (2009) Economic burden of postoperative ileus associated with colectomy in the US. J Manag Care Pharm. 15(6):485–494
- 2. Wolthuis AM, Bislenghi G, Fieuws S, de Buck van Overstraeten A, Boeckxstaens G, D'Hoore A (2016) Incidence of prolonged postoperative ileus after colorectal surgery: a systematic review and meta-analysis. Colorectal Dis 18:01–09
- 3. Vather R, Trivedi S, Bissett I (2013) Defining postoperative ileus: results of a systematic review and global survey. J Gastrointest Surg 17:962–972
- 4. Goldstein JL, Matuszewski KA, Delaney C et al (2007) Inpatient economic burden of postoperative ileus associated with abdominal surgery in the United States. Pharm Ther 32:82–90

- Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J et al (2020) Postoperative ileus and postoperative gastrointestinal tract dysfunction: pathogenic mechanisms and novel treatment strategies beyond colorectal enhanced recovery after surgery protocols. Front Pharmacol 11:583422
- 6. Behm B, Stollman N (2003) Postoperative ileus: etiologies and interventions. Clin Gastroenterol Hepatol 1(2):71–80
- Vather R, Bissett IP (2013) Risk factors for the development of prolonged postoperative ileus following elective colorectal surgery. Int J Colorectal Dis. 28:1385–1391
- Liu Y H, Dong G T, Ye Y et al (2017) Effectiveness of acupuncture for early recovery of bowel function in cancer: a systematic review and meta-analysis. Evid Based Complement Alternat Med 2017(1):2504021
- Boeckxstaens GE, De Jonge WJ (2009) Neuroimmune mechanisms in postoperative ileus. Gut 58(9):1300–1311
- Sun D-L, Li W-M, Li S-M et al (2016) Impact of nutritional support that does and does not meet guideline standards on clinical outcome in surgical patients at nutritional risk: a prospective cohort study. Nutr J 15:78
- 11. Sun D-L, Li W-M, Li S-M et al (2017) Comparisonof multimodal early oral nutrition for the tolerance of oral nutrition withconventional care after major abdominal surgery: a prospective, randomized, single-blind trial. Nutr J 16:11
- 12. Yang B, Xu FY, Sun HJ et al (2014) Da-cheng-qi decoction, a traditional Chinese herbal formula, for intestinal obstruction: systematic review and meta-analysis. Afr J Tradit Complement Altern Med 11(4):101–119
- Ye Z, Wei X, Feng S et al (2022) Effectiveness and safety of acupuncture for postoperative ileus following gastrointestinal surgery: A systematic review and meta-analysis. PLoS ONE 17(7):e0271580
- 14. Wang M, Gao YH, Xu J et al (2015) Zusanli (ST36) acupoint injection for preventing postoperative ileus: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 23(3):469–483
- Huang ZD, Gu HY, Zhu J et al (2020) The application of enhanced recovery after surgery for upper gastrointestinal surgery: meta-analysis. BMC Surg 20(1):3
- 16. Bugaev N, Bhattacharya B, Chiu WC et al (2019) Promotility agents for the treatment of ileus in adult surgical patients: A practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg 87(4):922–934
- 17. Song GM, Deng YH, Jin YH et al (2016) Meta-analysis comparing chewing gum versus standard postoperative care after colorectal resection. Oncotarget 7(43):70066–70079
- 18. Milne TGE, Jaung R, O'Grady G, Bissett IP (2018) Nonsteroidal anti-inflammatory drugs reduce the time to recovery of gut function after elective colorectal surgery: a systematic review and meta-analysis. Colorectal Dis 20(8):O190–O198
- Hosaka M, Arai I, Ishiura Y et al (2019) Efficacy of daikenchuto, a traditional Japanese Kampo medicine, for postoperative intestinal dysfunction in patients with gastrointestinal cancers: meta-analysis. Int J Clin Oncol 24(11):1385–1396
- Dudi-Venkata NN, Seow W, Kroon HM et al (2020) Safety and efficacy of laxatives after major abdominal surgery: systematic review and meta-analysis. BJS Open 4(4):577–586
- Tang G, Huang W, Tao J, Wei Z (2022) Prophylactic effects of probiotics or synbiotics on postoperative ileus after gastrointestinal cancer surgery: A meta-analysis of randomized controlled trials. PLoS ONE 17(3):e0264759
- 22. Chen KB, Huang Y, Jin XL, Chen GF (2019) Electroacupuncture or transcutaneous electroacupuncture for postoperative ileus after abdominal surgery: A systematic review and metaanalysis. Int J Surg 70:93–101

- Liu YH, Dong GT, Ye Y et al (2017) Effectiveness of Acupuncture for Early Recovery of Bowel Function in Cancer: A Systematic Review and Meta-Analysis. Evid Based Complement Alternat Med 2017:2504021
- 24. Watanabe J, Miki A, Koizumi M, Kotani K, Sata N (2021) Effect of Postoperative Coffee Consumption on Postoperative Ileus after Abdominal Surgery: An Updated Systematic Review and Meta-Analysis. Nutrients 13(12):4394
- 25. Hogan S, Steffens D, Rangan A, Solomon M, Carey S (2019) The effect of diets delivered into the gastrointestinal tract on gut motility after colorectal surgery-a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr 73(10):1331–1342
- Rollins KE, Lobo DN (2016) Intraoperative Goal-directed Fluid Therapy in Elective Major Abdominal Surgery: A Meta-analysis of Randomized Controlled Trials. Ann Surg 263(3):465–476
- 27. Mei B, Wang W, Cui F, Wen Z, Shen M (2017) Chewing Gum for Intestinal Function Recovery after Colorectal Cancer Surgery: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract 2017:3087904
- McKechnie T, Anpalagan T, Ichhpuniani S, Lee Y, Ramji K, Eskicioglu C (2021) Selective Opioid Antagonists Following Bowel Resection for Prevention of Postoperative Ileus: a Systematic Review and Meta-analysis. J Gastrointest Surg 25(6):1601–1624
- Nguyen DL, Maithel S, Nguyen ET, Bechtold ML (2015) Does alvimopan enhance return of bowel function in laparoscopic gastrointestinal surgery? A meta-analysis. Ann Gastroenterol 28(4):475–480
- Cooke C, Kennedy ED, Foo I et al (2019) Meta-analysis of the effect of perioperative intravenous lidocaine on return of gastrointestinal function after colorectal surgery. Tech Coloproctol 23(1):15–24
- 31. Hajibandeh S, Hajibandeh S, Bill V, Satyadas T (2020) Meta-analysis of Enhanced Recovery After Surgery (ERAS) Protocols in Emergency Abdominal Surgery. World J Surg 44(5):1336–1348
- 32. Hoshino N, Takada T, Hida K, Hasegawa S, Furukawa TA, Sakai Y (2020) Daikenchuto for reducing postoperative ileus in patients undergoing elective abdominal surgery. Cochrane Database Syst Rev 3:CD012271
- Marret E, Rolin M, Beaussier M, Bonnet F (2008) Meta-analysis of intravenous lidocaine and postoperative recovery after abdominal surgery. Br J Surg 95(11):1331–1338
- Peng F, Liu S, Hu Y, Yu M, Chen J, Liu C (2016) Influence of perioperative nonsteroidal anti-inflammatory drugs on complications after gastrointestinal surgery: A meta-analysis. Acta Anaesthesiol Taiwan 54(4):121–128
- 35. Liu Y, Tang WPY, Gong S, Chan CWH (2017) A Systematic Review and Meta-Analysis of Acupressure for Postoperative Gastrointestinal Symptoms among Abdominal Surgery Patients. Am J Chin Med 45(6):1127–1145
- Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg 88:105906
- Shea BJ, Reeves BC, Wells G et al (2017) AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008 (Published 2017 Sep 21)
- Ioannidis JP (2009) Integration of evidence from multiple metaanalyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. CMAJ 181:488–493
- 39. Huang Y, Chen Z, Chen B et al (2023) Dietary sugar consumption and health: umbrella review. BMJ 381:e071609

- 40. Papadimitriou N, Markozannes G, Kanellopoulou A et al (2021) An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat Commun 12(1):4579
- 41. IntHout J, Ioannidis JP, Rovers MM et al (2016) Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open 6:e010247
- 42. Sterne JA, Gavaghan D, Egger M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53:1119–1129
- 43. Sterne JA, Sutton AJ, Ioannidis JP et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002
- 44. Egger M, Davey Smith G, Schneider M et al (1997) Bias in metaanalysis detected by a simple, graphical test. BMJ 315:629–634
- 45. Ioannidis JP, Trikalinos TA (2007) An exploratory test for an excess of significant findings. Clin Trials 4:245–253
- Tsilidis KK, Kasimis JC, Lopez DS et al (2015) Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350:g7607
- Stanley TD, Doucouliagos H, Ioannidis JPA et al (2021) Detecting publication selection bias through excess statistical significance. Res Synth Methods 12:776–795
- 48. Huang Y, Chen Z, Chen B et al (2023) Dietary sugar consumption and health: umbrella review. BMJ 381:e071609
- Bellou V, Belbasis L, Tzoulaki I et al (2018) Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of metaanalyses. PLoS ONE 13:e0194127
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controlled Clin Trials 7(3):177–188
- 51. Bauer AJ, Boeckxstaens GE (2004) Mechanisms of postoperative ileus. Neurogastroenterol Motil 16(Suppl 2):54–60
- Vasquez W, Hernandez AV, Garcia-Sabrido JL (2009) Is gum chewing useful for ileus after elective colorectal surgery? A systematic review and meta-analysis of randomized clinical trials. J Gastrointest Surg 13(4):649–656
- Buscail E, Deraison C (2022) Postoperative ileus: A pharmacological perspective. Br J Pharmacol 179(13):3283–3305
- 54. Wolff BG, Michelassi F, Gerkin TM, Techner L, Gabriel K, Du W, Wallin BA; Alvimopan Postoperative Ileus Study Group (2004) Alvimopan, a novel, peripherally acting mu opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus. Ann Surg 240(4):728–34. discussion 734–735
- Nishie K, Yamamoto S, Yamaga T, Horigome N, Hanaoka M (2019) Peripherally acting μ-opioid antagonist for the treatment of opioidinduced constipation: Systematic review and meta-analysis. J Gastroenterol Hepatol 34(5):818–829
- Soffer EE, Adrian TE (1992) Effect of meal composition and sham feeding on duodenojejunal motility in humans. Dig Dis Sci 37(7):1009–1014
- Konturek SJ, Thor P (1986) Relation between duodenal alkaline secretion and motility in fasted and sham-fed dogs. Am J Physiol 251(5 Pt 1):G591–G596
- Jepsen JM, Skoubo-Kristensen E, Elsborg L (1989) Rectosigmoid motility response to sham feeding in irritable bowel syndrome. Evidence of a cephalic phase. Scand J Gastroenterol. 24(1):53–56
- Fanning J, Valea FA (2011) Perioperative bowel management for gynecologic surgery. Am J Obstet Gynecol 205(4):309–314
- Duncan C, Dougall H, Johnston P et al (1995) Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1(6):546–551
- Mattioli AV, Migaldi M, Farinetti A (2018) Coffee in hypertensive women with asymptomatic peripheral arterial disease: a potential nutraceutical effect. J Cardiovasc Med (Hagerstown) 19(4):183–185

- Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A (2019) Caffeine's Vascular Mechanisms of Action [published correction appears in Int. J Vasc Med. 20(2019):7480780
- Mattioli AV, Nasi M, Farinetti A, Gelmini R (2020) Effects of Caffeine on Colon: A Potential Clinical Use of Coffee in Surgical Patients. Dig Surg 37(3):265–266
- Cui WQ, Wang ST, Pan D, Chang B, Sang LX (2020) Caffeine and its main targets of colorectal cancer. World J Gastrointest Oncol 12(2):149–172
- Kanza Gül D, Şolt KA (2021) Effects of acupressure, gum chewing and coffee consumption on the gastrointestinal system after caesarean section under spinal anaesthesia. J Obstet Gynaecol 41(4):573–580
- Liu D, Jing X, Cao S et al (2021) Impact of drinking Chinese green tea on postoperative short outcomes for gastric cancer: a randomized controlled trial. Eur J Clin Nutr 75(11):1568–1577
- Deng J, Yang S, Yuan Q et al (2017) Acupuncture Ameliorates Postoperative Ileus via IL-6-miR-19a-KIT Axis to Protect Interstitial Cells of Cajal. Am J Chin Med 45(4):737–755
- Deng JJ, Lai MY, Tan X, Yuan Q (2019) Acupuncture protects the interstitial cells of Cajal by regulating miR-222 in a rat model of post-operative ileus. Acupunct Med 37(2):125–132
- Kaptchuk TJ (2002) Acupuncture: theory, efficacy, and practice. Ann Intern Med 136(5):374–383
- Niemtzow RC (2021) Medical Acupuncture: A Brief Overview. Med Acupunct 33(6):373–374
- Lewis SJ, Egger M, Sylvester PA, Thomas S (2001) Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ 323(7316):773–776

- 72. Dag A, Colak T, Turkmenoglu O, Gundogdu R, Aydin S (2011) A randomized controlled trial evaluating early versus traditional oral feeding after colorectal surgery. Clinics (Sao Paulo) 66(12):2001–2005
- Lassen K, Kjaeve J, Fetveit T et al (2008) Allowing normal food at will after major upper gastrointestinal surgery does not increase morbidity: a randomized multicenter trial. Ann Surg 247(5):721–729
- Suehiro T, Matsumata T, Shikada Y, Sugimachi K (2004) Accelerated rehabilitation with early postoperative oral feeding following gastrectomy. Hepatogastroenterology 51(60):1852–1855
- Shuldham C (1999) A review of the impact of pre-operative education on recovery from surgery. Int J Nurs Stud 36(2):171–177
- 76. Sethi A, Debbarma M, Narang N, Saxena A, Mahobia M, Tomar GS (2018) Impact of Targeted Preoperative Optimization on Clinical Outcome in Emergency Abdominal Surgeries: A Prospective Randomized Trial. Anesth Essays Res 12(1):149–154
- 77. Wang YL, Pan CE, Yang PL, Tian Y, Pei SW, Dong M (2004) Effects of Antiadhesion preparation on free fibrinogen and fibrin degrading products in abdominal exudates of rabbits postoperatively. World J Gastroenterol 10(18):2762–2766
- Zhang HQ, Zhou CH, Wu YQ (2005) Effect of emodin on small intestinal peristalsis of mice and relevant mechanism. World J Gastroenterol 11(20):3147–3150

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.