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Abstract: Phascolosoma esculenta, an economically important species inhabiting the high tide areas
of the intertidal zone, is particularly sensitive to water pollution. Considering its potential as a
bioindicator, studies on the ecotoxicology of P. esculenta are imperative. The toxic effects of cadmium
(Cd) were analyzed by exposing P. esculenta to different concentrations of Cd (6, 24, 96 mg/L). In this
study, the changes in the antioxidative indexes of total superoxide dismutase (T-SOD), glutathione
s-transferase (GST), reduced glutathione (GSH), and microscale malondialdehyde (MDA) were
recorded. Copper/zinc superoxide dismutase (Cu/Zn SOD) is one of the most important free radical
scavenging members. To reveal the antioxidative function of P. esculenta, an important member of
the antioxidative system, designated Pe-Cu/Zn SOD, was cloned and analyzed. Phylogenic analysis
revealed that Pe-Cu/Zn SOD was located in the invertebrate evolutionary branch of intracellular
Cu/Zn SOD (icCu/Zn SOD). The quantitative real-time polymerase chain reaction results showed
that Pe-Cu/Zn SOD messenger ribonucleic acid was widely expressed in all tissues examined. The
highest expression levels in coelomic fluid after Cd exposure indicated its function in the stress
response. Using a prokaryotic expression system, we obtained a Pe-Cu/Zn SOD recombinant protein,
which enhanced the heavy metal tolerance of Escherichia coli. In vivo assays also confirmed that the
Pe-Cu/Zn SOD recombinant protein had an antioxidative and free radical scavenging ability. A Cd
toxicity experiment, in which purified Pe-Cu/Zn SOD protein was injected into the body cavities of
P. esculenta, showed that the reactive oxygen species content in the coelomic fluid of the experimental
group was significantly lower compared with the control group. These results suggest that Pe-Cu/Zn
SOD played a role in Cd detoxification by chelating heavy metal ions and scavenging reactive oxygen
free radicals, and that P. esculenta could be used as a bioindicator to evaluate heavy metal pollution.

Keywords: Phascolosoma esculenta; bioindicator; detoxification; Cu/Zn SOD

1. Introduction

Cadmium (Cd) is a nonessential element that mainly exists in the form of Cd2+ in
organisms. Its biological toxicity is mainly because of its interference with the various
metabolic processes of cells, especially energy metabolism, membrane transport, and
protein synthesis. Cd may interfere with the genetic control and repair mechanisms of
deoxyribose nucleic acid (DNA) either directly or indirectly. Recently, the mechanisms by
which Cd induces oxidative stress have been investigated.

Cadmium has been shown to change the permeability of the mitochondrial membrane,
inhibit mitochondrial ATP synthesis, and disturb the mitochondrial electron respiratory
transport chain. During this period, Cd induces the accumulation of reactive oxygen species
(ROS) [1,2], which refers to the oxygen-containing derivatives of oxygen radicals, including
superoxide anions (O2

−) and hydroxyl radicals (OH) [3]. Under normal circumstances,
the production and elimination of ROS in organisms is in dynamic equilibrium [4], and
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moderate amounts of ROS are used as signal transduction molecules [5]. When organisms
face heavy metal stress, an overdose of ROS accumulation destroys regulation of the
antioxidative system, ultimately causing a series of oxidative damage. In other aspects, Cd
can damage the organisms’ antioxidative defense system; for example, Cd could bind with
sulfhydryl groups in oxidative enzymes and antioxidative molecules, thereby reducing its
ability to scavenge ROS. Cd2+ can also replace Zn2+, Fe2+, and other metal ions in proteins,
resulting in an increase in intracellular free metals, which produce excessive ROS through
Fenton and Haber–Weiss reactions, and eventually cause lipid peroxidation.

When organisms are in a state of oxidative stress, the antioxidative system is activated
to remove excessive ROS [6,7]. Superoxide dismutases (SODs) are important antioxidative
enzymes that are widely present in eukaryotes and prokaryotes; they can scavenge excess
oxygen free radicals and protect the organism from oxidative damage [8]. According to
the different metal auxiliary groups, Cu, Zn, Mn, Fe, and Ni, SODs can be divided into
four types: Cu/Zn SOD, Mn-SOD, Fe-SOD, and Ni-SOD [9]. Among these types, Cu/Zn
SOD is one of the most important free radical scavenging members and exists primarily
in the cytoplasm and intercellular matrix. The Cu/Zn SOD family can be divided into
intracellular Cu/Zn SOD (icCu/Zn SOD), encoded by the SOD1 gene, and extracellular
Cu/Zn SOD (ecCu/Zn SOD), encoded by SOD3 [10]. icCu/Zn SOD is most widely
distributed in organisms, mainly in the eukaryotic cytoplasm and also in the chloroplast
matrix, peroxisome, and mitochondria [11] while ecCu/Zn SOD is found in the extracellular
and cytoplasmic matrices [12]. When organisms are exposed to heavy metals, the expression
of Cu/Zn SOD is upregulated to maintain normal physiological functions and scavenge
free radicals. For example, after exposing clams to Cd, Fang et al. [13] reported that the
expression of Cu/Zn SOD messenger ribonucleic acid (mRNA) was significantly increased
in Mactra veneriformis, indicating that Cu/Zn SOD protected clams from Cd toxicity. When
Euplotes crassus was exposed to Cd, antioxidation due to Cu/Zn SOD was observed [14].

Phascolosoma esculenta (Sipuncula: Phascolosomatidea) is a Sipuncula that lives in an
intertidal flat, and its habitat is easily affected by heavy metal pollution of coastal regions.
P. esculenta are sensitive to changes in the environmental conditions, which could reflect
the pollution status. In addition, the relative stable life cycle of P. esculenta makes this
species countable. Thus, P. esculenta are a potential bioindicator for monitoring heavy metal
pollution in marine mudflats. In order to understand the toxic effect of Cd on P. esculenta’s
response under Cd stress (Pe-Cu/Zn SOD), the acute toxicity of Cd on P. esculenta was
determined. The effects of Cd on oxidative stress in P. esculenta were analyzed by measuring
the content or activity of malondialdehyde (MDA) and several important antioxidants, such
as SOD, CAT, and reduced glutathione (GSH), in coelomic fluid. Gene cloning, quantitative
polymerase chain reaction (qPCR), enzyme activity determination, prokaryotic expression,
and flow cytometry were used to analyze the expression and antioxidant function of Pe-
Cu/Zn SOD under Cd stress. This study provides basic data for the molecular toxicology
research of P. esculenta and lays a foundation for further studies on Pe-Cu/Zn SOD function.

2. Results
2.1. Response of Antioxidative Indexes in the Supernatants after Cd Exposure

There were no significant differences in the MDA content (Figure 1A) between each
time point in the experimental and control groups (p > 0.05). In the 6 mg/L group, MDA
was significantly increased 96 h after exposure, but no significant differences were noted at
any other points in time. When compared to the control groups, the MDA contents of the
24 and 96 mg/L groups were significantly increased. The MDA content reached a peak at
72 h in the 24 mg/L group and 48 h in the 96 mg/L group and then decreased.

The response of T-SOD activity (Figure 1B) showed no significant differences at any
point in time in the control groups (p > 0.05). In comparison, the SOD activity of the 6 and
24 mg/L groups first showed a significant increase and then decreased, with peaks at 48
and 12 h, respectively. In the 96 mg/L group, SOD activity first decreased from 0 to 48 h
and then increased from 48 to 96 h.
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Figure 1. T-SOD, GST activity, and GSH and MDA contents in the supernatants of P. esculenta
after Cd exposure. (A) The content of MDA in supernatants after Cd exposure. (B) The activity
of total superoxide dismutase (T-SOD) in the supernatants after Cd exposure. (C) The activity of
CAT in the supernatants after Cd exposure. (D) The content of GSH in the supernatants after Cd
exposure. The color of the columns shows the different experimental times and the abscissa shows the
Cd2+ concentrations. Lowercase letters indicate the significant differences (p < 0.05) of the different
concentration groups at the same time (mean ± sd, n = 6).

The response of the CAT activity is shown in Figure 1C. There were no significant
differences in the CAT activity between each time point in the control and 6 mg/L groups.
Compared to the control groups, the CAT activity of the 24 and 96 mg/L groups showed a
significant increase, the CAT activity first increased and then decreased, and the activity
reached a peak at 48 and 72 h, respectively.

The response of the GSH content is shown in Figure 1D. The GSH content of all
treatment groups was significantly higher than that of the control group. There were no
significant differences in the GSH content between each time point in the control and
6 mg/L groups. Compared to the control groups, the CAT activity of the 24 and 96 mg/L
groups was significantly higher, the CAT activity increased first and then decreased, and
the activity reached a peak at 48 and 72 h, respectively.

2.2. Pe-Cu/Zn SOD Sequence Analysis and Protein Structure

The obtained total length of Pe-Cu/Zn SOD cDNA was 857 bp, including 75 bp 5 ‘UTR,
323 bp 3’ UTR, and 459 bp open reading frame. There was a tailed signal sequence AATAAA
upstream of the Polya tail (Figure 2). The open reading frame encoded 152 amino acids.
The predicted molecular weight of the Pe-Cu/Zn SOD protein was approximately 15.6 KD
and the theoretical isoelectric point was 5.65.
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Figure 2. Pe-Cu/Zn SOD full-length cDNA and amino acid sequence. The red letters ATG and
TGA indicate the start and stop codons, respectively. The highlights represent different binding
sites: yellow = Cu2+-binding site; green = Zn2+ binding site; red = Cu2+- and Zn2+-binding site;
blue = cysteine site; the underline represents the Cu/Zn SOD family tag sequence; and the gray shade
represents the 3′ terminal tailing signal. * represents the termination codon.

2.3. Sequence Alignment and Phylogenetic Analysis

The predicted aa sequences of the Pe-Cu/Zn SOD proteins were compared and aligned
with their homologs in other species. The results showed that the Cu/Zn SOD sequence was
highly conserved, and the similarity of Pe-Cu/Zn SOD with Crassostrea gigas and Schistosoma
japonicum was 78.8% and 72.5%, respectively. In addition, Pe-Cu/Zn SOD conserved the
family characteristic sequences GFHVHEFGDNT and GNAGGRLACGVI (Figure 3).
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Figure 3. Multiple sequence alignment of Cu/Zn SOD homologous proteins. The yellow triangles
indicate the Cu2+-binding sites, the green triangles indicate the Zn2+-binding sites, the red triangle
indicates the Cu2+- and Zn2+-binding sites, the blue triangles indicate the cysteine sites, and the
red box indicates the Cu/Zn SOD family tag sequence. The consensus and identity positions of the
Pe-Cu/Zn SOD sequence with H. sapiens, M. musculus, G. gallus, D. rerio, C. gigas, A. mellifera, and
S. japonicum were 68.8% and 63.0%, 68.8% and 63.0%, 71.8% and 66%, 68.8% and 65.6%, 78.8% and
76.3%, 70.8% and 63.6%, and 72.5% and 64.1%, respectively.
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Additionally, we analyzed the phylogenetic relationships of Cu/Zn SOD using a
neighbor-joining tree. The results showed that Pe-Cu/Zn SOD was located in the inver-
tebrate evolutionary branch of icCu/Zn SOD and was far away from the evolution of
ecCu/Zn SOD and icCu/Zn SOD in vertebrates (Figure 4).
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Figure 4. Phylogenic analysis of Pe-Cu/Zn SOD. The evolutionary tree was constructed using
MEGA5.1 software. P. esculenta is shown in red font. Pe-Cu/Zn SOD is located in the invertebrate
clade of intracellular Cu/Zn SOD. Scale bar: 0.1 of the branch length value.

2.4. Structural Characteristics of the Pe-Cu/Zn SOD Protein

The predicted Pe-Cu/Zn SOD protein had conserved Cu2+- and Zn2+-binding sites, in
which Cu2+ coordinated with His-45, -47, -62, and -119 while Zn2+ coordinated with His-62,
-70, -79, and Asp 82. A pair of intrachain disulfide bonds stabilizing the enzyme structure
was formed between cysteine Cys 56 and Cys 145–SH (Figure 5).
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2.5. Tissue Expression Patterns of Pe-Cu/Zn SOD mRNA

The qPCR results showed that Pe-Cu/Zn SOD mRNA was widely expressed in all
tissues examined, with the highest levels in the coelomic fluid tissue (Figure 6).
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Figure 6. Relative abundance of Pe-Cu/Zn SOD mRNA detected by qPCR in different tissues. GAPDH
was used as a positive control. BW, body wall; CF, coelom fluid; I, intestine; N, nephridium; RM,
retractor muscle. Lowercase letters indicate a significant difference (p < 0.05) between different tissues
(mean ± standard deviation, n = 6).

2.6. Expression Characteristics of Pe-Cu/Zn SOD under Cd Stress

The expression levels of Pe-Cu/Zn SOD mRNA were all increased after exposure to
Cd (6, 24, and 96 mg/L) compared with the control group. In all treatment groups, the
expression levels of Pe-Cu/Zn SOD mRNA showed a consistent trend, which increased
from 0 to 24 h. In the 6 and 96 mg/L groups, the expression levels of Pe-Cu/Zn SOD
mRNA decreased from 24 to 96 h. The expression levels fluctuated in the 24 mg/L group,
increasing from 48 to 72 h and then decreasing from 72 to 96 h (Figure 7).
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Figure 7. Expression of the Pe-Cu/Zn SOD gene in coelom fluid under Cd2+ stress. The expression
level of Pe-Cu/Zn SOD mRNA in the coelom fluid after Cd exposure. GAPDH served as an internal
control, and each data point represents the average fold change relative to the Pe-Cu/Zn SOD mRNA
expression in the 0 mg/L group at 24 h, and the lowercase letters indicate significant differences
(p < 0.05) between the data of different concentration groups at the same time (mean ± SD, n = 6).
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The response of the SOD activity is shown in Figure 8. There were no significant
differences in the SOD activity at any time in the control groups (p > 0.05), whereas the SOD
activity of the 6 and 24 mg/L groups was significantly higher at 12 and 24 h, respectively.
The activity first increased and reached a peak at 24 h and then decreased to lower than
that of the control group. In the 96 mg/L group, the SOD activity first increased till 48 h
and then returned to normal levels.
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2.7. Expression and Purification of Pe-Cu/Zn SOD Protein

The recombinant plasmid of PeCu/Zn SOD was constructed, and the recombinant
protein was induced by IPTG. The recombinant protein was expressed in the precipitate
and supernatant of the broken E. coli cells (Figure 9). After purification, a single band with
a molecular weight of approximately 21 kDa was obtained (Figure 9).
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2.8. Cd Tolerance of Recombinant E. coli 

Figure 9. Purification and validation of the recombinant protein. Line M shows the protein marker;
line 1 shows the supernatant of BL21 (pET28a) at 8 h; line 2 shows the precipitate of BL21 (pET28a) at
8 h; line 3 shows the supernatant of BL21 (pET28a-Pe-Cu/Zn SOD) at 8 h; line 4 shows the precipitate
of BL21 (pET28a-Pe-Cu/Zn SOD) at 8 h; and line 5 shows the purified protein Pe-Cu/Zn SOD.
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2.8. Cd Tolerance of Recombinant E. coli

The transformed bacteria BL21 (pET28a) and BL21 (pET28a-Pe-Cu/Zn SOD) were
exposed to 0.2 and 1 mM Cd2+. The results showed that OD600 of the two groups was
significantly different, and OD600 of the recombinant bacteria was significantly higher
than that of the control group. In the 0.2 mM Cd treatment group, there was a significant
difference in the growth status between the control group and the recombinant bacteria
after IPTG induction for 2 h (p < 0.05), and the growth status of the recombinant bacteria
was further enhanced after IPTG induction for 4 h (p < 0.01) while the growth advantage of
the recombinant bacteria was more significant after IPTG induction for 6 and 8 h (p < 0.001).
In the 1 mM Cd-treated group, there was a significant difference between the control group
and the recombinant bacteria after 2 and 4 h of IPTG induction (p < 0.01). At 6 and 8 h of
induction, the growth advantage of recombinant bacteria was further enhanced (p < 0.001),
indicating that Pe-Cu/Zn SOD significantly improved the Cd tolerance of E. coli (Figure 10).
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Figure 10. Effects of metal ions on the growth of E. coli. This indicates that the growth status of
pET28a-Pe-Cu/Zn SOD E. coli was significantly higher than that of pET28a-DE3 E. coli (p < 0.5). All
data is expressed as the mean ± standard deviation (n = 3). *: p < 0.05, **: p < 0.01, and ***: p < 0.001.

2.9. Regulation of Pe-Cu/Zn SOD of the ROS Content Induced by Cd in Coelomocytes

The results showed that the content of ROS in coelomocytes of P. esculenta was sig-
nificantly increased after 96 mg/L Cd stress (p < 0.01), and the content of ROS in the
Cd + Pe-Cu/Zn SOD group was significantly lower than that in the Cd group alone (p < 0.01),
but there was no significant difference compared with that in the control group (Figure 11),
indicating that Pe-Cu/Zn SOD had the ability to scavenge ROS, with a protective effect
against Cd-induced oxidative damage. In addition, there was no significant difference
in the ROS content between the Cd and Cd + PBS groups (p > 0.05), indicating that the
injection treatment had little effect on the content of ROS in coelomocytes (Figure 11).
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the ROS content in the Cd + Pe-Cu/Zn SOD group was significantly decreased compared with
that in the Cd group alone and showed no significant difference with the control group. There
was no significant difference between the Cd and Cd + PBS groups. All data are expressed as the
mean ± standard deviation (n = 6). **: p < 0.01, NS: no significant difference (p > 0.05).

3. Discussion
3.1. Sequence and Protein Structure of Pe-Cu/Zn SOD

In this study, we cloned the full-length Cu/Zn SOD cDNA sequence of P. esculenta,
which contained an 857 bp nucleotide and encoded 152 amino acids. The unstable signal
ATTTA appeared in the 3′ untranslated region, which was also found in Meretrix mere-
trix [15], Argopecten irradians, and other marine invertebrates [16]. It has been reported that
the unstable signal ATTTA may play an important role in the degradation of excess mRNA.
Cu/Zn SOD can be divided into two types: exCu/Zn SOD with a signal peptide at the
N-terminal and icCu/Zn SOD without a signal peptide [10]. ExCu/Zn SOD is generally
located in the extracellular matrix, with a length of 176–251 amino acids; icCu/Zn SOD
mainly exists in the cytoplasm and nucleus, with a length of 147–167 amino acids [17].
In this study, Pe-Cu/Zn SOD contained 152 amino acids without a signal peptide at the
N-terminal. Phylogenetic tree analysis showed that Pe-Cu/Zn SOD was located in the
intracellular branch of Cu/Zn SOD.

The amino acid sequence of Pe-Cu/Zn SOD was compared with that of homologous
proteins of other species. Indeed, Kim et al. [18] also found the conserved tag sequences
GNAGGRAACGVI and GFHIHQFGDNT of the Cu/Zn SOD family in Pe-Cu/Zn SOD. As
predicted, the residue Cu2+-binding sites (His-45, -47, -62, and -119) and Zn2+-binding sites
(His-62, -70, -79, and Asp-82) were also found in Pe-Cu/Zn SOD. Cys-56 and Cys-145 form
disulfide bonds in the Pe-Cu/Zn SOD protein, which plays an important role in maintaining
the structural stability of the enzyme [19]. These conserved amino acids are essential for
the structure and function of Cu/Zn SOD and may be involved in the stabilization of the
SOD conformation under adverse environmental conditions.

3.2. Physiological and Biochemical Changes of P. esculenta under Cd Stress

The main toxic effect of Cd on organisms is oxidative damage [20]. As an inducer
of peroxide, Cd can stimulate the production of excessive free radicals, which eventually
leads to oxidative damage [21]. MDA is a product of lipid peroxidation induced by oxygen
free radicals and is a recognized biomarker in marine invertebrates [22]; for example, the
change in the MDA content in the serum of Palaemon carincauda reflects the degree of
heavy metal stress [23]. It has been reported that MDA is sensitive to Cd exposure; it
typically increases slowly in organisms at low Cd concentrations while under high Cd
concentrations, it increases sharply for a short time and then decreases [24]. We found
the same expression pattern in this study. The MDA content increased slowly in the low
concentration group but increased sharply in the high concentration group, indicating that
the high concentration of Cd ions is toxic to P. esculenta. We suggest that MDA is related
to antioxidation.

SOD is also an important antioxidant enzyme, and its activity often reflects the degree
of oxidative stress. Sun et al. [25] found that a low dose of Cd induced an increase in
SOD enzyme activity in the visceral mass and gills of Tegillarca granosa Linnaeus while a
high dose of Cd inhibited it. Wang [26] found that under Cd stress, the SOD activity of
Mizuhopecten yessoensis increased and the enzyme activity decreased. Under different con-
centrations of Cd stress, the SOD activity in the gills of Sinanodonta woodiana demonstrated
the rule of “low concentration induction, high concentration inhibition” [27]. Studies have
shown that Cd can change the original molecular conformation of SOD by occupying Zn or
Mn structural sites in the SOD protein, thus inhibiting enzyme activity [28,29]. In summary,
in the early stages of Cd exposure, SOD activity increased to eliminate excessive ROS.
Under high concentrations of Cd stress, a large amount of ROS accumulated in the cells
and the SOD activity decreased due to the inhibition by toxic substances. Our results are
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consistent with these findings. The change in SOD in the coelomic fluid of P. esculenta
showed the same pattern of hormesis at different concentrations of Cd. At low (6 mg/L)
and medium (24 mg/L) Cd stress, SOD enzyme activity first increased and then decreased,
indicating that a lower concentration of Cd causes the body to produce oxygen free radicals,
and the body regulates this balance by producing the SOD enzyme. In the high concentra-
tion group (96 mg/L), the activity of SOD was inhibited, which indicated that when the
concentration of Cd exceeded a certain threshold, the activity of SOD decreased, resulting
in tissue damage.

CAT is known to disproportionate H2O2 into water and oxygen molecules.
Livingstone et al. [30] found that CAT functions in the antioxidative system of marine
invertebrates. The CAT activity in hepatopancreas of Haliotis discus hannai significantly
increased after Cd stress, indicating its role in resisting ROS [31]. After Cd exposure, CAT
activity in the tissues of Mactra veneriformis and Ruditapes philippinarum was significantly
increased [32,33]. In this study, CAT activity in the coelomic fluid of P. esculenta did not
change significantly in the control group or the 6 mg/L experimental group but increased
significantly in the 24 and 9–6 mg/L Cd groups. It can be inferred that a large amount
of H2O2 was produced in the coelomic fluid of P. esculenta under high Cd stress, which
induced an increase in CAT activity.

GSH is a non-enzymatic antioxidant that scavenges ROS [34,35]. The change in the
GSH content reflects the redox state of the cells [21]. An increase in the GSH content after Cd
stress has been found in many marine invertebrates, for example, Neomysis awatschensis [36].
In this study, the GSH content in coelomic fluid increased significantly after Cd stress at
24 and 96 mg/L Cd, which indicates that GSH plays an important role in resistance to
Cd-induced oxidative stress.

In conclusion, we found that Cd stress changes the physiological and biochemical
indices of coelomic fluid. When exposed to Cd stress, the antioxidant enzymes and antiox-
idative molecules of P. esculenta were activated to resist oxidative damage.

3.3. Response of Cu/Zn SOD to Cd Stress

Cadmium can induce the formation of ROS and ultimately lead to oxidative dam-
age [37,38]. As a member of the antioxidant system, Cu/Zn SOD is sensitive to Cd exposure.
Cd can combine with the sulfhydryl group of SOD, disrupting the structure of SOD, and
lead to a decrease in and inactivation of SOD [39]. When organisms are exposed to Cd
stress, the activities of SOD and other antioxidant enzymes are enhanced [40,41]. Therefore,
Cu/Zn SOD is a biomarker of early Cd exposure [42–44]. In marine invertebrates, Cu/Zn
SOD has been reported to be involved in the defense against Cd stress. After exposure to
Cd, the expression of Cu/Zn SOD in the digestive gland of M. veneriformis increased sharply,
indicating that Cu/Zn SOD plays a role in maintaining cellular metabolic homeostasis and
protecting clams from Cd toxicity [13].

Kim et al. [14] found that the relative expression of Cu/Zn SOD mRNA in Euplotes
crassus increased after 0.025, 0.05, and 0.1 mg/L Cd treatment, indicating that Cu/Zn
SOD may participate in the protection of cells against metal and mediated oxidative stress.
For example, Zheng et al. [20] found that the Cu/Zn SOD mRNA expression and enzyme
activity in Cristaria plicata were significantly increased after Cd stress, indicating that Cu/Zn
SOD may play a role in scavenging free radicals. Xie et al. [45] reported that the Cu/Zn SOD
activity of Corbicula fluminea was significantly increased after Cd stress and then decreased,
which may be related to the elimination of free radicals and inhibition of enzyme activity.

In this study, the activity of Pe-Cu/Zn SOD mRNA and enzyme was detected after
Cd stress. The results showed that Pe-Cu/Zn SOD mRNA was significantly induced after
exposure to different concentrations of Cd. The activity of the enzyme increased under low
concentrations (6 and 24 mg/L) of Cd but significantly decreased at high concentrations
(96 mg/L). The activity of Cu/Zn SOD mRNA and enzyme changed significantly after Cd
stress, indicating that Pe-Cu/Zn SOD is induced in response to the oxidative stress induced
by Cd.
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3.4. Antioxidant Function of Cu/Zn SOD

Cu/Zn SOD is an enzyme that can scavenge oxygen free radicals and has strong
antioxidative and immunity capacity. To analyze its functions, an in vitro experiment with
purified protein was performed using P. esculenta. Hwang et al. [46] found that Cu/Zn
SOD improved the antioxidant capacity of Candida albicans cells and Liu et al. [47] found
that Glyphodes pyloalis-Cu/Zn SOD improved the tolerance of hydrogen peroxide in E. coli.
In a similar study using Apostichopus japonicus [3], the recombinant E. coli that expressed
Aj-Cu/Zn SOD had higher viability than the control bacteria. Perera et al. [48] detected the
antioxidant activity of purified Cu/Zn SOD protein of Hippocampus abdominalis. The results
showed that Ha-Cu/Zn SOD could eliminate superoxide free radicals. In our study, the Cd
tolerance of E. coli expressing Pe-Cu/Zn SOD was significantly increased when compared to
the control, which indicated that Pe-Cu/Zn SOD had a protective effect against Cd stress.
These results suggest that the purified Pe-Cu/Zn SOD protein has an antioxidative capacity.

In order to reveal the natural functions of Cu/Zn SOD, in vivo experiments were
performed. Petkau et al. [49,50] found that intravenous injection of bovine SOD into mice
can significantly repair the damage caused by X-rays in red and white blood cells. Similarly,
Oda et al. [51] reported that the survival rate of mice infected with the influenza virus
was significantly improved by injecting SOD protein, which indicated that SOD could
improve the immunity of mice. In this study, we injected purified Pe-Cu/Zn SOD into the
body cavities of P. esculenta. In contrast to the control groups, Pe-Cu/Zn SOD significantly
reduced ROS induced by Cd in coelomocytes. Therefore, we suggest that Pe-Cu/Zn SOD
plays an important role in the response to Cd stress and oxidative stress in P. esculenta.

4. Materials and Methods
4.1. Samples

P. esculenta was obtained from Xiangshan County (121.681777 N◦, 29.48704 E◦), Ningbo
(Zhejiang, China). The samples were kept indoors after collection. Healthy and vital
samples were selected (average weight 4.5 ± 1.0 g), kept in clean natural seawater for 24 h,
and inflated continuously during temporary maintenance. All experimental procedures
were approved by the Animal Care and Use Committee of the Ningbo University.

4.2. Chemical Exposure and Sampling

The water used in this experiment was clean natural seawater with a temperature of
22 ± 5 ◦C and a salinity of 28‰. The experiment was carried out in a 32 × 21 × 20 cm
plastic water tank, with 12 L of continuously aerated water in each tank. According to our
previous experiment, the half-lethal concentration of Cd for 96 h was 192 mg/L [52]. In
this experiment, according to the 96 h LC50 concentration gradient (0, 1/32 of 96 h LC50,
1/8 of 96 h LC50, 1

2 h of LC50), a total of 126 P. esculenta were used. Six P. esculenta were
dissected at 12, 24, 48, 72, and 96 h in each group, and the coelomic fluid was collected in
2 mL RNase-free tubes. In addition, six P. esculenta were collected from the control group
(0 mg/L) at 0 h. Body cavity fluid was stratified and stored in liquid nitrogen and then
transferred to a −80 ◦C refrigerator for subsequent experiments.

4.3. Total Superoxide Dismutase, Glutathione S-Transferase Activity, and GSH and MDA Content
Determination in the Supernatants

The samples were homogenized in cold physiological saline and centrifuged at
12,000 rpm for 10 min (4 ◦C). Afterwards, the supernatants were collected and stored
at −80 ◦C for further experiments. The total protein content was measured using BCA
protein assay kits (CW Biotech, Beijing, China) according to the manufacturer’s instructions.
A total superoxide dismutase (T-SOD) assay kit (hydroxylamine method), glutathione
S-transferase (GST) assay kit, reduced glutathione (GSH) assay kit, and microscale malondi-
aldehyde (MDA) assay kit (TBA method) from Nanjing Jiancheng Bioengineering Institute
were used to test the supernatant according to the manufacturer’s instructions.
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4.4. Full-Length Complimentary DNA Cloning of Cu/Zn SOD

Total RNA was extracted using TRIzol Reagent (Invitrogen, USA). Primer Premier
v5.0 was used to select appropriate primers for Pe-Cu/Zn SOD (Table S1) based on the tran-
scriptome data of our previous study (GenBank accession No. OL757513). The HiFiScript
first-strand cDNA synthesis kit (Cwbio, China) was used to obtain cDNA for intermediate
segment sequence cloning. A 2 × Power Taq PCR MasterMix kit (BioTeke, China) was used
for the PCR reaction. The PCR procedure was as follows: 94 ◦C, 5 min; 30 cycles (94 ◦C,
30 s; 58 ◦C, 30 s; 72 ◦C, 50 s); 72 ◦C, 10 min.

Based on the cloned Cu/Zn SOD cDNA intermediate fragment sequence, primers
for 5 rapid amplification of cDNA ends (5 RACE) and 3′ RACE were designed (Table S1).
The 5 RACE reverse transcription assay was performed using the Smart RACE cDNA
amplification kit (CloneTech, USA) while the 3′ RACE reverse transcription assay was
performed using the 3′-Full RACE Core Set with a PrimeScript RTase kit (Takara, China).
Both assays were conducted according to our previous research [52]. The products obtained
were stored at −20 ◦C until further analysis.

4.5. Sequence Alignment, Structure Prediction, and Phylogenetic Analysis

The Pe-Cu/Zn SOD protein primary structures were predicted using online tools
(http://www.bio-soft.net/sms/ (accessed on 3 July 2020)). The molecular weights of
Pe-Cu/Zn SOD proteins were predicted using the ExPASy ProtParam tool (http://web.
expasy.org/protparam/ (accessed on 3 July 2020)). The protein sequence was aligned using
Vector NT110 (Invitrogen, CA, USA). Secondary and 3-D structures were generated and
analyzed using ProtParam (http://web.expasy.org/protparam/ (accessed on 3 July 2020))
and I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER (accessed on 4 July 2020)).
Cu/Zn SOD homologues in various species were used for comparison, and a phylogenetic
tree was constructed using MEGA v5.0. The GenBank accession numbers of the Cu/Zn
SOD proteins are shown in Table S2.

4.6. mRNA Expression and Enzyme Activity of Pe-Cu/Zn SOD

The expression profile of Pe-Cu/Zn SOD was monitored using qPCR. Total RNA was
extracted and reverse-transcribed into cDNA using the PrimeScript RT reagent kit (Takara,
Japan). The primers used for qPCR are listed in Table S1, and GAPDH primers were used as
a positive control. qPCR amplification was performed using SYBR Premix Ex Taq II (Takara,
Japan). qPCR was conducted at 95 ◦C for 4 min, followed by 40 amplification cycles (10 s
at 95 ◦C, 15 s at 60 ◦C, and 15 s at 72 ◦C). The comparative ∆∆Ct method was used to
analyze the relative expression levels of Pe-Cu/Zn SOD. The relative mRNA expression
levels are presented as mean ± standard deviation (n = 6). The data were analyzed using
one-way analysis of variance with SPSS v20.0, and statistical significance was defined as
p < 0.05. The supernatants mentioned in Section 2.2 were used to determine SOD activity.
Pe-Cu/Zn SOD activity was detected using an SOD assay kit purchased from Jiancheng
Bioengineering (Nanjing, China) and calculated using the formula based on the absorbance
values. SOD activity was expressed as U/mg protein.

4.7. Recombinant Protein Expression and Purification

Based on the cloned Pe-Cu/Zn SOD cDNA ORF sequence, the forward primer Cu/Zn
SOD-F with a BamH I restriction site and the reverse primer Cu/Zn SOD-R with a Xho I
restriction site were used to amplify the coding region of Pe-Cu/Zn SOD (Table S1). The
Pe-Cu/Zn SOD ORF was amplified using 2 × Super Pfx MasterMix (CWBIO). The PeCu/Zn
SOD ORF and pET-28a (+) plasmids (Novagen) were double-digested and then ligated
using T4 DNA ligase (TaKaRa) to obtain the pET28a-MT recombinant plasmid, which was
then transferred to Trans5a Chemically Competent Cell (TransGen Biotech) and sequenced.
The pET28a-MT recombinant plasmid was extracted using the Plasmid Extraction Mini Kit
(Solarbio) and then transferred to Transetta (DE3) Chemically Competent Cell (TransGen
Biotech) to obtain pET28a-PeCu/Zn SOD -DE3 recombinant E. coli.

http://www.bio-soft.net/sms/
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
http://zhanglab.ccmb.med.umich.edu/I-TASSER
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pET28a-PeCu/Zn SOD-DE E. coli was expanded in liquid LB medium (+kanamycin) at
37 ◦C and 200 rpm until OD600 reached 0.4–0.6. Isopropyl-β-d-1-thiogalactopyranoside
(IPTG) was added to the final concentration of 1 mmol/L, and then incubated for 8 h to
induce protein expression. The recombinant protein was found to be expressed mainly in
inclusion bodies by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
analysis and purified using a His-tagged protein purification kit (Inclusion Body Protein,
CWBIO). Using dialysis membranes MD44 (3500D, Solarbio), the purified proteins were
sequentially dialyzed once in 50 mM PBS containing 6, 4, 2, and 1 M urea and, finally, twice
in 50 mM PBS without urea for 12 h each.

4.8. Cd Tolerance of Recombinant E. coli

The control (pET28a) and recombinant BL21-expressing bacteria (pET28a-Pe-Cu/Zn
SOD) were cultured at 37 ◦C and 200 rpm until OD600 reached approximately 0.4. IPTG
at a final concentration of 1 mM was added to induce the expression of Pe-Cu/Zn SOD.
At the same time, 0.2 and 1 mM CdCl2 were added. The shaking table culture was
continued for 8 h and the OD600 value was determined every 2 h for each of the 3 parallel
experiments conducted.

4.9. Analysis of the Pe-Cu/Zn SOD Protection Function In Vivo

Three treatment groups (Cd, Cd + PeCu/Zn SOD, and Cd + PBS) were set up. Six
P. esculenta samples were treated with 96 mg/L Cd2+ for 24 h in each group. In the Cd
+ Pe-Cu/Zn SOD group, 100 µL of soluble Pe-Cu/Zn SOD purified protein was injected
into the body cavity of P. esculenta before Cd treatment, whereas in the Cd + PBS group, it
was injected with 100 µL of 1 × PBS. In the control group, P. esculenta was placed in clean
natural seawater without Cd treatment.

4.10. Data Analysis

SPSS 20.0 (IBM company, Armonk, NYC, USA)and Excel software (Microsoft company,
Redmond, WA, USA) were used for statistical analysis. The experimental groups were
compared using one-way ANOVA and Duncan’s tests. The differences between the groups
were analyzed and plotted using Graphpad software 7.0 (Graphpad software company,
San Diego, CA, USA).

5. Conclusions

We report that the toxic effects of different concentrations of Cd (6, 24, 96 mg/L) on
P. esculenta caused significant changes in the antioxidative indexes, T-SOD, GST, GSH, and
MDA. These results indicated that Cd induced oxidative stress in P. esculenta. We cloned the
full-length Pe-Cu/Zn SOD and identified it as an icCu/Zn SOD. The qPCR results showed
that Pe-Cu/Zn SOD mRNA was expressed widely at the highest levels in the coelomic
fluid. This significant increase after Cd exposure indicated that Pe-Cu/Zn SOD featured
in the stress response. We obtained Pe-Cu/Zn SOD recombinant protein and found that
it enhanced the heavy metal tolerance of E. coli. In vivo assays confirmed that Pe-Cu/Zn
SOD recombinant protein exhibited an antioxidative activity and free radical scavenging
ability, suggesting that Pe-Cu/Zn SOD could chelate heavy metal ions and scavenge reactive
oxygen free radicals. We suggest that P. esculenta can be used as a bioindicator to evaluate
heavy metal pollution.
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