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Introduction: Endoplasmic reticulum stress (ERS) is involved in inflammatory organ

failure. Our objective was to describe ERS, its unfolded protein response (UPR)

expression/kinetics during cardiac surgery with cardiopulmonary bypass (CPB) and its

association with postoperative organ failure (OF).

Methods: Prospective study conducted on patients undergoing cardiac surgery with

CPB. Blood samples were taken before (Pre-CPB), 2 h (H2-CPB) and 24 h (H24-CPB)

after CPB. Plasma levels of 78 kDa Glucose- Regulated Protein (GRP78, final effector

of UPR) were evaluated by ELISA. The expression of genes coding for key elements

of UPR (ATF6, ATF4, sXBP1, CHOP) was evaluated by quantitative PCR performed on

total blood. OF was defined as invasive mechanical ventilation and/or acute kidney injury

and/or hemodynamic failure requiring catecholamines.

Results: We included 46 patients, GRP78 was decreased at H2-CPB [1,328 (878–

1,730) ng/ml vs. 2,348 (1,655–3,730) ng/ml Pre-CPB; p < 0.001] but returned to

basal levels at H24-CPB [2,068 (1,436–3,005) ng/ml]. The genes involved in UPR had

increased expression at H2 and H24. GRP78 plasma levels in patients with OF at H24-

CPB (n = 10) remained below Pre-CPB levels [−27.6 (−51.5; −24.2)%] compared to

patients without OF (n = 36) in whom GRP78 levels returned to basal levels [0.6 (−28.1;

26.6)%; p < 0.01]. H24-CPB ATF6 and CHOP expressions were lower in patients with

OF than in patients without OF [2.3 (1.3–3.1) vs. 3.0 (2.7–3.7), p< 0.05 and 1.3 (0.9–2.0)

vs. 2.2 (1.7–2.9), p < 0.05, respectively].

Conclusions: Low relative levels of GRP78 and weak UPR gene expression appeared

associated with postoperative OF. Further studies are needed to understand ERS

implication during acute organ failure in humans.

Keywords: bypass, cardiopulmonary, cardiac surgery, endoplasmic reticulum stress, endothelium, inflammation,

GRP78 protein, human
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INTRODUCTION

Cardio-pulmonary bypass (CPB) is routinely used throughout
the world during heart surgery. This procedure often induces
an aseptic systemic inflammatory response syndrome (SIRS)
associated with post-operative morbidity (1–3). This SIRS
might lead to hypotension and organ dysfunction, a situation
referred to as “post-pump syndrome” (4). Given the association
between elevated pro-inflammatory cytokine levels and negative
clinical outcomes [post-operative acute kidney injury (AKI),
decreased systemic vascular resistance and lung injury],
it has been postulated that modulation of inflammatory
processes could improve outcomes after cardiac surgery (2, 5).
Despite a progression in knowledge of CPB-induced SIRS
pathophysiology, specific therapeutics to control inflammatory
process are still lacking.

Endoplasmic reticulum (ER) stress and its adaptive response,
the unfolded protein response (UPR), represent an archetypal
example of adaptive stress responses. The ER plays a crucial role
in protein folding and maturation. This folding process is finely
regulated, notably by specific proteins known as chaperones,
such as the 78 kDa Glucose-Regulated Protein [GRP78, a heat-
shock protein coded by the Heat Shock 70kDa Protein 5 gene
(HSPA5)], which stimulates the correct folding of polypeptide to
functional protein complexes (6). Multiple disturbances observed
during inflammation can result in a dysfunction of the ER,
leading to the accumulation of unfolded proteins within the
lumen of the ER, known as ER stress (ERS) (6, 7). The
defense against ERS mainly involves the UPR which relies on
three signaling pathways: Inositol-Requiring Protein-1 alpha
pathway [IRE1α, involving the spliced ribonucleic acid (RNA)
of X-box binding protein 1 (sXBP1)], Protein Kinase RNA-
like ER kinase pathway [PERK, involving CCAAT/enhancer
binding protein homologous protein (CHOP) and Activating
Transcription Factor 4 (ATF4)] and Activating Transcription
Factor 6 (ATF6) pathway (6). One of the roles of the UPR is to
lead the synthesis of new chaperones to allow protein folding
(e.g., GRP78, a final effector of UPR). However, if the ERS is
severe and prolonged, UPR can lead to cell death by apoptosis (8).

Cytokine synthesis induces a massive increase in protein
synthesis and, thus, an ERS which in turn activates NF-kB
and thus maintains this synthesis (9). Cellular dysfunction,
hallmarked by ERS, is increasingly recognized as an important
contributor to the development of organ failure in critical illness,
and in particular during systemic inflammation (6, 10, 11). ERS

Abbreviations: 4PBA, 4-phenylbutyric acid; AKI, acute kidney injury; ATF,
Activating Transcription Factor; CABG, coronary artery bypass grafting; CHOP,
CCAAT/enhancer binding protein homologous protein; CPB, cardio-pulmonary
bypass; Ct, cycle threshold; DNA, deoxyribonucleic acid; ER, endoplasmic
reticulum; ERS, endoplasmic reticulum stress; GRP78, 78 kDa Glucose-Regulated
Protein; HSPA5, Heat Shock 70kDa Protein 5; ICU, intensive care unit;
IL, interleukin; IRE1α, Inositol-Requiring Protein-1 alpha; PERK, Protein
Kinase RNA-like ER kinase; Pre-CPB, before cardio-pulmonary bypass; qPCR,
quantitative polymerase chain reaction; RNA, ribonucleic acid; SAPS II, Simplified
Acute Physiology Score II; SDHA, succinate dehydrogenase complex flavoprotein
subunit A; SIRS, systemic inflammatory response syndrome; sXBP1, X-box
binding protein 1; UPR, unfolded protein response; VCAM-1, Vascular Cell
Adhesion Protein 1.

induces dysfunction and apoptosis of cardiomyocytes that can
lead to heart failure and UPR have a protective effect on acute
or chronic heart failure (12). ERS is associated with endothelial
dysfunction and its inhibition improves endothelium-dependent
relaxing function (13). In experimental sepsis, a treatment with 4-
phenylbutyric acid (4BPA; a chemical chaperone which inhibits
ERS) decreases the tissue expression level of inflammatory
cytokines, reduces organ dysfunction and improves survival (14,
15). In human, ERS is activated in the mononuclear cells of
patients with septic acute lung injury, is involved in AKI and its
expression is partly correlated with organ failure in patients with
septic shock (10, 14, 16). A recent work has shown the feasibility
of the non-invasive detection of the ERS in urine in patients
undergoing cardiac surgery with CPB and indicates that an early
and robust adaptive UPR is critical for endogenous protection to
acute renal failure (17).

Thus, we designed a prospective study to describe the kinetics
of UPRmarkers and to evaluate the link between UPR expression
and organ failure in patients undergoing elective cardiac surgery
with CPB.

MATERIALS AND METHODS

Study Design
This prospective pilot study was conducted in the cardiac surgery
ICU of a tertiary care University Hospital between July 2018 and
April 2019. The study (N◦2017/179/HP) was approved by the
ethics committee Sud-Méditerrannée II (n◦ CPP 2017-A03375-
48) and was performed in accordance with French laws and with
the ethical standards laid down in the Declaration of Helsinki and
its later amendments (18).

Inclusion and Exclusion Criteria
Adult patients (≥18 y/o) who underwent cardiac surgery with
an estimated duration of CPB of more than 1 h were eligible to
be included in the study. Eligible patients were contacted, and
written informed consent was obtained prior to inclusion.

Exclusion criteria were: age under 18 y/o or patient
under guardianship, pregnancy/breastfeeding, urgent surgery,
predictable CPB of <1 h [single or double coronary artery
bypass grafting (CABG) or single aortic valve replacement (VR)],
surgery without sternotomy, a history of altered left ventricular
systolic function (<30%), chronic autoimmune inflammatory
disease, neoplasia.

Objectives
Primary Objective
The primary objective was to evaluate the variation in GRP78
plasma levels before CPB (Pre-CPB) and 2 and 24 h after the end
of CPB.

Secondary Objectives
Secondary objectives were to evaluate:

- the kinetics of UPR pathway gene (ATF6,ATF4, CHOP, HSPA5,
and sXBP1) expression in whole blood after CPB;

- the association between GRP78 plasma level variations and
endothelial dysfunction markers [Syndecan-1, Vascular Cell
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Adhesion Protein 1 (VCAM-1)], or inflammatory cytokine
interleukin (IL)-6;

- the association between GRP78 level variations or UPR
gene expression and organ failure 24 h after CPB (defined
as presence of: invasive mechanical ventilation and/or AKI
(Kidney Disease Improving Global Outcomes score ≥ 1)
and/or hemodynamic failure requiring catecholamines) by
comparing two groups: patients with and patients without
organ failure 24 h after CPB.

Sample Collection and Analysis
Surgical Procedure
Induction of anesthesia was achieved with intravenous hypnotic
(propofol or etomidate), opioid (sufentanil or remifentanil)
and curare (cisatracrium). The anesthesia was maintained with
propofol and continuous infusion of opioids. CPB was initiated
with a heparinized solution. Oxygenated blood was re-injected
into the arterial circulation through a cannula inserted into the
aorta downstream of aortic clamping. The heart was stopped
by infusion of a cardioplegia solution (potassium and beta-

blockers or Custodiol© cardioplegia). During surgery, mean
blood pressure was maintained between 55 and 70 mmHg. At
the end of the procedure, circulating heparin was neutralized
with protamine. Vasoconstrictors or inotropic agents, fluids,
and transfusion products were administered at the discretion
of the anesthesiologist based on clinical, echocardiographic and
biological findings. Patients were transferred to post-operative
cardiac ICU and monitored hourly for the first 24 h and then
every 3 h for the remaining period of the ICU stay.

For each patient, baseline pre-operative characteristics were
evaluated (sex, age, body mass index). The data relevant to the
undertaken surgical procedure (type of surgery, surgery/CPB
duration) and ICU stay [Simplified Acute Physiology Score
(SAPS) II], use of catecholamine, duration of mechanical
ventilation, length of ICU stay were collected.

Blood Sampling
All samples were collected from patients’ arterial line, using
standard hygiene protocols. The Pre-CPB sample was taken after
induction of anesthesia and before incision, just after the arterial
catheter was placed, postoperative samples were taken 2 and
24 h after the end of CPB, respectively. At each time point, one
PAXgene R© tube [allowing the conservation of ribonucleic acid
(RNA) of circulating blood cells; Quiagen, Hilden, Germany;
2.5ml of blood] and one EDTA tube (4ml of blood) were
collected. The EDTA tube was immediately centrifuged at 3,000 g
for 15min and plasmawas aliquoted inmicrotubes. Samples were
kept for a maximum of 7 days in the freezer of the ICU at−20◦C
and then were stored at−80◦C until final analysis.

Enzyme Linked Immunosorbent Assay (ELISA)
Plasma GRP78 concentrations were determined using the
commercial kit GRP78/BiP ADI-900-214 (Enzo Life Sciences,
France) according to the manufacturer’s protocol. After
preliminary analyses, a dilution of our samples to 1:10 was
chosen for optimized results. Other protein concentrations
were determined using the Thermo Fisher Scientific (MA,

USA) commercials kits IL-6 (ref. EH2IL6), Syndecan-1 (ref.
EHSDC1) and VCAM-1 (ref. KHT0601) according to the
manufacturer’s protocol.

Ribonucleic Acid Extraction, Reverse Transcription,

and Quantitative Polymerase Chain Reaction
RNA extraction was performed using the commercial kit
PAXgene R© Blood RNA System kit (Quiagen, Hilden, Germany)
according to the manufacturer’s protocol. Before RNA elution,
residual genomic deoxyribonucleic acid (DNA) was digested
using RNase-Free DNase set (Quiagen, Hilden, Germany). The
integrity and quantity of the total RNA were assessed with a
Nanodrop 2000 device (Thermo Fisher Scientific, Waltham, MS,
USA). Total RNAs were reverse transcribed into cDNA using
M-MLV Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA)
according to manufacturer’s instructions.

A quantitative polymerase chain reaction (qPCR) was
performed for:

- The mRNA of genes coding for proteins involved in UPR:
ATF6, ATF4, sXBP1, CHOP, HSPA5;

- The mRNA of the gene coding for succinate dehydrogenase
complex flavoprotein subunit A (SDHA). As SDHA has been
described as a pertinent housekeeping gene in humans with
inflammation and as its cycle threshold (Ct) is close to the Ct of
UPR genes in qPCR, it appeared as the best housekeeping gene
for our work (19).

The genes that were amplified and the primers that were used
are listed in Table 1. Quantitative PCR was performed using the
Quantstudio 12K Flex system (Applied Biosystems, Foster City,
CA, USA) according to the manufacturer’s instructions. The 384-
well PCR plates were prepared with 1.2µL of cDNA (16.7 ng/µL)
diluted at 1:10 and 3.81 µL of reaction mix. The reaction mix
contained the sense and antisense primers at a concentration
of 300 nM (0.02 µL × 2), Fast Sybr Master mix (2.50 µL) and
water DNase and RNase free (1.27 µL). The final volume was 5
µL per well. Samples were deposited using the Bravo Automated
Liquid Handling Platform pipetting robot (Agilent Technologies,
Santa Clara, CA, USA). The analysis included a first activation
step for 20 s and then 40 amplification cycles consisting of a
new activation phase at 95◦C for 1 s followed by an elongation
phase at 60◦C for 20 s. Ct values were used for quantifying target
gene expression relative to the housekeeping gene using the
2−11Ct method.

Statistical Analysis
In view of a previous work studying UPR expression during
septic SIRS, we considered that it was necessary to include
at least 45 patients to highlight a significant UPR after CPB
(10). Since each subject was taken as its own control, the non-
parametric Wilcoxon matched pairs signed rank test was used
to assess significant variations in quantitative parameters. For
group comparisons, the quantitative variables were compared
using a Mann-Whitney test or a Student’s test depending
on the distribution of the data. The Pearson correlation test
was used to assess the strength of the association between
two quantitative variables. Continuous data are expressed as
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TABLE 1 | Primers used for quantitative PCR.

Gene name Sense Sequence (5′-3′)

SDHA Forward GAGATGTGGTGTCTCGGTCCAT

Reverse GCTGTCTCTGAAATGCCAGGCA

ATF4 Forward GTTCTCCAGCGACAAGGCTA

Reverse ATCCTGCTTGCTGTTGTTGG

CHOP Forward TCGCCGAGCTCTGATTGAC

Reverse CCCTGCGTATGTGGGATTGAG

sXBP1 Forward TGCTGAGTCCGCAGCAGGTG

Reverse GCTGGCAGGCTCTGGGGAAG

ATF6 Forward CCGCAGAAGGGGAGACACA

Reverse TCGGAGGTAAGGAGGAACTGACG

HSPA5 Forward CGAGGAGGAGGACAAGAAGG

Reverse CACCTTGAACGGCAAGAACT

ATF4/6, Activating Transcription Factor 4/6; CHOP, CCAAT/enhancer binding protein

homologous protein; HSPA5, Heat Shock 70kDa Protein 5; SDHA, succinate

dehydrogenase complex flavoprotein subunit A; sXBP1, spliced X-box binding protein 1.

median with interquartile range, categorical data are presented
as absolute values with percentages. All statistical tests were two-
sided and the 0.05 probability level was used to establish statistical
significance. The statistical analyses were performed by means
of the statistical software SAS (version 9.4; SAS Institute; Cary,
NC). The data were exported to GraphPad Prism 8.0 software for
figure creation.

RESULTS

Clinical and Demographic Characteristics
of Population
Forty-six patients were enrolled between July 2018 and April
2019. Baseline and peri-operative characteristics of included
patients are detailed in Table 2. All patients were alive at D28.

GRP78 Plasma Levels
The plasma level of GRP78 was significantly decreased 2 h after
CPB but there was no difference in GRP78 levels between
pre-operative and 24-h post-CPB samples (Figure 1A). Relative
changes in GRP78 levels 2 and 24 h after CPB are shown in
Figure 2. There was no correlation between relative changes in
GRP78 plasma level variation at 24 h and duration of CPB [r =
−0.19 (−0.45; 0.11); p= 0.22]. There was no correlation between
plasma level of C-reactive protein and plasma level of GRP78 at
H24 [r = 0.17 (−0.13; 0.44); p= 0.26].

Syndecan-1, VCAM-1, and IL-6 Plasma
Levels
The plasma level of VCAM-1 did not show any change at 2 h after
CPB but was significantly increased 24 h after CPB (Figure 1B)
while syndecan-1 and IL-6 levels were increased 2 and 24 h after
CPB (Figures 1C,D). Relative changes in studied protein levels
at 2 and 24 h post-CPB (compared to the value before CPB) are
shown in Figure 2 (as Pre-CPB IL-6 levels were undetectable, it
was not possible to perform a relative analysis for this cytokine).

TABLE 2 | Main demographic and clinical characteristics of patients.

Demographic characteristics

Number of patients 46

Age (years) 70 (63–76)

Sex-ratio (M/F) 3.6 (36/10)

Body Mass Index (kg/m²) 28.1 (25.7–30.5)

Length of stay in hospital (days) 13 (9–17)

Surgical characteristics

Type of surgery:

- coronary artery bypass grafting (CABG) 9 (19.6 %)

- mitral valve surgery 10 (21.7 %)

- Bentall or Tirone-David surgery 10 (21.7 %)

- Ross surgery 1 (2.2 %)

- aortic + mitral valve surgery 5 (10.9 %)

- aortic valve surgery + CABG 5 (10.9 %)

- mitral valve surgery + CABG 4 (8.7 %)

- aortic + mitral valve surgery + CABG 2 (4.3 %)

Duration of surgery (min) 221 (186–254)

Duration of CPB (min) 117 (92–139)

Hematocrit (%)

- before CPB 42 (26–49)

- 2 h after CPB 35 (27–40)

- 24 h after CPB 34 (26–41)

ICU stay characteristics

SAPS II 33 (30–40)

Duration of mechanical ventilation (hours) 6 (4–8)

Length of ICU stay (days) 3 (2–5)

Data are presented as median with interquartile range or absolute value and percentage

[n (%)]. CABG, coronary artery bypass grafting; CPB, Cardiopulmonary Bypass; ICU,

Intensive Care Unit; SAPS II, Simplified Acute Physiology Score II.

Twenty-four hours after CPB, there was no correlation between
GRP78 plasma level variations and VCAM-1 [r = 0.04 (−0.33;
0.25); p = 0.79] and Syndecan-1 [−0.29 (−0.53; 0.00); p = 0.05]
plasma level variations or IL-6 absolute values [r = 0.12 (−0.18;
0.40); p= 0.43].

There was also no correlation of the absolute values of GRP78
rates with those of IL-6, VCAM-1, and Syndecan-1 at H24
(Supplemental Figure 1).

Gene Expression of Unfolded Protein
Response
The expression of CHOP and sXBP1 was increased 2 h after
CPB and remained stable 24 h after CPB. ATF4 showed a small
increase in expression 2 h after CPB but there was no difference in
its expression between pre-operative and 24-h post-CPB samples
(Figure 3). The expression of ATF6 was increased 2 h after CPB
and kept increasing 24 h after CPB (Figure 3).

Correlation Between Unfolded Protein
Response and Clinical Outcome
Of the 46 patients, 10 had persistent organ failure 24 h after
CPB (9 treated with catecholamines, 4 mechanically ventilated
and 2 with acute renal failure; Supplementary Table 1). Their
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FIGURE 1 | Plasma levels of GRP78 (A), VCAM-1 (B), Syndecan-1 (C) and

IL-6 (D) before (Pre-CPB), 2 (H2-CPB) and 24 (H24-CPB) hours after

cardiopulmonary bypass (CPB). The results show a post-operative increase in

IL-6, Syndecan-1 and VCAM-1 and a transient decrease (at H2-CPB only) in

GRP78. Dosages were performed by Enzyme linked immunosorbent assay

(ELISA). Values are presented as median with interquartile range. ***p < 0.001

in comparison with Pre-CPB level. GRP78, 78 kDa Glucose-Regulated

Protein; IL-6, Interleukin 6; VCAM-1, Vascular Cell Adhesion Protein 1.

demographical and clinical characteristics are presented in the
Table 3. There was no difference concerning Pre-CPB GRP78
levels and UPR gene expression between patients with or without
organ failure (Supplementary Table 2). GRP78 plasma levels at
24-h post-CPB in patients with persistent organ failure remained
significantly below Pre-CPB levels compared to patients without
organ failure in whom GRP78 levels returned to baseline
levels (Figure 4). To evaluate the potential bias induced by
hemodilution on GRP78 levels according to the presence or
absence of organ failure, we analyzed the variations in total
protein levels between patients with and without organ failure
and found no significant differences between groups (Figure 4).
Among the patients with organ failure, the decrease in GRP78
levels between Pre-CPB and H24-CPB was correlated to the
number of organ failures [r = −0.76 (−0.94 to −0.24); p = 0.01;
Figure 5]. ATF6 and CHOP expressions were significantly lower
24 h after CPB in patients with organ failure while there was no
difference concerning sXBP1 and ATF4 expression (Figure 6).

FIGURE 2 | Relative levels of studied protein 2 (H2-CPB) and 24 (H24-CPB)

hours after cardiopulmonary bypass (CPB). The results show a post-operative

relative increase in Syndecan-1 and VCAM-1 and a transient decrease (2 h

after CPB only) in GRP78. Dosages were performed by Enzyme linked

immunosorbent assay (ELISA). Values are presented as median with

interquartile range. ***p < 0.001 in comparison with Pre-CPB level. GRP78, 78

kDa Glucose-Regulated Protein; VCAM-1, Vascular Cell Adhesion Protein 1.

FIGURE 3 | Relative changes in Unfolded Protein Response gene expression

after cardiac surgery with cardiopulmonary bypass (CPB). The results show a

post-operative increase in the expression of genes coding for the key proteins

of unfolded protein response, meaning a postoperative activation of the

unfolded protein response. Analyses were performed by quantitative

polymerase chain reaction. Gene expression prior to CPB (Pre-CPB) was

averaged to 1 for each gene. For each patient, expressions at 2 h (H2-CPB)

and 24 h (H24-CPB) after CPB were expressed as relative to Pre-CPB. Values

are presented as median with interquartile range. Differences expressed in

comparison with preoperative gene expressions: *p < 0.05; **p < 0.01;

***p < 0.001. Differences expressed in comparison with H2-CPB gene

expressions: ###p < 0.001. ATF, Activating Transcription Factor; CHOP,

CCAAT/enhancer binding protein homologous protein; HSPA5, Heat Shock

70kDa Protein 5; sXBP1, spliced RNA of X-box binding protein 1.

DISCUSSION

To our knowledge, we describe for the first time the kinetics of all
UPR pathways to restore ER homeostasis in patients undergoing
elective cardiac surgery with CPB.We found that the plasma level
of GRP78, one of the final effectors of the UPR, was decreased
at the initial phase of CPB-induced SIRS and that a persistent
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TABLE 3 | Comparison of demographic and clinical characteristics of patients

with and without organ failure 24 h after cardiopulmonary bypass.

No organ

failure

(n = 36)

Organ failure

(n = 10)

p

Demographic characteristics

Age (years) 71 (66–75) 69 (51–76) 0.46

Sex-ratio (M/F) 6.2 1.0 0.27

Body Mass Index (kg/m²) 27.0 (24.8–29.3) 31.5 (28.3–34.7) 0.02

Length of stay in hospital (days) 13 (9–16) 19 (11–24) 0.08

Surgical characteristics

Type of surgery [n (%)]:

- coronary artery bypass

grafting (CABG)

8 (22%) 1 (10%) 0.79

- valve surgery 20 (56%) 6 (60%)

- valve + CABG surgery 8 (22%) 3 (30%)

Duration of surgery (min) 212 (179–254) 251 (208–260) 0.12

Duration of CPB (min) 109 (63–198) 138 (81–259) 0.70

ICU stay characteristics

SAPS II 33 (27–38) 41 (31–49) 0.78

Duration of mechanical ventilation

(hours)

5 (4–7) 11 (7–33) 0.02

Length of ICU stay (days) 3 (2–4) 5 (4–6) 0.08

Data are presented as median with interquartile range or absolute value and percentage

[n (%)]. CABG, coronary artery bypass grafting; CPB, Cardiopulmonary Bypass; ICU,

Intensive Care Unit; SAPS II, Simplified Acute Physiology Score II.

decrease in GRP78 levels was associated with postoperative organ
failure in this population.

Kinetics of Unfolded Protein Response
The present study demonstrates that CPB stimulated UPR,
as reflected by the increased gene expression of the three
UPR pathways: IRE1α, PERK, and ATF6.We observed a brief
decrease in circulating GRP78 levels 2 h after CPB and a
return to baseline level 24 h after CPB. We didn’t find any
correlation between changes in GRP78 at 24 h and duration
of CPB but our range of CPB times was not wide. Future
investigations should examine a broader range of CPB times
before really concluding on this point. It is known that heat-
shock proteins can be secreted extracellularly by many cells
(dendritic cells, hepatocytes, myocytes, gut cells, lymphocytes,
etc.) through several regulated pathways: lysosome-endosome
pathway, secretory-like granules, extracellular vesicles (20). A
previous work reported that extracellular GRP78 is mostly due
to an active release from intact cells and does not result solely
from the leakage of proteins from dead cells (21). It is therefore
likely that the decrease in GRP78 plasma level is the result of an
adaptive cellular mechanism.

Several studies have shown an increase in GRP78 plasma
levels in patients with chronic systemic inflammation (cancer,
obesity, atherosclerosis) (22–24). However, in acute systemic
inflammation, there is increased demand for intracellular GRP78
to resolve the ERS (6, 25). This may explain the observed
early decrease of extracellular GRP78 which is associated with

FIGURE 4 | Relative changes (%) in GRP78 levels at 24 h after

cardiopulmonary bypass (CPB; H24-CPB) in patients with or without organ

failure. The results show that GRP78 levels remain below baseline in patients

with organ failure while they return to baseline in patients without organ failure

(with no difference in proteinemia between the two groups), suggesting a less

intense unfolded protein response in patients with organ failure. Dosages were

performed by Enzyme linked immunosorbent assay (ELISA). Values are

presented as median with interquartile range. **p < 0.01 between groups.

GRP78, 78 kDa Glucose-Regulated Protein.

FIGURE 5 | Correlation between relative changes (%) in GRP78 levels at 24 h

after cardiopulmonary bypass (CPB; H24-CPB) and the number of organ

failures in the subgroup of patients with organ failure. The results show that a

high number of organ failure is correlated with a significant decrease in GRP78

levels compared to the baseline level before CPB. GRP78, 78 kDa

Glucose-Regulated Protein.

a rapid activation of UPR gene transcription 2 h after CPB,
allowing a return of GRP78 to baseline level 24 h after CPB. It
appears normal for the transcription to precede the translation
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FIGURE 6 | Relative changes in Unfolded Protein Response gene expression

24 h after cardiopulmonary bypass (CPB) in patients with or without organ

failure. Results show that the expression of ATF6 and CHOP genes (which

code for unfolded protein response key proteins) is lower in patients with

postoperative organ failure than in those without organ failure, suggesting a

less intense unfolded protein response in patients with organ failure. Analyses

were performed by quantitative polymerase chain reaction. Values are

presented as median with interquartile range. *p < 0.05 between groups.

Gene expression at 24 h after CPB was relative to preoperative expression.

ATF, Activating Transcription Factor; CHOP, CCAAT/enhancer binding protein

homologous protein; HSPA5, Heat Shock 70kDa Protein 5; sXBP1, spliced

RNA of X-box binding protein 1.

and it should be noted that the transcription of HSPA5, which
codes for GRP78, is elevated early (from H2). However, the
effective recovery of GRP78 plasma levels is only visualized
at H24. This suggests that the activation of UPR genes is
very rapid after inflammation but that its protein response in
plasma is time-shifted. It has been shown that the UPR genes
expression of each UPR pathway are highly correlated during
ERS with variations among individual (26, 27). Our results show
that the three pathways of UPR are activated during aseptic
systemic inflammation in humans. However, the kinetics of these
pathways appears to be different. The IRE1α (explored by sXBP1)
and PERK (explored by ATF4 and CHOP) pathways seemed
to have a stable level of expression between 2 and 24 h after
CPB. On the contrary, ATF6 expression increased significantly
2 h after CPB and kept increasing 24 h after CPB. During ERS,
ATF6 pathway is the first to be initiated and, due to its rapid
activation (proteolytic cleavage and direct action on the genome
as a transcription factor), it has the most reactive kinetics
of the three UPR pathways (28, 29). ATF6 upregulates many
protective genes and downregulates many potentially damaging
genes, and previous studies have shown that ATF6 activation
in cardiac myocytes protects the heart from ischemic damage,
while inhibiting ATF6 has the opposite effect (30–32). Given our
results and as previously suggested, it is possible that among UPR
pathways, ATF6 is the most intensely involved pathway during
acute SIRS (which could explain why its activation continued
to increase 24 h after CPB) (10). The three UPR pathways have,
in part, common effects to resolve ERS: chaperone synthesis,
activation of ER associated degradation, activation of Nuclear

Factor-Kappa B, etc. (6, 8). It is therefore difficult to propose a
hypothesis on the clinical consequences of differential activation
of the three pathways of UPR over time. Future works studying
the activation kinetics of the UPR pathways in humans are in any
case necessary to confirm or invalidate our results and to analyze
more precisely the activation/return to normal delays after
acute inflammation.

Unfolded Protein Response and Organ
Failure
It is known that apoptosis, cytokine release and oxidative stress
induced by ERS can lead to organ failure during sepsis (15).
To respond to ERS, cells activate an adaptative pathway, the
UPR, to synthesize chaperones (including GRP78) and restore
normal ER function. It can therefore be assumed that ERS
after cardiac surgery can also be a source of organ failure.
Circulating GRP78 levels returned to levels comparable to
baseline at H24-CPB except in patients with persistent organ
failure who maintained GRP78 levels below their initial baseline.
They also had a lower UPR gene expression than patients
without organ failure. In a previous study, the expression of
UPR mRNA gene in urine after cardiac surgery showed that
patients with a rapid increase in sXBP1 mRNAs expression
in urine (reflecting kidney UPR) had less AKI (17). These
data suggest that a robust post-operative activation of the
UPR after CPB is critical for protecting against organ failure.
Moreover, pre-clinical data show that the resolution of ERS
via chemical chaperones (e.g., 4BPA) can correct organ failure
induced by a septic SIRS (14, 15). In our study, patients with
a relatively strong UPR response (that probably allowed ERS
resolution) returned to their baseline chaperone levels with
no organ failure, while patients with a weaker UPR response
failed to return to their baseline chaperone levels and had
persistent organ failure. Our results are therefore consistent
with previous data in human and animals on the impact of
ERS and UPR on organ failure during SIRS. But, as previously
stated, the prognostic value of the markers of ERS response
may change with the duration of adaptive responses, which
also reflect the duration of the stress (17). While a strong UPR
appears necessary in the acute stress phase, excessively prolonged
ERS responses promote cell death as a result of an imbalance
in favor of proapoptotic pathways rather than antiapoptotic
pathways (8).

Extracellular GRP78 is known to have anti-inflammatory
properties by inducing the endocytosis of the Toll-Like Receptor
4, reducing the production of inflammatory cytokines and
increasing the synthesis of anti-inflammatory cytokines (33, 34).
It is therefore possible that patients returning to pre-operative
levels of GRP78 may also benefit from its immunomodulatory
effect and thus be less likely to develop persistent organ failure
than patients remaining at relatively low levels of extracellular
GRP78. Nevertheless, our work does not establish a causal link
between organ failure after CPB and the level of GRP78, and
further works are therefore necessary to confirm or invalidate
our observations.

Frontiers in Medicine | www.frontiersin.org 7 February 2021 | Volume 7 | Article 613518

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Clavier et al. ER Stress and Cardiac Surgery

Syndecan-1, VCAM-1, and IL-6 Plasma
Levels
It has been shown that ERS is implicated in endothelial
dysfunction and that its inhibition in humans improves
endothelial dysfunction induced by glucose ingestion (13, 35).
Moreover, in a previous study conducted in septic patients, we
have shown an association between expressions of ATF6 and ET1
(coding for endothelin-1 which is associated with endothelial
dysfunction) (10). However, we did not find a link between
VCAM-1, Syndecan-1 or IL-6 andGRP78 variations.With regard
to the results of previous studies on the link between ERS and
endothelial dysfunction, we should be cautious and not conclude
the absence of a link between ERS and endothelial dysfunction in
patients undergoing cardiac surgery with CPB.

LIMITATIONS

Our work has several major limitations. First, it is a pilot
physiological study with a limited number of patients. We
included patients with several types of surgery (valve and/or
CABG) which could lead to a heterogeneity of the studied
population. For example, it is known that valve surgery induces
more systemic inflammation than coronary bypass surgery (36).
It is therefore possible that ERS may be more pronounced
in patients with valve surgery. Second, our work involved
gene expression in the whole blood. As some of the proteins
studied in our work cannot be measured in blood without
complex cell isolation techniques, RNA quantification appeared
to be the best compromise. RNA expression on whole blood
measured using Paxgen tubes is strongly correlated with RNA
expression in circulating leucocytes, we can thus assume that we
detected variations in leucocyte gene expression (37). As it is
known that UPR plays a crucial role in immune cells, including
differentiation, immune activation, antibody production and
cytokine expression, it seemed relevant to study the leucocyte
expression of UPR genes (38, 39). However, we may have missed
a potentially greater variation in gene expression in tissues
and organs, as observed in animal models (14, 15). Third, we
performed the first sampling after anesthetic induction. It is
known that propofol has a mild inhibitory effect on ERS several
hours after induction (40). Given the mechanisms involved
in UPR activation (gene transcription, protein translation), it
is unlikely that there would be significant variations in UPR
between pre-induction period and immediate post-induction
period (a few minutes). Furthermore, since all patients had a
standardized anesthesia protocol, it is likely that the effects of
propofol on ERS were identical for all patients. Fourth, our
samples were taken at only two post-operative timepoints and
it is possible that we were not able to highlight the real peak of
UPR expression. Moreover, our data show that the expression
of several genes involved in UPR remains high 24 h after CPB
compared to baseline. Our work did not allow us to conclude
when the genes involved returned to baseline expression. Fifth,
we only studied patients with cardiac pathologies, some of
which are associated with ERS-inducing pathologies: diabetes,
atherosclerosis, obesity, metabolic syndrome (41). It is therefore

not certain that GRP78 and UPR kinetics would be identical in
a population without pathologies. However, it should be noted
that the GRP78 plasma levels found before CPB and 24 h after
CPB were very close to those recently described in a group
of healthy volunteers, which probably makes our results quite
extrapolable to other populations (42). Finally, we defined organ
failure according to usual clinical criteria, but we did not use a
standardized organ failure score such as the Sequential Organ
Failure Assessment score. This complicates the interpretation of
the results andmakes it more difficult to compare our results with
those of other works. Further studies will need to be done using
this type of score to define organ failure.

CONCLUSION

We describe for the first time the kinetics of all UPR pathways
during SIRS induced by cardiac surgery with CPB. We found
that the plasma level of GRP78 was decreased at the initial
phase of CPB-induced SIRS and that low relative GRP78 levels
appeared associated with postoperative organ failure. However,
further studies are needed to better understand ERS and UPR
implications during systemic inflammation and acute organ
failure in humans.
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