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ABSTRACT
Pancreatic cancer is associated with a high mortality rate, and the prognosis is positively related to 
immune status. In this study, we constructed a prognostic signature from survival- and immune- 
related genes (IRGs) to guide treatment and assess prognosis of patients with pancreatic cancer. 
The transcriptomic data were obtained from The Cancer Genome Atlas (TCGA) database, and IRGs 
were extracted from the ImmPort database. Univariate and LASSO regression analysis were used 
to obtain survival-related IRGs. Finally, the prognostic signature was constructed using multi-
variate regression analysis. The laboratory experiments were conducted to verify the key IRG 
expression. Immune cells infiltration was analyzed using the CIBERSORT algorithm and TIMER 
database. Prognostic signature containing four IRGs (ADA2, TLR1, PTPN6, S100P) was constructed 
with good predictive performance; in particular, S100P played a significant role in the immune 
microenvironment, and tumorigenesis of pancreatic cancer. Moreover, we found that CD8+ T cell 
and activated CD4+ memory T cell tumor infiltration was lower in the high-risk group, while high- 
risk score correlated positively with higher tumor mutational burden, and the higher half inhibi-
tory centration 50 of chemotherapeutic agents Docetaxel and Sunitinib. In summary, this study 
identified and constructed an immune-related prognostic signature that can predict overall 
survival, besides suggests that S100P was a novel immune-related biomarker. We hope that this 
signature will aid the identification of new biomarkers for the individualized immunotherapy of 
pancreatic cancer.
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1. Introduction

Pancreatic cancers have one of the highest mortal-
ity rates, with an average 5-year survival rate of 
approximately 10% in the United States [1]. A lack 
of obvious early symptoms and difficult diagnosis 
lead to poor treatment efficacy and prognosis, thus 
increasing mortality. Radical surgery and che-
motherapy are currently the main treatment stra-
tegies for pancreatic cancer and the development 
of various comprehensive treatments has gradually 
increased the overall survival (OS) of patients 
[2,3]; however, few patients are suitable for surgi-
cal treatment due to the existence of distant metas-
tasis or local invasion, and resistance to 
chemotherapy is inevitable [4]. Immunotherapy 
has become increasingly popular in recent years 

and has revolutionized oncotherapy since it can 
mobilize the patient’s immune system to enhance 
its antitumor abilities [5]. For example, recent 
approaches targeting the inhibition of pro-
grammed cell death 1 (PD-1) or programmed cell 
death ligand 1 (PD-L1) have been successfully 
used to treat various tumors [6–8].

The abnormal expression of immune-related 
genes (IRGs) is closely related to the progression 
of malignant tumors and offers a new perspective 
for exploring prognostic biomarkers [9]. In addi-
tion, the prognostic efficacy of IRGs is closely 
related to the tumor immune microenvironment 
(TIME) and studies have reported that an IRG- 
immunocyte-TIME interaction network plays 
a crucial role in tumorigenesis and progression 
[10,11]. Various prognostic signatures based on 
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IRGs have recently been constructed to predict the 
prognosis of patients with cancer and have proven 
to effectively predict OS and aid the exploration of 
novel biomarkers [12–14]. Recently, few reliable 
prognostic signatures have been reported in patients 
with pancreatic cancer and the mechanisms under-
lying IRGs have been confirmed. Wu et al. found 
that three IRGs CKLF, ERAP2, and EREG showed 
distinct relationships with pancreatic cancer 
patients’ survival [15], Wang et al. Chen et al. and 
Zhang et al. identified some IRGs which was highly 
related with long-term survival of patients with 
pancreatic cancer respectively [16–18]. However, 
most current prediction signatures focus only on 
predicting long-term survival and tumor progres-
sion in pancreatic cancer patients. But more impor-
tantly, to our knowledge, tumor immune 
microenvironment plays its important role in 
immunotherapy, it is therefore significant to identify 
a strong prognostic signature based on IRGs that 
could affect the tumor immune status and guide the 
precise immunotherapy of pancreatic cancer in the 
future. Meanwhile, the role of more IRGs in the 
malignant progression of pancreatic cancer still 
needs to be further identified and revealed.

In this study, we constructed a prognostic sig-
nature that can independently predict tumor prog-
nosis of pancreatic cancer patients when combined 
with clinicopathological characteristics. Notably, 
we applied the prognostic signature to predict 
chemotherapeutics efficacy for precise which may 
aid personal therapy in future. In addition, we 
analyzed and validated S100P, a key IRG via bioin-
formatics analysis and laboratory experiment 
involved in quantitative real-time PCR and immu-
nohistochemistry. To sum up, we explored poten-
tial regulatory mechanisms that highlight the 
strong relationships between IRGs and pancreatic 
cancer. Hopefully, this signature will aid the iden-
tification of new biomarkers for the individualized 
immunotherapy of pancreatic cancer.

2. Materials and methods

2.1. Data download and preprocessing

We obtained the transcriptomic data and clinico-
pathological characteristics of 178 pancreatic can-
cer tissues and 4 adjacent normal tissues from 

TCGA database for preprocessing. A total of 
2483 immune-related genes (IRGs) were extracted 
from the Immport database (https://immport. 
niaid.nih.gov) [19]. The mRNA matrix annotated 
as ‘protein-coding’ was extracted for subsequent 
screening.

2.2. Differentially expressed genes (DEGs) and 
functional enrichment analysis

DEGs were screened based on the mRNA matrix 
using the ‘limma’ package [20] with thresholds of 
adjusted p value < 0.05 and |log2 fold change (FC)| 
> 1. The IRGs were then intersected with DEGs to 
obtain differentially expressed IRGs. To explore 
the potential functions of these IRGs, we per-
formed Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses using the ‘clusterProfiler’ 
[21] and ‘GOplot’ packages [22]. A protein- 
protein interaction (PPI) network was constructed 
from the IRGs using the STRING online database 
(https://string-db.org/) [23], with a medium con-
fidence threshold of 0.4.

2.3. Construction and validation of the 
immune-related prognostic signature

We combined survival data with IRGs expression 
levels and conducted survival analysis to select the 
independently survival-related IRGs. The ‘survival’ 
package was used to perform univariate regression 
analysis to screen survival-related IRGs, which were 
filtered using LASSO regression in the ‘glmnet’ 
package [24]. Finally, a prognostic signature con-
taining four significantly survival-related IRGs was 
constructed using multivariate regression analysis. 
Risk scores were calculated from the regression 
coefficient and expression levels of the four IRGs 
and then all patients were divided into high- and 
low-risk groups based on the median risk score. To 
verify the prediction accuracy of the signature, we 
calculated the area under the curve (AUC) of the 
receiver operating characteristic (ROC) using the 
‘timeROC’ package. A Kaplan-Meier (KM) survival 
curve was produced using the ‘survival’ and ‘surv-
miner’ packages to describe the predictive power of 
the indicators. We also analyzed the correlation 
between the signature and clinicopathological 
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characteristics, and investigated the independent 
predictive capability of our signature using Cox 
regression analysis with a threshold of p < 0.05. 
Finally, Gene set enrichment analysis (GSEA) was 
conducted to reveal the mechanism and pathways 
underlying the prognostic signature [25].

2.4. Tissue collection and cell culture

Pancreatic cancer and normal tissues were prospec-
tive collected from the Chinese PLA general Hospital. 
This study was approved by the ethics committee of 
the Chinese PLA general Hospital. Written informed 
consent was obtained from all patients. BxPC-3, and 
SW1990 pancreatic cancer cells and HPDE6-C7 nor-
mal pancreas cells were purchased from the 
American Type Culture Collection (ATCC). The 
BxPC-3, SW1990, and HPDE6-C7 were incubated 
in RPMI-1640 medium (Solarbio, Beijing, China). 
All the mediums were supplemented with 10% fetal 
bovine serum (FBS, Gbico, USA), 100 units/ml peni-
cillin G, and 100 ug/ml streptomycin, and were cul-
tured at 37°C in a damp incubator, which was 
supplemented with 5% CO2.

2.5. Expressed validation and potential 
mechanisms exploration of S100P

We downloaded the transcription factor (TF) data-
set from the Cistrome Cancer database [26] and 
obtained differentially expressed TFs based on the 
DEGs, with thresholds of adj. p < 0.05 and |logFC| > 
1. Correlation analysis was then performed between 
the differentially expressed TFs and the four IRGs, 
with a minimal 0.4 coefficient and p < 0.05. After 
analyzing the DEGs of two transcriptomic data 
(GSE32676, GSE28735) from the GEO database, 
we found that S100P was a common DEG that 
overlapped with a survival-related gene screened 
from the TCGA database. Therefore, we conducted 
bioinformatic analyses to explore the potential bio-
logical role of S100P in tumor immunity.

The TISIDB database was used to produce the 
KM survival curve and the correlations between 
S100P expression and immune inhibitors [27], 
while the GEPIA database that integrate the expres-
sion of genes in TCGA and GTEx data [28], was 
used to present the KM survival curve, and to ana-
lyze the differential expression level of S100P. The 

TIMER database was used to explore the correlation 
between S100P and tumor-infiltrating cells, since it is 
often used to systematically evaluate the relationship 
between immune cells and target genes in cancers 
[29]. Notably, quantitative real-time PCR (qRT- 
PCR) were performed to validate the differential 
expression level of S100P: TRIzol reagent (Ambion) 
was used to extracted total RNA; NanoPhotometer® 

C40 Touch (IMPLEN) was used to assess the RNA 
purity based on the ratio of OD260/280 and 260/230; 
Eppendorf Mastercycler® was used to perform 
reverse transcription of qualified RNA to single- 
stranded complementary DNA according to the 
manufacturer’s instructions; StepOnePlusTM Real- 
Time PCR instrument was used to implement real- 
time quantification; 18S rDNA was used as internal 
reference; calculation of the relative expressions used 
the 2−ΔΔCt method. Primers sequences of S100P and 
18S rDNA were shown in (Table 1). Finally, the 
immunohistochemical image of S100P were down-
loaded from the Human Protein Atlas (HPA) data-
base for comparing differential expression of S100P 
between the tumor and normal tissues in protein 
expression levels.

2.6. Development and validation of the 
nomogram

The nomogram combining the IRGs signature 
with clinicopathologic characteristics was devel-
oped to predict the 1-, 2- and 3-year survival of 
patients with pancreatic cancer, and calibration 
curves were generated to evaluate the performance 
of the nomogram. All the analyses were performed 
using the ‘rms’ and ‘foreign’ packages.

2.7. Association of risk score with immune cell 
infiltration, chemotherapeutics efficacy and 
tumor mutation burden (TMB)

To analyze differences in immune cell infiltration 
between risk groups, CIBERSORT, an algorithm 

Table 1. Primers used for quantitative real-time PCR.
GeneName Direction Sequences (5ʹ–3ʹ)
S100P Forward AAGGATGCCGTGGATAAATTGC
S100P Reverse ACACGATGAACTCACTGAAGTC
h18S Forward AACCCGTTGAACCCCATT
h18S Reverse CCATCCAATCGGTAGTAGCG
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that can filter meaningful samples [30] was used with 
p < 0.05 and perm was set to 100. it can calculate the 
distribution of 22 immune cell types in each sample 
and analyzed the differences in immune cells across 
risk groups. Subsequently, the correlation between 
the four key IRGs and common immune cells was 
also explored in the TIMER database. Then we eval-
uated the power of risk score to predict chemother-
apeutics efficacy in PC, and calculated the half 
inhibitory centration (IC50) difference of several 
chemotherapeutics in high- and low- risk groups 
using the Wilcoxon signed-rank test and 
‘pRRophetic’ package [31]. Finally, we downloaded 
TMB data from TCGA database, calculated the TMB 
scores for each patient, and assessed the association 
between TMB score and risk score.

2.8. Statistical analysis

R version 4.0.2 software, its resource packages, and 
GraphPad Prism 8.0 software were used for all statis-
tical analyses and to plot relevant visualizations. The 
statistical significance of all tests performed in this 
study was determined as a two-sided p value of < 0.05.

3. Results

3.1. Differentially expressed analysis

By screening the expression of 19645 mRNAs in 
tumor and peritumor tissues, we identified 273 
DEGs, of which 71 were up-regulated and 202 
were down-regulated (Figure 1(a,b)). Intersecting 
the DEGs and IRGs revealed 43 differentially 
expressed IRGs (Figure 1(c)). As expected, GO 
and KEGG pathway analysis showed that the func-
tions of these IRGs correlated significantly with 
immune cell infiltration and the immune response 
(Figure S1(a–c)), while the PPI network revealed 
associations between these 43 IRGs (Figure S1(d)).

3.2. Construction and validation of the 
prognostic signature

Univariate and LASSO regression analyses identified 
eight survival-related IRGs (p < 0.05, Figure 2(a–c)), 
from which, an optimal signature of four significant 
IRGs was constructed using multivariate cox regres-
sion (Figure 2(d)). Risk scores were calculated from 
four IRGs coefficients and expressions as follows 

Figure 1. Differentially expressed analysis. (a) Heatmap of significant DEGs in pancreatic cancer. (b) Volcano plot of DEGs. (c) The 
Venn diagram of the intersection between DEGs.
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Figure 2. Construction of the prognostic signature. (a) Univariate regression analysis. (b,c) LASSO regression analysis (d) Multivariate 
regression analysis.

Figure 3. (a) Survival condition plots and heatmap of four IRGs. (b) Kaplan-Meier survival curve. (c) Time-dependent ROC curves used 
to predict OS at 1, 3, and 5 years.

9010 W. ZOU ET AL.



risk score ¼ ð0:11609Þ�S100Pþ ð� 0:43342Þ�

PTPN6þ ð0:94539Þ�

TLR1þ ð� 0:33095Þ�ADA2 

Based on the median risk score, we divided 
patients into high- and low-risk groups (n = 88 
and 89, respectively). Survival condition plots 
showed that the high-risk group had a higher mor-
tality than the low-risk group and revealed the 
differential expression patterns of the four IRGs 
(Figure 3(a)). Moreover, the KM survival curve 
indicated that the high-risk group had a poorer 
prognosis and a shorter OS than the low-risk 
group (p < 0.01, Figure 3(b) and Table S1). To 
verify the predictive accuracy of this signature, we 
calculated the AUC at 1, 2, and 3 years (0.623, 
0.725, and 0.767, respectively), which suggests that 
our signature has predictive accuracy (Figure 3(c)).

3.3. Potential immune-related mechanism of 
S100P

By comparing the survival-related IRGs and the 
DEGs of two other transcriptomic data from the 
GEO database, we identified S100P as a common 

DEG (Figure 4(a)). In addition, we obtained four 
differentially expressed TFs (CIITA, FLI1, KLF5, 
SPDEF; p < 0.001, Table 2), of which two (KLF5, 
SPDEF) were strongly positively correlated with 
S100P (Table 3), suggesting that S100P could be 
a key IRG with an important role in pancreatic 
cancer.

To determine whether S100P correlated with 
tumor immunity, we conducted comprehensive 
analyses. In the GEPIA database, S100P expression 
was higher in cancerous tissues than in normal 
tissues (p < 0.01, Figure 4(b)), while the KM 
curve indicated good predictive capabilities 
(p < 0.01, Figure 4(c)). Higher S100P expression 
in the TISIDB database also indicated a shorter OS 
(p < 0.01, Figure 4(d)). Therefore, we explored the 
relationship between S100P expression and com-
mon immune inhibitors, finding that S100P 
expression correlated negatively with CTLA-4 
(p < 0.01), PDCD1LG2, and PDCD1 (p < 0.001; 
Figure 4(e)). In the TIMER database, S100P 
expression was positively related to CD4+ T cell 
and macrophage infiltration (p < 0.001, Figure 4 
(f)), with copy number variation analysis confirm-
ing that alterations in S100P were associated with 

Figure 4. Mechanism analysis of S100P. (a) Venn diagram for the intersections of IRGs and data from the GEO database. (b) 
Differentially expressed analysis of S100P in GEPIA database. (c,d) Survival analysis of S100P. (e) The relationship between the 
common immune-inhibiter and S100P. (f) The correlation of immune cell infiltration with the expression level of S100P. (g) Copy 
number variation analysis.
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CD4 + T cells, B cells, and macrophages (p < 0.05, 
Figure 4(g)).

Like the results of transcriptome analysis, qRT- 
PCR presented the similar trends of S100P 
(Figure 5(a)), which revealed the S100P involved 
in the tumorigenesis of pancreatic cancer. Then, 
we collected immunohistochemical data from the 
HPA database and found that S100P is highly 
expressed in tumor tissue at the protein level, 
this result was consistent with our analysis 
(Figure 5(b,c)).

3.4. Clinical relevance of the prognostic 
signature

Next, we investigated the clinical relevance of the 
prognostic signature and four IRGs, finding that 
a higher risk score was related to G3&G4 
(p = 0.024) and T3&T4 stage (p = 0.013), while 
elevated S100P expression level was significantly in 
the T3&T4 stage (p = 0.001). Both ADA2 and 
TLR1 displayed lower expression level in M1 
stage (p = 0.038 and 0.023, respectively) and 
TLR1 expression was lower in the age ≤ 65 group 
(p = 0.049; Figure 6(a)).

To further verify the independent predictive cap-
ability of this signature, we analyzed the correlation 
between the signature and clinicopathological char-
acteristics such as age, gender, AJCC stage, and 
grade. Interestingly, univariate and multivariate 
regression analysis revealed age and risk score as 
prognostic factors and found that risk score could 
predict patient prognosis (HR = 1.673, 95% 
CI = 1.339 − 2.090, p < 0.001, Figure 6(b,c)).

Table 2. Differentially expressed TFs.
TF logFC AveExpression p value adj.p value

CIITA −1.4903896 1.782997979 0.0000163 0.00195858
FLI1 −1.13045278 1.731869954 0.000396856 0.01799967
KLF5 2.076788399 5.252328688 0.001133446 0.03636955
SPDEF 2.632872658 3.392909267 0.000573362 0.02331316

Table 3. Results of correlation analysis.
TF IRGs Correlation p value Regulation

KLF5 S100P 0.706399294 4.6145E-28 postive
SPDEF S100P 0.629713781 6.07823E-21 postive
KLF5 CETP −0.504604868 7.99247E-13 negative

Figure 5. (a) The results of quantitative real-time PCR showed that relative expression level of S100P between tumor and normal 
tissue. (T1-6: Tumor samples with normal tissues control; C: cell lines with HPDE6-C7 control, C7–8: BxPC-3, SW1990; * P < 0.05; ** 
P < 0.01; *** P < 0.001.) (b,c) Immunohistochemistry (B: Tumor tissue; C: Normal tissue).
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3.5. Development and validation of 
a nomogram

For preferable clinical application in predicting OS 
of patients with pancreatic cancer, we constructed 
a nomogram including clinicopathological charac-
teristics (age, gender, grade, AJCC stage) and the 
risk score (Figure 7(a)). And the calibration curves 
showed good agreement between the predicted 
survival rate and the actual survival rate at 1, 2, 
and 3 years (Figure 7(c,d)).

3.6. Gene set enrichment analysis

Having verified the ability of our prognostic 
signature to predict OS, we explored the poten-
tial mechanism of the prognostic signature by 
carrying out GSEA. The top five GO terms 
significantly enriched in the high-risk group 
like ‘cadherin binding’, ‘sterol biosynthetic pro-
cess’, ‘mitotic spindle assembly’, ‘apical junction 
complex’, and ‘cadherin binding involved in 
cell-cell adhesion’ (p < 0.05, Figure S2(a)). 

KEGG pathway enrichment analysis revealed 
that the significantly enriched pathways like 
‘p53 signaling pathway’, ‘steroid biosynthesis’, 
‘tight junction’, ‘pathogenic Escherichia coli 
infection’, and ‘adherens junction’ (p < 0.05, 
Figure S2(b)). these results revealed the 
mechanism underlying the prognostic signa-
ture, in which four IRGs work together in pan-
creatic cancer.

3.7. Correlation analysis of risk score with 
immune cell infiltration, chemotherapeutics 
efficacy, and TMB

A total of 123 pancreatic cancer tissue samples 
were filtered using the CIBERSORT algorithm 
(p < 0.05) and sorted into high- and low-risk 
groups (n = 65 and 58, respectively). The distrib-
uted histograms of 22 types of immune cells 
showed that each sample had different composi-
tions of tumor-infiltrating immune cells (Figure 8 
(a)). Moreover, the violin plot showed that the 
high-risk group had lower CD8 + T cell and 

Figure 6. (a) Clinical relevance of the prognostic signature and four IRGs. (b,c) Forest plot of univariate and multivariate regression 
analyses.
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activated CD4+ memory T cell infiltration in the 
TIME (p < 0.05, Figure 8(b)) and the correlation 
heatmap showed a weak correlation between dif-
ferent immune cells (Figure 8(c)). The TIMER 

database, the high TLR1 expression correlated 
positively with B cells, CD8 + T cells, macro-
phages, neutrophils, and dendritic cells 
(p < 0.001, Figure S3(a)). The expression of 

Figure 7. (a) nomogram for predicting OS at 1, 2, and 3 years. (b–d) Calibration curves showing the probability of 1-, 2-, and 3-year 
OS between the nomogram prediction and practical observation.

Figure 8. Immune cell infiltration analysis. (a) Distributed histogram of 22 immune cell types. (b) Violin plot comparing immune cell 
infiltration between the two groups. (c) Correlation heatmap of 22 immune cell types.
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ADA2, also known as CECR1, correlated positively 
with B cells, CD8 + T cells, CD4 + T cells, macro-
phages, dendritic cells (p < 0.001), and neutrophils 
(p < 0.05; Figure S3(b)), whereas high PTPN6 
expression correlated positively with B cells, 
CD4 + T cells, neutrophils, dendritic cells 
(p < 0.001), and macrophages (p < 0.05; Figure 
S3(c)). Related copy number variation analysis 
showing the prognostic signature including these 
three IRGs is shown in (Figure S3(d)). Then, the 
correlation analysis of risk score with chemother-
apeutics efficacy showed the low-risk score was 
positively related with the higher half IC50 of 
chemotherapeutic agents Docetaxel (p = 0.018) 
and Sunitinib (p < 0.001) (Figure 9(a,b)). Finally, 
TMB was recently described as a novel biomarker 
that is closely related to immunotherapy; there-
fore, we collected TMB data for pancreatic cancer 
from TCGA database. Consequently, we explored 
the relationship between TMB score and risk score 
in 151 filtered samples, finding that patients in the 
high-risk group had higher TMB scores (p < 0.001, 

Figure 9(c)). Therefore, our signature has a certain 
ability to predict TMB scores.

4. Discussion

Pancreatic cancer is associated with a high mortal-
ity; therefore, it is important to explore novel 
clinical biomarkers to improve patient prognosis. 
Recent studies have shown that immune-related 
biomarkers are strongly linked to the tumor 
immune microenvironment (TIME) [32]; there-
fore, it is essential to investigate new immune- 
related prognostic markers and explore the 
mechanism of IRGs-TIME in pancreatic cancer 
to provide more personalized treatments for pan-
creatic cancer. In this study, we identified and 
constructed a novel prognostic signature with 
good predictive capability and used 
a bioinformatics approach to explore the potential 
prognostic mechanisms and their relationship to 
immune cell infiltration and tumor mutation bur-
den (TMB). Furthermore, we comprehensively 

Figure 9. (a,b) The IC50 difference of docetaxel (p = 0.018) and sunitinib (p < 0.001) in high- and low- risk groups. (c) Bar plot of 
relationship between TMB score and risk score.
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analyzed the key immune-related biomarker, 
S100P, which demonstrated good predictive 
potential, and verified expression status of S100P 
in an independent cohort via quantitative real- 
time PCR and immunohistochemistry.

The novel prognostic signature consisted of four 
IRGs (ADA2, TLR1, PTPN6, S100P), all of which 
had independent predictive capabilities. Previous 
studies have indicated that ADA2, a plasma pro-
tein also known as CECR1, is secreted by mono-
cytes and macrophages [33], while Zavialov et al. 
found that ADA2 can increase the proliferation of 
monocyte-activated CD4 + T cells and stimulate 
macrophage proliferation [34]. Therefore, ADA2 is 
expected to act as a biomarker to regulate tumor 
immune response. TLR1 was the first described 
mammalian Toll-like receptor and is widely 
expressed in leukocytes. In addition, TLR1 plays 
important roles in the immune system, particularly 
CD8 + T cell regulation [35,36], and the TLR1/2 
ligand has been shown to decrease PD-1 expres-
sion on antigen-activated CD8 + T cells [37]. 
Similarly, an anti-tumor vaccine combined with 
TLR1/2 therapy was found to significantly enhance 
anti-tumor immunity by decreasing PD-1 expres-
sion and inducing antigen-specific CD8 + T cells 
in a mouse melanoma model [38]. Although the 
immune mechanisms of ADA2 and TLR1 have 
been studied in some tumors, they have not yet 
been studied in pancreatic cancer. Here, we 
demonstrated that low TLR1 and ADA2 expres-
sion play vital roles in pancreatic cancer immunity 
and can both mediate immune cell infiltration to 
affect tumor immune status. PTPN6, a non- 
receptor protein tyrosine phosphatase also known 
as SHP-1, is an important protein that regulates 
basic cellular processes and acts as a checkpoint 
regulator to maintain appropriate immune 
responses and self-tolerance [39,40]. In addition, 
PTPN6 has been reported to control cell prolifera-
tion and determine the therapeutic potential of 
somatostatin in pancreatic cancer [41]. In this 
study, we found that PTPN6 can act as 
a biomarker that suppresses the tumorigenesis of 
pancreatic cancer, predict OS, and influence 
immune cell infiltration to alter tumor status. 
Therefore, PTPN6 was also suggested as a novel 
therapeutic and prognostic biomarker. 
Consequently, we believe that this signature has 

helped to reveal the role of these proteins in pan-
creatic cancer and will guide future basic research.

Of the four differentially expressed TFs that we 
obtained in this study, two (KLF5 and SPDEF) 
were positively related to S100P, which was a co- 
DEG in TCGA and GEO databases, suggesting 
that S100P could be a vital biomarker. S100P is 
a calcium-binding protein in the S100 family that 
has been shown to affect pancreatic cancer prolif-
eration, angiogenesis, and metastasis [42,43]. In 
this study, we analyzed the important functions 
of S100P in multiple databases using bioinformatic 
methods, finding that S100P plays important roles 
in the immune cell infiltration of pancreatic can-
cer. High S100P expression reduced the infiltration 
of macrophages and CD4 + T cells, thereby pro-
moting tumor immune escape, and decreased the 
expression of common immune inhibitors, sug-
gesting that S100P inhibition may improve the 
expression of treatment targets to improve the 
efficacy of immunotherapy. We also found that 
KLF5 regulated the expression of multiple genes; 
for instance, KLF5 overexpression has been 
reported to promote proliferation and malignant 
transformation in a mouse pancreatic ductal ade-
nocarcinoma model [44] and promote tumorigen-
esis and metastatic potential via the NF-κB signal 
pathway [45]. However, no studies have yet 
explored the mechanism between KLF5 and 
S100P. Here, we found that KLF5 could act as 
a positive TF with S100P and jointly participate 
in the malignant biological behavior of pancreatic 
cancer. More in-depth regulatory mechanisms 
need be explored to reveal the roles of KLF5 and 
S100P in order to develop target-inhibitors for 
individualized clinical treatment.

Prognostic signatures have been studied in 
many tumors and have been proven to be of 
high research value. The prognostic signature 
characterized in this study had a good ability to 
predict the OS of pancreatic cancer patients; there-
fore, we performed ROC analysis to further 
demonstrate its accuracy and efficacy, finding 
that the signature had moderate accuracy. We 
also evaluated the clinical relevance of the prog-
nostic signature using Cox regression analysis, 
revealing that the prognostic signature had inde-
pendent prognostic capabilities. Furthermore, 
further comprehend the potential mechanism of 
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the prognostic signature, the GSEA demonstrated 
that the significantly enriched pathways included 
‘p53 signaling pathway’ and ‘steroid biosynthesis’, 
suggesting that the prognostic signature signifi-
cantly affects tumor progression.

Immune cells play critical roles in the TIME and 
thus may affect the response to immunotherapy 
[46,47]; indeed, several studies have reported that 
the rate of immune cell infiltration directly affects 
patient prognosis [48,49]. For instance, Ino et al. 
demonstrated that higher tumor-infiltrating 
CD4 + T and CD8 + T cell correlated positively 
with a longer OS [48]. Therefore, we compared 
immune cell infiltration in the high- and low-risk 
groups, finding lower CD8 + T cell and activated 
CD4+ memory T cell infiltration in the TIME of the 
high-risk group. Unsurprisingly, immune cell infil-
tration plays an important role in tumor immunity 
and correlates closely with the OS of patients with 
pancreatic cancer, consistent with previous studies. 
Therefore, our prognostic signature appears to iden-
tify risk and indicate immune status. We also 
explored the relationship of the four IRGs in the 
signature with corresponding immune cells in the 
TIMER database, finding that all four IRGs can 
regulate immune cell infiltration and alter efficacy, 
and thus could be potential new therapeutic targets. 
In this study, we also proposed that correlation of 
signature with the sensitivity of common che-
motherapeutic drugs, which was expected to an 
important guide for medication.

Recent studies have shown that TMB can act as 
a prognostic biomarker and affect tumor response 
to immunotherapy [50]. Patients with higher 
TMB harbor cancer cells with more mutations 
that differ more obviously to normal cells, and 
are therefore more easily detected by immune 
cells and respond better to immunotherapy. 
A recent clinical trial reported that a high TMB 
can predict the response of patients receiving 
pembrolizumab [51], and TMB has become an 
independent prognostic factor in many cancers, 
including lung adenocarcinoma [52], colorectal 
cancer [53], and gliomas [54]. In this study, we 
analyzed the TMB score of each patient with pan-
creatic cancer. Further analysis of 151 patients 
with TMB scores indicated that the high-risk 
group had higher TMB scores than the low-risk 
group. Therefore, risk scores may reflect TMB 

levels and have ability to predict immune 
responses and the efficacy of immunotherapy. In 
this study, the patients with a high TMB score and 
a high-risk score as indicated by our prognostic 
signature may benefit from immunotherapy and 
that the signature could guide patient diagnosis 
and treatment.

Despite these findings, our study has some lim-
itations. Firstly, all the data retrospectively analyzed 
in our study were obtained from public databases; 
therefore, selection bias is inevitable and further 
large prospective cohort studies must be implemen-
ted to confirm the efficacy of our prognostic signa-
ture. Then, due to the different sequencing methods 
in TCGA and GEO database, Standardization and 
subsequent processes were difficult to be unified in 
our study, so there was no validation set from the 
GEO database. finally, although we analyzed the 
potential molecular mechanism of our prognostic 
signature, the effectiveness of the TIME and TMB, 
it needs to further be verified in pancreatic cancer 
in vivo and in vitro.

5. Conclusion

In this study, we constructed an immune-related 
prognostic signature based on four immune- 
related genes (ADA2, TLR1, PTPN6, and S100P) 
that displayed good predictive ability for overall 
survival and analyzed the infiltration of correspond-
ing immune cells in patients with pancreatic cancer. 
Furthermore, we comprehensively analyzed the key 
immune-related biomarker, S100P, which demon-
strated good predictive potential. Promisingly, this 
prognostic signature provides a new perspective to 
explore biomarkers for future personalized immu-
notherapies for pancreatic cancer.
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