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Summary

Since the first World Health Organization notification on 31 December

2019, coronavirus disease 2019 (COVID-19), the respiratory disease

caused by the coronavirus severe acute respiratory syndrome coronavirus-

2 (SARS-CoV-2), has been responsible for over four million confirmed

infections and almost 300 000 deaths worldwide. The pandemic has led to

over half of the world’s population living under lockdown conditions. To

allow normal life to resume, public health interventions will be needed to

prevent further waves of infections as lockdown measures are lifted. As

one of the most effective countermeasures against infectious diseases, an

efficacious vaccine is considered crucial to containing the COVID-19 pan-

demic. Following the publication of the genome sequence of SARS-CoV-2,

vaccine development has accelerated at an unprecedented pace across the

world. Here we review the different platforms employed to develop vacci-

nes, the standard timelines of development and how they can be con-

densed in a pandemic situation. We focus on vaccine development in the

UK and vaccines that have entered clinical trials around the world.

Keywords: coronavirus disease 2019; severe acute respiratory syndrome

coronavirus-2; vaccine.

Introduction

December 2019 saw the outbreak of a novel beta-coron-

avirus from Wuhan, China. This virus, severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2), and the

corresponding disease – coronavirus disease 2019

(COVID-19) – causes illness ranging from asymptomatic

to severe respiratory distress, pneumonia and death.1

Although its exact origins are unknown, SARS-CoV-2

shares genetic homology with other coronaviruses found

in bats and with its most closely related human virus,

SARS-CoV-1.2,3 Beta-coronaviruses are the causative

agents of two previous outbreaks this millennium. The

SARS-CoV-1 outbreak in 2003 caused similar respiratory

pathology and amassed 8098 cases and 774 deaths.4,5

SARS-CoV-1 potentially underwent zoonotic transmission

between bats and palm civets before human infection.6

Middle Eastern respiratory syndrome coronavirus

(MERS-CoV) is another related CoV identified in Saudi

Arabia in 2012. Consequent outbreaks have determined a

mortality rate of approximately 35%, although this does

not include likely asymptomatic transmission.7,8 Similarly,

genomic evidence suggests that MERS-CoV circulated

between bats and camels before transmission to

humans,9,10 suggesting that bats are a natural reservoir

species of coronaviruses, and that zoonosis can occur

with close human-to-animal contact.8 Two other beta-

coronaviruses, HCoV-OC43 and HCoV-HKU1, and two

alpha-coronaviruses, HCoV-229E and HCoV-NL63, circu-

late within the human population and cause mild respira-

tory pathogenesis.8

COVID-19 mortality is currently estimated to be

approximately 3�4% globally,11 with a higher risk of

COVID-19 mortality in older adults and those with pre-
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existing co-morbidities.12,13 Since January 2020, SARS-

CoV-2 has spread to more than 200 countries and caused

over four million infections and over 300 000 deaths.14

COVID-19 was declared a global pandemic by the World

Health Organization on 11 March 2020.15

This outbreak of a previously unknown virus has insti-

gated a worldwide effort to develop a vaccine for

COVID-19. The traditional vaccine development pipeline,

which takes an average of 10 years from conception to

licensing,16 is unfeasible for a situation of this urgency.

Therefore, new strategies for the accelerated development

of vaccines, subsequent pre-clinical and clinical trials, and

rapid upscaling of manufacture are necessary to ensure

there is no setback in the delivery of potential vaccine

candidates. Currently, it is estimated that a vaccine for

COVID-19 will be widely available in 18–24 months if

clinical trials demonstrate safety, immunogenicity and

protective efficacy.17

Vaccination against COVID-19

Vaccination can generate long-lasting immunity by expos-

ing individuals to antigens, to drive the development of

immunological memory before encounter with live patho-

gen. The resulting immunity can be mediated by humoral

antibody induction, and/or cellular T-cell effector function.

Spike glycoprotein (S) is the sole surface protein of the

SARS-CoV-2 virion.18 SARS-CoV-2 S mediates viral entry

into host cells via angiotensin-converting enzyme 2,

which is expressed at high levels on the surface of pul-

monary epithelial cells.19

Currently, the most clinically advanced COVID-19 vac-

cines target the S. In addition, the structure of the SARS-

CoV-2 S shares homology with SARS-CoV-1 S, the pri-

mary target of the immune response and vaccine develop-

ment for SARS.20,21 The correlates of protection against

SARS-CoV-2 are not yet fully understood, so it may be

necessary that vaccination delivers robust humoral and

cellular immunogenicity to increase the likelihood of

inducing protection.

Humoral protection arises through structural epitope

recognition of proteins. In SARS-CoV-2 infection, anti-

bodies are most frequently generated against the S pro-

tein and the internal nucleoprotein.22 Potential SARS-

CoV-2 vaccines would ideally generate a long-lasting

humoral immunity with protective titres of neutralizing

antibodies that do not cause antibody-dependent

enhancement (ADE) upon re-infection. ADE occurs when

antibodies to the pathogen, or cross-reactive antibodies

to a closely related pathogen, facilitate viral infection of

cells instead of protecting the host and contribute

towards an exacerbated pathology.23 ADE was detrimen-

tal in SARS-CoV-1 pathogenesis during the 2002/03 out-

break,23 and pre-clinical trials demonstrated infection of

macrophages via ADE,24,25 and lethal pneumonia in

mice.26,27 ADE is therefore of potential concern for a

SARS-CoV-2 vaccine.

Cellular immunogenicity is vital for vaccine-derived

immunity against intracellular pathogens, and for a rapid

cytotoxic response to re-infection.28,29 However, acute

SARS-CoV-2 infection may be worsened by a skewed

immune response towards CD4+ T helper type 2 (Th2)

cells involving interleukins 10 and 14 (IL-10 and IL-14),

which initiates immunosuppression of inflammatory

CD8+ T-cell responses and could contribute towards

more severe pathology.30,31 Therefore, vaccines that do

not induce a skewed Th2 immune response are thought

to be optimal for SARS-CoV-2.

An adjuvant is a substance that is often co-adminis-

tered with a vaccine to enhance the immunogenicity and

duration of protection by stimulating the innate immune

system. The choice of adjuvant can also skew the T-cell

response towards a Th1- or Th2-dominant reaction,

necessitating careful planning when trying to avoid

adverse events such as ADE.32

Platforms for COVID-19 vaccine development

Whole virion vaccines (live attenuated and
inactivated)

Live attenuated vaccines (LAV) are viruses that are ren-

dered replication-incompetent through repeated passage

in cell culture, and inactivated vaccines use whole patho-

gen that has typically been killed by exposure to chemi-

cals (e.g. formaldehyde) or heat inactivation.33 LAV are

immunogenic and reproduce the breadth of the humoral

and cellular immune protection that would be generated

by live viral infection;32,33 however, inactivated vaccines

are generally less immunogenic and require more than

one dose or an additional adjuvant.34

Safety issues regarding the generation and subsequent

attenuation of the virus, with potential for re-activation

in vaccinated individuals, means LAV are not a tenable

vaccine strategy for highly pathogenic viruses.33,35 This

also prevents immunization of individuals with weakened

immune systems who are at further risk of illness if the

pathogen reverts.36 From the perspective of vaccine distri-

bution, LAV are generally kept refrigerated to preserve

immunogenicity, which may be problematic in countries

that cannot sustain cold-chain distribution.34,36

Live attenuated vaccines for SARS-CoV-1 were tested

in pre-clinical trials.37 There is currently one company,

Codagenix (Farmingdale, NY), proposing a computation-

ally designed, lab-made SARS-CoV-2 ‘virus’ that is

immunogenic but not pathogenic.38 SinoVac (Beijing,

China) demonstrated safety and immunogenicity of an

inactivated SARS-CoV-1 vaccine in a phase I trial,39 and

have determined efficacy of a formalin-inactivated SARS-

CoV-2 vaccine in rhesus macaques40 (Table 1). Although
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this vaccine did not demonstrate any ADE-derived

pathogenesis, previous whole virus SARS-CoV-1 vaccines

trialled in mice induced eosinophil-derived immunopathol-

ogy upon viral challenge,27 and Th2-driven histopathologi-

cal changes in the lungs.31

Protein subunit vaccines

Protein subunit vaccines include antigenic proteins thought

to induce a protective immune response. This vaccine type

is produced in vitro and circumvents handling highly

pathogenic live viruses.33,41 Subunit vaccines predomi-

nantly elicit a humoral antibody response, and most are

administered with an adjuvant, which is a prerequisite to

stimulate a strong immune response and generate a higher-

quality immune memory in humoral and cellular compart-

ments. However, the inclusion of adjuvants can increase

the reactogenicity and production costs, which are impor-

tant considerations.41 Virus-like particles (VLP) are a type

of subunit vaccine that present many copies of the relevant

antigen in a three-dimensional virus-like structure, and

may be immunogenic enough to not require the inclusion

of adjuvants.41

Subunit vaccines are an attractive vaccine technology

for rapid vaccine development, and multiple institutions

worldwide are developing protein subunit-based vaccines

(Table 1). They can be upscaled for mass production at

good manufacturing practice (GMP) standards,42 and dis-

tribution has less reliance on cold-chain systems.34 How-

ever, they can require bespoke manufacturing processes,

which can increase cost, and may require specific mam-

malian cell expression and optimization.18,43

Nucleic acid vaccines

Similar to subunit vaccines, specific proteins from the tar-

get pathogen are chosen for their immunogenic epitopes;

however, these proteins are delivered as either plasmid

DNA or RNA sequences.44,45 Upon vaccination, the host

cell manufactures the pathogen protein, which is recog-

nized by the immune system as foreign and generates an

immune response.44 Non-capsulated RNA vaccines are

readily removed by the host cell upon injection, so

advances in delivery technology, including encapsulation

of RNA in liposomes, have been developed to avoid

degradation.46

RNA vaccines have been shown to induce antigen-

specific antibody and polyfunctional T-cell responses in

phase I clinical trials of cancer vaccines,46 and functional

antibodies against rabies virus glycoprotein;47 however,

there are currently no licensed RNA vaccines for humans.

Although DNA vaccines are immunogenic in small ani-

mal models, they show less immunogenicity in human

clinical trials and require adjuvants or multiple doses.34,48

Four DNA vaccines are available for animal use;46 how-

ever, there are currently none licensed for humans.49

There are several nucleic acid vaccines in development

for COVID-19 prophylaxis (Table 1). Nucleic acid vaccines

are relatively cheap and rapid to manufacture, with the

possibility to mass-produce large-scale GMP product.50

Recombinant viral-vectored vaccines

Recombinant viral-vectored vaccines use the host’s innate

immunity to generate self-adjuvanted immunogenicity,

while eliciting a targeted immune response against

Table 1. Categories of vaccine, with licensed and experimental

examples

Vaccine Licensed vaccines

Example institutions

developing COVID-19

vaccines

Live attenuated Smallpox, measles,

yellow fever, mumps,

influenza, rubella,

varicella, polio

Codagenix

(Farmingdale, NY)

Inactivated Inactivated polio, rabies,

hepatitis A

SinoVac (Beijing,

China)

Protein subunit Hepatitis B, Haemophilus

influenzae B, pertussis,

human papillomavirus,

pneumococcal bacteria,

meningococcal bacteria

Generex Biotechnology

(Miramar, FL)

Vaxart (San Francisco,

CA)

Medicago (Quebec

City, Canada)

GSK (London, UK)

and Clover

Biopharmaceuticals

(Chengdu, China)

University of

Queensland

Nucleic acid None in humans Moderna (Cambridge,

MA)

Inovio Pharmaceuticals

(Plymouth Meeting,

PA)

Pfizer (New York, NY)

Imperial College

London

Takis Biotech (Rome,

Italy)

BIOCAD

(St Petersburg, Russia)

Viral-vectored Japanese encephalitis

(Australia), dengue

virus (Mexico and

Brazil)

University of Oxford

CanSino Biologics

(Tianjin, China)

Greffex (Houston, TX)

Janssen (Beerse,

Belgium)

For each category of vaccine listed, the table provides examples of

licensed vaccines and institutions developing experimental COVID-

19 vaccines.70,89
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genetically encoded pathogen antigens.51 The viral vector

‘backbone’ is constructed from a genetically modified

virus,52 examples being adenoviruses, poxviruses and

vesicular stomatitis virus (VSV).52,53 This vector typically

has insertion sites for gene(s) of the target pathogen,

which are expressed intracellularly in the host upon vacci-

nation.54

Important considerations for development of virus vec-

tored vaccines is the generation of immunity towards the

vector, which could hinder the antigen-specific response

upon a boost vaccination. However, reports from pre-

clinical and clinical studies show sufficient protection can

be elicited from a single dose.55,56

Human adenoviruses (hAds) are a frequently used viral

vector thaat circulate at high frequency in most popula-

tions,57 contributing towards demographically variable yet

significant pre-existing immunity that can reduce vaccine

efficacy.54 Vectors constructed from chimpanzee aden-

ovirus (ChAd) were developed to elicit immunogenicity

that is similar or superior to that of hAd vectors, while

having significantly reduced seroprevalence and hence

neutralizing antibodies in most populations.28,58 In pre-

clinical studies, ChAd vectors have demonstrated up to

100% efficacy with a single vaccination against several

emerging pathogens.56,59 Clinical trials have established

that ChAd vectors also have a good safety profile and

immunogenicity for influenza A virus,60 Ebola virus

(EBOV),61 and MERS-CoV.62

Adenovirus vectors can be rapidly made to GMP at

large scale, and a single vaccination can be sufficient to

provide rapid immunity in individuals.63 This rapid pro-

duction and distribution pipeline was tested during the

2013–2016 EBOV outbreak in Guinea, Liberia and Sierra

Leone, where five viral-vectored vaccines were rapidly

escalated to clinical trials.63 A recombinant VSV vector

expressing the EBOV glycoprotein (rVSV-ZEBOV) pro-

gressed to phase III trials in Guinea and Sierra Leone and

provided 100% efficacy across 4359 individuals vaccinated

with a single dose.55 Following the second EBOV out-

break in the Democratic Republic of the Congo (DRC) in

2018, the World Health Organization allowed compas-

sionate use of rVSV-ZEBOV in the DRC; and it has now

been licensed in the DRC, Burundi, Ghana and Zambia.64

An Ad26-vectored EBOV vaccine has also been developed

by Janssen (Beerse, Belgium) and tested extensively in a

prime-boost regimen in sub-Saharan Africa for efficacy

and immunogenicity.65

Timelines in vaccine development

Development of vaccines is a long process, taking at least

10 years per vaccine.66 Most of the duration of vaccine

development is determined by clinical trials, which are

split into three phases between pre-clinical exploratory

work and licensure of the vaccine:67

• Phase I: First-in-human experiments on a small num-

ber of healthy volunteers, who have not been exposed

to the pathogen. The trial focuses on safety and

immunogenicity of the vaccine.67

• Phase II: Vaccines successful in phase I move into phase

II trials. Phase II trials have a greater focus on the

immunogenicity of the vaccine and expand the cohort

across a wider breadth of the population, allowing for

immune response to be analysed across age, gender, eth-

nicity and other variables.67 Efficacy may also be assessed

at this stage, with controlled human microbial infection

studies giving a useful early indication of potential effi-

cacy for diseases where robust controlled human micro-

bial infection studies models are available.68

• Phase III: the efficacy of the vaccine is assessed across a

larger population. Phase III studies enrol enough par-

ticipants to ensure statistical power to assess if the

immune response stimulated by the vaccine is suffi-

cient to protect against disease. The clinical end point

of phase III vaccine studies is often determined by

reduction in case numbers or severity of disease in the

cohort and requires an active outbreak.67

Phase overlap

Vaccine trials are extremely expensive,17 representing a

huge financial risk, and as such the vaccine timeline is

extensive.66 It is estimated to cost US$31–68 million to

bring a candidate to the end of phase IIa trials.69 Ethical

acceleration of the trial can be achieved by performing

phase I/II and phase II/III studies in parallel once sufficient

data have been extracted from the preceding phase.70 This

can entail a larger risk from commercial investors and

therefore requires philanthropic organizations such as the

Coalition for Epidemic Preparedness Innovations (CEPI)

and others to fund the parallel phases to accelerate vaccine

development through clinical trials at a rapid rate.70

COVID-19 vaccine development: the UK
perspective

There are a number of COVID-19 vaccines under clinical

development at research institutes in the UK, at least three

of which are at the pre-clinical stage, and one of which has

progressed to clinical trial recruitment (Table 2).

Pre-clinical COVID-19 vaccine research

A self-amplifying RNA vaccine encoding SARS-CoV-2-S

is under development at Imperial College, London. Previ-

ous self-amplifying RNA vaccines against influenza A

virus haemagglutinin and Toxoplasma gondii NTPase-II

have induced cellular and humoral immunogenicity in

mice,71,72 and a first-in-class clinical trial using self-
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amplifying RNA against hepatocellular carcinoma encod-

ing the transcription factor C/EBP-a demonstrated

acceptable safety and tolerability.73 This COVID-19 vac-

cine is currently in pre-clinical testing, with a target clini-

cal trial date set for Summer 2020.74

Bristol University, with spin-out company Imophoron

(Bristol, UK), is developing a SARS-CoV-2-S VLP vaccine

with their adenovirus-based ADDomer© technology.

Imophoron states that the ADDomer© VLP platform has

many of the main benefits of VLP-based vaccines, includ-

ing rapid development, self-adjuvant properties and no

cold storage requirement.75 An ADDomer© VLP vaccine

expressing Chikungunya virus E2 protein also proved

immunogenic in pre-clinical trials,76 although this plat-

form has not yet been tested in humans.

The University of Cambridge and DioSynVax (Cam-

bridge, UK) are using a bioinformatic approach to design

an optimal SARS-CoV-2 genetic sequence, which will be

used to make a vaccine encoding SARS-CoV-2-S.77

UK COVID-19 vaccine clinical trials

The University of Oxford COVID-19 vaccine has recently

entered clinical trials in the UK (Table 2). This approach,

using viral-vectored vaccine technology, is being led by

the Jenner Institute and the Oxford Vaccine Group.78 The

vaccine, known as ChAdOx1 nCOV-19, uses a replica-

tion-deficient ChAd viral vector to encode SARS-CoV-2-

S. ChAdOx1 is derived from the ChAd isolate Y2579 and

has been tested in many pre-clinical and clinical trials,

demonstrating safety with robust humoral and cellular

immunogenicity and durable protection.80–82 At the begin-

ning of the SARS-CoV-2 outbreak, the Jenner Institute was

conducting CoV vaccine development against MERS-CoV

with collaborative ChAdOx1-MERS-CoV phase I clinical

trials in Oxford and the Kingdom of Saudi Arabia.83,84

Screening, recruitment and vaccination for the ChA-

dOx1 nCoV-19 phase I/II clinical trial is currently under-

way and at the time of writing, approximately 900 healthy

volunteers aged 18–55 years have been vaccinated with

5 9 1010 viral particles. ChAdOx1 nCoV-19 or a Meningi-

tis-ACWY vaccine via intramuscular vaccination, in a ran-

domized 1 : 1 ratio of trial vaccine to control (clinicaltria

ls.gov: NCT04324606). The primary and co-primary objec-

tives of this study are to assess the safety and efficacy of

the vaccine. The humoral and cellular immune responses

to vaccination will be assessed as secondary end points.85

The current planned phase II clinical trial will recruit

volunteers between the ages of 55 and 70, age 70+ and

children age 5–12 years to assess the vaccine across

broader demographics. A phase III clinical trial is planned

to recruit more than 10 000 volunteers over 18 years old

to assess the efficacy of the ChAdOx1 nCoV-19 vaccine.86

COVID-19 vaccine development: worldwide
clinical trials

In April, CEPI announced the number of COVID-19 vac-

cine candidates around the world had exceeded 100.16

Here we will focus on those candidates that have entered

early clinical trials by April 2020. Table 3 shows data on

the protocols for each trial.

mRNA platforms

mRNA1273 (Moderna) and BNT162 (BioNTech)

The Moderna and BioNTech platforms are messenger

RNA (mRNA) molecules expressing SARS-CoV-2-S, con-

tained within lipid nanoparticles to facilitate entry of

mRNA into the host cells.87,88 Once inside the host cell,

the S protein will be expressed and induce antibody

responses. The Moderna vaccine was the first to progress

to phase I clinical trials in humans.89

The Moderna platform has been used in phase I clini-

cal trials for several pandemic potential diseases, includ-

ing MERS, Zika (clinicaltrials.gov NCT04064905) and

pandemic influenza.87 Phase I data for a pandemic influ-

enza vaccine focused on a cohort vaccinated with 25, 50

or 100 µg of vaccine. The vaccine had a good safety pro-

file and showed seroconversion in volunteers who

received the highest dose. Crucially, 87% of volunteers

who seroconverted developed neutralizing antibodies. The

platform did not however generate any measurable cell-

mediated cytokine responses.87

Table 2. COVID-19 vaccine development in the UK

University Vaccine

Stage of

development

Example clinical trials

with the same vaccine

platform

University of

Oxford

ChAdOx1

nCoV-19

Clinical trial

recruitment

MERS, influenza,

tuberculosis28,29,62

Chikungunya

(clinicaltrials.gov

NCT03590392),

Zika (clinicaltrials.

gov NCT04015648)

Imperial

College,

London

Self-

amplifying

RNA

Pre-clinical MTP-CEPBA

(clinicaltrials.gov

NCT02716012,

NCT04105335)

University of

Cambridge

DNA Pre-clinical N/A

Bristol

University

Virus-like

particle

Pre-clinical N/A

This table outlines UK universities developing COVID-19 vaccines,

the vaccine platform under development, the stage of development

for each vaccine, and examples of previous or ongoing clinical trials

for this vaccine platform co-ordinated by the university.
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The BioNTech platform has been used in Zika virus

vaccine development. Vaccination with a 30-µg or 50-µg
dose in C57BL/6 mice and rhesus macaques respectively

induced neutralizing antibody titres against Zika virus,

and protected challenged animals from detectable virae-

mia.88 This mRNA platform is also being used in phase I/

II clinical trials for several cancer vaccines.90

DNA vaccines

INO-4800 (Inovio Pharmaceuticals) and bacTRL-Spike
(Symvivo Corporation)

INO-4800, and the previous Inovio vaccine INO-4700,

express either SARS-CoV-2-S or MERS-CoV-S respec-

tively within an identical DNA vaccine vector.91 The vac-

cine is administered through intramuscular injection,

followed by electroporation of the injection site. The need

for electroporation may limit the ability of INO-4800 to

be extended to the scales needed for a global pandemic

and may be difficult to administer worldwide.

INO-4700 showed promising immunogenicity in a phase

I clinical trial after multiple immunizations.92 The trial

administered three doses of vaccine, and was split across

high, medium and low groups. Initial seroconversion

peaked at 86% of the total cohort before falling slightly by

the trial end point. Titres of neutralizing antibodies showed

similar patterns, peaking at 43% of the cohort 2 weeks after

final vaccination, before being detected in only 3% of the

cohort at the trial end point. Seventy-six per cent of the

total cohort also showed an interferon-c T-cell response

against MERS-specific peptides.92

Pre-clinical animal models of INO-4800 have been

published in pre-print. These demonstrate seroconversion

in all animals and robust T-cell interferon-c responses

10 days post-vaccination against peptides spanning SARS-

CoV-2-S (pre-print ahead of publication, https://doi.org/

10.21203/rs.3.rs-16261/v1).

The bacTRL platform from Symvivo Corporation uses

engineered probiotic Bifidobacterium longum to deliver a

DNA vaccine expressing SARS-CoV-2-S into intestinal

cells. The phase I trial of a COVID-19 vaccine will also

be the first-in-man study of the bacTRL platform, so no

previous immunological data are available (clinicaltria

ls.gov NCT04334980).

Viral vectored vaccines

Ad5-nCoV (CanSino Biologics), APCs and LV-DC/CTLs
(Shenzhen Geno-Immune Medical Institute)

The Ad5 platform from CanSino Biologics demonstrated

safety in phase I/II trials for Ad5-EBOV,54 a vaccine

against the Zaire strain of EBOV. In addition, Ad5-EBOV

induced humoral immune responses, with 100%

seroconversion of vaccines in a phase I trial. Volunteers

also exhibited an interferon-c T-cell response, significantly

different from the placebo group, suggesting the induc-

tion of limited cell-mediated immunity.54 This vaccine

has subsequently been licenced for emergency use in

China against EBOV.

In the phase I Ad5-EBOV trial, the study found that

participants with pre-existing Ad5 neutralizing antibodies

showed significantly lower humoral and cellular responses

to the EBOV glycoprotein than participants that were

seronegative against Ad5.54

The Shenzhen Geno-Immune institute are using len-

tiviruses to transduce dendritic cells (DCs) and antigen-

presenting cells (APCs) to induce cytotoxic T-cell

responses in individuals who have developed COVID-19.

Dendritic cells are a subset of APCs that can be modified

to express and present antigens, and this property has

been used in phase I trials with tumour-associated and

neo-antigen cancer vaccines.93 The trials will test both the

efficacy of APCs as a vaccine alone (clinicaltrials.gov

NCT04299724), and administration of modified DCs with

donor cytotoxic T cells as a combination therapeutic and

vaccination (clinicaltrials.gov NCT04276896).

Inactivated vaccines

Inactivated SARS-CoV-2 (Sinovac Research and Devel-
opment)

Sinovac has published pre-clinical data on the efficacy of

an inactivated SARS-CoV-2 vaccine in a macaque chal-

lenge model.40 Rhesus macaques received three vaccine

doses of either 3 or 6 µg at 1-week intervals. Titres of

IgG and neutralizing antibody after the third vaccination

were similar to those induced by natural infection in

recovered patients. T-cell responses were not reported.

Macaques were challenged 8 days after the third vaccina-

tion and displayed a reduction in viral load compared

with unvaccinated animals; encouragingly, there was no

evidence of ADE or Th2-skewed immune responses in

vaccinated animals.40

COVID-19 vaccine directions

The COVID-19 pandemic has driven vaccine research

and development into unprecedented territory. Non-clini-

cal suppression strategies involving contact tracing and

social distancing have been employed globally to varying

degrees.17 There is growing evidence that these interven-

tions have had considerable impact on ‘flattening the

curve’ of the epidemic, thus reducing the burden on

overstretched health-care systems, and allowing time for

vaccine and antiviral development. However, relaxing

social distancing measures too soon may result in a sec-

ond peak in infections.94 The social, economic and health
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effects of these measures on society will be fully realized

over the coming months, although it is likely that the

cost of these strategies will be steep. Furthermore, health-

care facilities have been subjected to intense pressure and

high demand, with supplies of personal protective equip-

ment in short supply across the UK and internationally.95

Together, these limitations put the lives of health-care

workers and patients at higher risk.96 The length of natu-

ral protection post-exposure is currently unknown, and

could result in regular circulation of SARS-CoV-2 if

immunity is not long-lived.97 The development of a safe

and effective vaccine, therefore, is vital for mass protec-

tion of those most at risk from COVID-19-induced dis-

ease. This will reduce the number of hospitalized cases,

subsequently relieving the burden on health-care systems,

and will allow for relaxation of physical distancing inter-

ventions.

What is needed from a vaccine for COVID-19?

The ideal candidate COVID-19 vaccine would have good

safety and immunogenicity profiles in all age groups and

demographics including pregnant women and immuno-

compromised individuals, and would generate robust cel-

lular and humoral immunity with a single vaccination,

which could potentially be boosted for long-lasting mem-

ory durability.52,63 Single-shot efficacy was demonstrated

in clinical trials during the latter half of the 2013–2016
EBOV outbreak, where one vaccination of rVSV-ZEBOV

conferred up to 100% protection for at least 84 days.55 A

ChAd vectored vaccine (ChAd3 EBOZ GP) induced simi-

lar immunogenicity, also with a single dose, suggesting

that multiple viral vector vaccines are effective at induc-

ing high levels of immunity after a single dose.98 Single-

dose protective efficacy would offer fast protection to

frontline health-care workers and those in close contact

with infected individuals, with additional booster vaccines

to extend duration of immunogenicity if needed.97 Public

concerns surrounding vaccine safety may be heightened

during the outbreak of an unknown pathogen and

unclear scientific reporting. Vaccine hesitancy because of

perceived risk is a globally observed phenomenon,99 and

care must be taken to ensure that the public is aware that

full safety and regulatory requirements of a new and

rapidly developed vaccine against SARS CoV-2 have been

completed with due care.

The ability to generate large quantities of GMP vaccine

in a short duration of time is also essential. The cost of pro-

ducing COVID-19 vaccines for public use will be steep and

will exceed CEPI’s $2 billion fundraising goal, which will

establish GMP manufacturing sites, but not cover eventual

vaccine manufacturing.17 Global input will be necessary to

fund and produce vaccines at multiple sites across the

world, while ensuring fair and equitable distribution. It is

hoped that more than one vaccine candidate undergoing

current development and clinical testing will be suitable for

mass vaccination in the coming year. In this manner, global

need will hopefully be adequately addressed.

Unparalleled vaccine research and development is

ongoing for the SARS-CoV-2 epidemic. An efficacious

and publicly available vaccine will significantly reduce the

impact of the current and possible future epidemic peaks,

so reducing the burden on national health-care systems.

It is vital, however, that we continue to develop tenable

vaccines that are both safe and immunogenic, that can be

manufactured at scale and that can be distributed to both

economically stable countries and to low- and middle-in-

come countries, ensuring equal access.
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