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Abstract: With sunitinib treatment of metastatic renal cell carcinoma, most patients end up developing
resistance over time. Recent clinical trials have shown that individualizing treatment protocols
could delay resistance and result in better outcomes. We developed an in vivo xenograft tumor
model and compared tumor growth rate, morphological, and transcriptomic differences between
alternative and traditional treatment schedules. Our results show that the alternative treatment
regime could delay/postpone cancer progression. Additionally, we identified distinct morphological
changes in the tumor with alternative and traditional treatments, likely due to the significantly
dysregulated signaling pathways between the protocols. Further investigation of the signaling
pathways underlying these morphological changes may lead potential therapeutic targets to be used
in a combined treatment with sunitinib, which offers promise in postponing/reversing the resistance
of sunitinib.

Keywords: renal cell carcinoma; sunitinib; resistance; treatment scheduling

1. Introduction

Renal cell carcinoma (RCC) is an epithelial malignancy of the renal tubules [1]. It affects
2–3% of the world population with the highest incidence rate in Europe (7–34/100,000 males
and 3–15/100,000 females) [1]. The incidence of RCC is increasing at a rate of 2–3% every
year worldwide, making it one of the 10 most common cancers in North America [2]. Clear
cell renal cell carcinoma (ccRCC) accounts for 85% of adult RCC [3,4]. Loss of function of
VHL at 3p25 is observed in most cases [5]. The pathogenesis of ccRCC is deeply related to
the loss of function of VHL, which results in a pro-angiogenic gene expression signature by
the destabilization of hypoxia-inducible factors [5]. Microscopically, ccRCC is characterized
by an extensive network of thin-walled, staghorn-shaped vasculature [5]. Another im-
portant pathway implemented in ccRCC pathogenesis is the PI3K/AKT/MTOR pathway,
which is currently targeted in therapies [5]. Mutation in SETD2 and SWI/SNF chromatin
remodeling complex is also characterized in ccRCC [5].

Radical or partial nephrectomy is the treatment for primary ccRCC. For metastatic
ccRCC, oral vascular endothelial growth factor receptor TKIs, including “sunitinib”, have
significantly improved outcomes for patients [6]. TKI monotherapy has now been replaced
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in the first line setting by combination immunotherapy [7], or immunotherapy given in
combination with TKIs [8–10]. TKIs continue to play a major role in later lines of therapy.
Sunitinib works to inhibit the phosphorylation of a number of receptor tyrosine kinases,
such as vascular endothelial growth factor receptors 1, 2 and 3, platelet-derived growth
factor receptors α and β, stem cell factor receptor, Fms-like tyrosine kinase-3, the glial
cell-line derived neurotrophic factor receptor, and the colony stimulating factor receptor.
Consistent with its multi-targeted profile, sunitinib works to promote tumor regression and
inhibit tumor growth, deter pathologic angiogenesis, and prevent metastatic progression of
cancer [11].

The prolonged use of sunitinib leads to clinical morbidities such as hypertension,
oral mucositis, hand-foot syndrome, diarrhea, hematological toxicity, and fatigue [12].
Additionally, most patients develop resistance to sunitinib and eventually succumb to
the disease; the median progression-free survival under a sunitinib treatment ranges
3–14 months in the different risk groups [10]. The causes for sunitinib resistance are yet to
be fully elucidated yet, work from our lab and others has shown that resistance is a late
manifestation of early, treatment-induced histo-molecular alterations [13]. Our previous
findings also suggest that sunitinib-resistant RCC cells can be histologically identifiable
while the tumor is still treatment-sensitive [3].

A recent single arm phase-II clinical trial has shown that individualized sunitinib
therapy may be more effective and safer compared to the traditional treatment regime [12].
In this trial, toxicity was used as a surrogate for adequate drug exposure. Sunitinib
dose and number of days on therapy were individualized based on toxicity aiming for
≤grade-2 toxicity (oral mucositis, diarrhea, hand-foot syndrome, neutropenia, thrombocy-
topenia, and fatigue) with dose escalation in patients with minimal toxicity. Another trial
showed that metastatic RCC patients who were switched to a modified 2/1 schedule of
sunitinib showed better safety profile compared with that seen with the initial 4/2 schedule
and concluded that alternative schedules, such as 2-week-on treatment and 1-week-off
(2/1 schedule), might improve tolerability [14].

In the present study, we hypothesize that varying treatment schedule and dosage of
sunitinib can delay tumor resistance to the drug and prolong progression-free survival
compared to the traditional schedule. We gave sunitinib at different dosages and adminis-
tration schedules in vivo using a xenograft mouse model and examined the morphologic
and molecular differences of the resulting tumors between the treatment groups as a tool to
examine the effects of altering the schedule of treatment on the development of resistance.

2. Materials and Methods
2.1. Cell Culture and Mouse Models

All animal studies were performed in compliance with the Animal Care Committee of
St Michael’s Hospital and the Canadian Council of Animal Care. The 786-0 kidney cancer
cell line was obtained from American Type Culture Collection (Manassas, VA, USA) and
was cultured per the distributor’s description. An amount of 5 × 105 cells were injected
into NOD/SCID (NSG) mice (6–8 weeks old, female; The Jackson Laboratory, Bar Harbor,
ME, USA) subcutaneously. A 1:1 ratio of Matrigel (Thermo Fisher Scientific, Waltham, MA,
USA) and single-cell suspension were contained in the injection [3]. Mice were treated with
varied dose of sunitinib or citrate buffer (vehicle-treated group) by gavage every day, as
detailed below [3]. A total of 51 animals were used in the study: 3 controls and 16 animals
of each of the three treatment groups. Some animals died throughout the follow up time.

2.2. Sunitinib Administration Protocols

Sunitinib was administered by gavage. Mice were randomized to the following four
groups: (1) Control: no treatment, (2) Traditional: Sunitinib for 4 weeks of continuous
treatment and 2 weeks of break (comparable to standard clinical regimen [15] (3) Alternative
protocol 1: Sunitinib 50 mg/day, 2 weeks of continuous treatment and 1 week of break
and (4) Alternative protocol 2 (high dose): 75 mg Sunitinib/day, 2 weeks of continuous
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treatment and 1 week of break. Animals were observed for a total of 12 weeks. Every
experimental group started with 11–13 mice.

2.3. Tumor Growth Assessment

Tumor size was measured once the tumors become palpable and monitored by manual
caliper daily [3]. Tumor volume was estimated by the following equation [3]:

Volume = (width)2 × length
2

Tumor volume was estimated by using the equation above and the average volume
per week was calculated for every group.

2.4. Histological Assessment

Three mice from every experimental group were sacrificed for histological examina-
tion. Tumors and organs (liver, kidneys, lungs, spleen, stomach, and any area suspicious
for metastasis) were collected or fixed in 10% formalin. Formalin-fixed paraffin-embedded
tissues were sliced at 4–6 µm sections and stained with hematoxylin and eosin. The stained
sections were assessed by two pathologists (RS and SK) [3]. Slides were scanned by an Ape-
rio scanner (Leica Biosystems, Buffalo Grove, IL, USA) for image quantification analysis.

2.5. RNA Isolation and Quantification

Three mice from every experimental group were sacrificed for mRNA expression
analysis. Tumors were snap-frozen at −80 ◦C for RNA isolation. Total RNA was isolated
using Qiagen RNeasy Mini Kit (#74104, Qiagen, Germantown, MD, USA), following the
manufacturer’s recommendations. RNA quantity and integrity was assessed using the
RNA 6000 Nano Assay and Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa
Clara, CA, USA). Samples with RIN greater than 7 were used for RNA-Seq analysis. mRNA
sequencing libraries were constructed as per the recommendations of the TruSeq mRNA
protocol (Illumina, San Diego, CA, USA).

2.6. Next Generation Sequencing Analysis of mRNA Transcripts

RNA-Seq was performed on snap-frozen tumors from traditional and alternative
treatment groups. First strand cDNA was synthesized using 1 µg of total RNA, using the
Illumina TruSeq mRNA library prep kit, following the manufacturer’s recommendation.
Libraries were sequenced on the Illumina NextSeq 550 system (Illumina, San Diego, CA,
USA). The targeted read counts were 20–35 million total reads per sample. Raw FastQ
reads files were assessed and adapter trimming processed using the RNA-Seq Alignment
app (Basespace, Illumina), and reads with Phred scores > 30 were retained. The resultant
quality-trimmed reads were aligned to the hg38 (GrCH38.83) build of the human genome
using the STAR aligner app (BaseSpace, Illumina). Transcript abundance quantification
was performed using Cufflinks Assembly & DE analysis apps (BaseSpace, Illumina).

2.7. Statistical and Bioinformatics Analysis

The differences in tumor sizes between groups were tested using the t-test (two
sample assuming unequal variance). The compared groups were control against tradi-
tional, alternative 1 against traditional, alternative 2 against traditional and alternative
1 against alternative 2. Gene expression profiles were evaluated by GenePattern RNA
Seq modules and GSEA (Gene Set Enrichment Assay) (https://www.genepattern.org/
(accessed on 20 August 2021), https://www.gsea-msigdb.org/gsea/index.jsp (accessed on
20 August 2021)).

To gain a better understanding of the molecular events that led to aggressive behavior
and sarcomatoid dedifferentiation, genes with differential falling outside of the inflection
point were analyzed using the GSEA. Enrichment gene sets results were visualized by

https://www.genepattern.org/
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Cytoscape (https://cytoscape.org/, accessed on 21 August 2021). We selected late treatment
cases to evaluate the molecular and gene pathways involved in the changes [16,17].

3. Results
3.1. Alternative Treatment Scheduling Delayed Tumor Growth and Drug Resistance

The mean growth curves of all four groups are summarized in Figure 1. Tumor
volumes were followed for 12 weeks. As expected, sunitinib treatment resulted in tumor
stability/slower growth rate in all treatment groups. The traditional treatment showed
significant difference (p < 0.05) when compared with no treatment.
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We observed a significant slower tumor growth rate between traditional and alter-
native scheduling. Compared with the control group (no treatment), and the traditional 
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Figure 1. Comparison of tumor growth rates between the different scheduling groups.

The control group showed the highest growth rate, as expected. Tumors started
getting palpable at the second week. The traditional scheduling group (50 mg/day for
4 weeks of continuous treatment and 2 weeks of break) showed resistance around the
6th week and rapid tumor growth by the 9th week. The two alternative scheduling groups
(50 mg/day (Alt 1) or 75 mg/day (Alt 2) for 2 weeks of continuous treatment and 1 week
of break) showed slower tumor growth rates and did not show signs of resistance till
the end of the experiment. There was no significant difference when different alternative
schedule dosages were compared (i.e., 50 mg vs. 75 mg). Each graph shows the average of
three animals.

The slope of traditional treatment (m = 527.61) showed stable disease with min-
imal tumor growth until about the 6th week. Rapid growth of the tumors occurred
at approximately the 9th week and was fully manifested at the 10th week, indicating
sunitinib resistance.

We observed a significant slower tumor growth rate between traditional and alter-
native scheduling. Compared with the control group (no treatment), and the traditional
group, the slopes of the two-alternative scheduling treatments were nearly half (m1 = 218.46
and m2 = 273.46), which indicates the alternative treatment significantly slowed down
tumor growth rate, and furthermore, there were no signs of resistance until the end of the
experiment (12 weeks). There was, however, no significant difference in tumor growth
rate between the two alternative treatment groups (p > 0.05 throughout 12 weeks of the
experiment) (Figure 2).

https://cytoscape.org/
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Figure 2. Bar graph showing tumor volumes at different time points.

Tumors were palpable at the second week and at 6, 9 and 11 weeks. The traditional
group was treated with 50 mg sunitinib/day for 4 weeks of continuous treatment and
2 weeks of break). The alternative groups were treated by either 50 mg/day (alt1) or
75 mg/day (alt 2) for 2 weeks of continuous treatment and 1 week of break. Tumor volumes
were significantly larger in the traditional group. We observed no significant difference of
tumor growth when comparing different dosages in the alternative group.

3.2. The Effect of Alternative Treatment Scheduling on Tumor Morphology and Behaviour

We compared the histomorphology of tumor xenografts subjected to the traditional
treatment (Figure 3) and alternative treatment (Figure 4) at different time intervals. The
traditional treatment showed early changes of aggressive behavior (Figure 3A) including
greater extent of vasculature and spheroid formation, bizarre large nuclei and multi-
nucleated cells (which indicates enrichment of stem-cell and EMT properties) (Figure 3B),
irregular borders infiltrating into the surrounding tissue (Figure 3C), in agreement with our
previous results showing early changes induced by sunitinib [18]. Mice from this group
showed also remote metastatic lesions in lung (Figure 3D,E) and liver (Figure 3F,G).

Histological examination of the alternative treatment scheduling cohort was evaluated
after two and three cycles of treatment (Figure 4A). A cycle was defined as three weeks of
treatment which either represents continuous treatment for the traditional group or two
weeks of treatment and one week of no treatment for the alternative groups. After two cycles
(six weeks) and three cycles (nine weeks), tumor sections showed significantly larger islands
of necrosis (Figure 4B) (indication of treatment effect) compared to traditional scheduling
(p < 0.05), significantly less vascularization (p < 0.05), and very minimal component of
spindling (a marker of sarcomatoid changes).

Additionally, alternative treatment groups showed a significantly higher propor-
tion of cells with preserved RCC morphology (Figure 4C) (rounded to oval cells with
cytoplasmic clearing) whereas the traditional group demonstrated aggressive behavior
indicated by multinucleated giant cells, bizarre nuclei and spindle shaped formation
(sarcomatoid changes).
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Figure 3. Histopathologic changes in the traditional scheduling regimen after three cycles of treatment
(9 weeks). (A) lower power magnification showing infiltrative tumor border into surrounding tissues;
(B) high power magnification showing giant cells with bizarre nuclei and multi-nucleation. (C) high
power magnification showing infiltrative border with tumor cells invading into the surrounding
tissues. (D) remote metastatic lesion in lung. (E) higher magnification of (D) showing metastatic
deposits in lung. (F,G) metastatic deposits in the liver (low and high magnification, respectively).
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Figure 4. Histomorphology of Alternative treatment xerographs. Alternative treatment xerographs
showed significantly larger islands of necrosis (A,B) and more preservation of renal tumor cell
morphology (C).

In terms of aggressive tumor behavior, lung and liver metastasis were observed in both
the traditional and the alternative treatment groups, but tumors with traditional treatment
started developing metastasis at a much earlier date (at 6 weeks) and showed significantly
higher number and larger size of metastatic deposits. The interrupted treatment protocol
resulted in a smaller number of metastatic deposits in the liver and the lung compared to
continuous treatment or the control groups after 12 weeks (p < 0.05). When comparing the
different dosage of the alternative treatments, the higher dosage (75 mg) clearly produced
more confluent areas of necrosis, indicating more effective treatment than the regular
classic dosage (50 mg), even at 12 weeks, although, ultimately, this did not translate into a
significantly smaller tumor size (as discussed above).

Comparing animal health during treatments, there were significantly fewer side effects
as manifested by less hair depigmentation, depression (less motion), etc. in the alternative
groups as compared to the traditional treatment. It should also be noted that the mice in
the alternative group were able to tolerate a higher dosage of the treatment with fewer side
effects. Together, these results indicate that the drug “breaks” (in the alternative treatment)
resulted in greater efficiency, with fewer side effects, and enabled the animal to tolerate
higher doses, and significantly delayed the development of aggressive features and the
development of resistance.

3.3. Transcriptomic Profile and Behavior Were Different between Traditional and Alternative
Treatment Groups

Following sequencing, FastQ and sequencing QC were evaluated and samples with a
sequencing depth greater than 30 were selected for comparison. There was a significant
expression profile difference between the traditional and alternative groups, as shown in
Figure 5.
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Figure 5. (A) Transcriptome profile comparison between the traditional and the alternative
groups. The expression of a number of genes was significantly different between the two groups.
Red = upregulated genes. Blue = downregulated genes; (B) mTOR signaling and PI3K/AKT path-
ways were significantly enriched in traditional; (C) significant enriched the signaling pathways in
traditional treatment. The size of the circle denotes the relative number of genes in each pathway;
(D) signaling enrichment analysis performed using Reactome analysis showed comparable pathways
to the H collection analysis. It showed additionally that groups of these pathways form Reactome
functional interaction networks, as indicated by the connecting lines.

GSEA was performed to compare the expression pattern of the alternative vs. tradi-
tional scheduling groups using C2 (curated gene sets), the H (hallmark gene sets) collections
in MSigDB (Molecular Signature Database). We interrogated the C2 collection to find re-
lated pathways, and the H collection (more accurate in reducing noise and redundancy ) for
identifying the significantly altered biological processes, as previously completed [19]. We
found 48/50 gene sets are upregulated in the traditional group compared to the alternative
scheduling; of these, 13 gene sets were significant with a False Discovery Rate (FDR) < 25%,
8 gene sets are significantly enriched at nominal p < 0.01, and 12 gene sets were significantly
enriched at nominal p < 0.05. The eight highly enriched (significant) pathways were protein
secretion, androgen secretion, heme metabolism, mitotic spindle, oxidative phosphory-
lation, mTORC1 signaling, early estrogen response, Myc targets, bile acid metabolism,
UV response DN, G2M checkpoint, and PI3K-AKT-mTOR signaling (Table 1). Many of
these, like mTOR (Figure 5B) and cMyc are reported to contribute to tumor progression and
aggressive behavior, as discussed below. The relative gene numbers involved in each of
these pathways is illustrated in Figure 5C. Signaling enrichment results were reproducible
using an alternative/additional Reactome database analysis that showed that these path-
ways form functional interaction networks (Figure 5D). There were two gene sets that were
upregulated in the alternative treatment group compared to the traditional treatment, but
not significantly enriched. These were myogenesis and epithelial mesenchymal transition
pathways (Data not shown).
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Table 1. Significantly enriched gene sets in the traditional treatment group, compared to alternative
scheduling protocols.

Gene Set Name Size Enrichment
Score

Normalized
Enrichment Score NOM p-val FDR q-val

HALLMARK_PROTEIN_SECRETION 96 0.644088 1.524993 0.0001 0.00576

HALLMARK_ANDROGEN_RESPONSE 99 0.622935 1.48529 0.0002 0.00625

HALLMARK_HEME_METABOLISM 195 0.54383 1.322556 0.0005 0.1018

HALLMARK_MITOTIC_SPINDLE 198 0.510461 1.245078 0.001 0.171488

HALLMARK_OXIDATIVE_PHOSPHORYLATION 200 0.513705 1.252967 0.002 0.212878

HALLMARK_MTORC1_SIGNALING 197 0.516115 1.25293 0.002 0.177398

HALLMARK_ESTROGEN_RESPONSE_EARLY 198 0.513156 1.244218 0.006 0.15162

HALLMARK_MYC_TARGETS_V1 196 0.499329 1.21534 0.01 0.171292

HALLMARK_BILE_ACID_METABOLISM 112 0.516231 1.230885 0.019076 0.162642

HALLMARK_UV_RESPONSE_DN 142 0.506569 1.219168 0.023 0.17801

HALLMARK_G2M_CHECKPOINT 196 0.480435 1.162778 0.034 0.296556

_PI3K_AKT_MTOR_SIGNALING 104 0.50546 1.209761 0.04911 0.160687

4. Discussion

Sunitinib and other TKIs remain important treatments for metastatic renal cell car-
cinoma. The main limitation of its usage is the high prevalence of developing resistance
over the time course of treatment. The mechanisms of resistance that develop to TKIs such
as sunitinib are poorly understood. A recent clinical trial by Bjarnason et al. showed that
an “individualized” dosing of sunitinib might improve outcomes for patients [12]. The
purpose of our current study is to examine if altering treatment scheduling will delay the
development of resistance in vivo, and to dissect the histo-morphological and molecular
attributes that might underlie this phenomenon.

Our results are consistent with the Bjarnason et al. clinical trial, where shorter sunitinib
exposure followed by a “break” in treatment, results in improved survival [12]. Altering
the duration of sunitinib treatment significantly reduced the rate of tumor growth (p < 0.05)
throughout the course of the study. It also altered tumor morphology, and the molecular
signatures underlying tumor behavior.

We have previously reported that sunitinib induces early histo-molecular changes
in renal cancer cells that can contribute to resistance [3]. Other studies have shown that
the processes underlying (reversible) epithelial to mesenchymal transition (EMT) may be
associated with acquired tumor resistance to TKIs in patients with ccRCC [20]. Taken
together, it is possible that an interrupted treatment protocol can help reverse, or at least
delay, some of the changes that lead to resistance. In the current study, delayed aggressive
behavior (as characterized by multinucleated giant cells, bizarre nuclei and spindle shaped
formation) was observed in the alternative treatment along with extensive necrosis of the
tumor cells, less vasculature and irregular well-defined borders. These are all signs of
better treatment efficiency, while on the other hand, the traditional treatment had shown
early sign of aggressive behavior, more vasculature and irregular borders infiltrated the
surrounding tissue spheroid formation.

There are currently no clinical biomarkers to predict sunitinib response. Most respon-
dents develop resistance through reversible mechanisms that are poorly understood. We
previously identified miRNAs that can predict sunitinib response [21] and showed miRNA
involvement in development of resistance [22]. In the current study, we identified a number
of pathways that can contribute to molecular changes associated with resistance and that
represent potential drug targets. Further testing is required to examine the utility of key
molecules in these pathways to monitor and predict development of resistance.

Sunitinib has significant impact on tumor cell programming in addition to its anti-
angiogenic role on endothelial cells. In our differential gene expression analysis and GSEA,
most enriched genes are involved in tumor aggressiveness and drug resistance including
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ABHD2, ABCC4, CLN5 intracellular trafficking protein, and insulin like growth factor
2 receptor. ABHD2, an androgen target gene, was reported to promote prostate cancer cell
proliferation and migration [23]. ABCC4 is associated with resistance to drugs in solid
tumors and was shown to contribute to the aggressiveness of Myc-associated epithelial
ovarian cancer [24].

Furthermore, the traditional treatment group showed increased expression of genes
involved in pathways that are highly associated with tumor aggression. Remarkably, some
cancer stem cell genes were also found in this group, such as PROM1 (also known as CD133)
which is a member of a prominent family of pentaspan transmembrane glycoproteins of
murine neuroepithelial origin (typically located in plasma membrane protrusions) [25].
CD133 is found in embryonic stem cells, normal tissue stem cells, stem cell niches, circulat-
ing endothelial progenitors as well as cancer stem cells [26,27].

A previous study described an upregulation of lipid biosynthesis in the sunitinib-
resistant 786-O kidney cancer cell line and was suggested to accelerate membrane construc-
tion in both enlarged nuclei and lysosomes [28]. Increased expression of CADM1 resulted
in significant inhibition of motility and invasiveness of melanoma cells [29].

Our findings are consistent with reports of several other genes that are implicated in
progression of cancer. For example, Epithelial Membrane Protein 1 (EMP1) is expressed
in high levels in human cancers and was shown in vitro to reduce cell migration and
invasion, and was also shown to increase apoptosis and caspase-9 expression in carcinoma
of the nasopharynx, stomach, breast and prostate [30]. Other highly enriched genes in the
traditional regimen group included SAMD, which has been shown to be an unfavorable
prognostic marker in kidney cancer [31], and CYP8B, a cholesterol metabolizing enzyme
reported as being an unfavorable prognostic marker in colorectal cancer [32]. Thus, our
mouse xenograft model of RCC and the application of the traditional sunitinib regime
renders a canonical profile of genes associated with poor outcomes in various cancers.

In the alternative treatment groups, two gene sets upregulated; however, the dif-
ferences were not significant compared to the traditional treatment. These two sets are
pathways associated with myogenesis and EMT.

The current study shows that an alternative treatment scheduling may delay resistance;
however, it did not significantly reduce the chance of metastasis. A further study on how
to inhibit EMT is warranted.
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