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Efficient world‑line‑based 
quantum Monte Carlo method 
without Hubbard–Stratonovich 
transformation
J. Wang1,2, W. Pan3 & D. Y. Sun1,2*

By precisely writing down the matrix element of the local Boltzmann operator ( e−τh , where h is 
the Hermitian conjugate pairs of off-diagonal operators), we have proposed a new path integral 
formulation for quantum field theory and developed a corresponding Monte Carlo algorithm. With 
the current formula, the Hubbard–Stratonovich transformation is not necessary, accordingly the 
determinant calculation is not needed, which can improve the computational efficiency. The results 
show that, the simulation time has the square-law scaling with system sizes, which is comparable 
with the usual first-principles calculations. The current formula also improves the accuracy of the 
Suzuki–Trotter decomposition. As an example, we have studied the one-dimensional half-filled 
Hubbard model at finite temperature. The obtained results are in excellent agreement with the known 
solutions. The new formula and Monte Carlo algorithm could be applied to various studies in future.

Strongly correlated quantum many-body (SCQMB) systems possess a rich physical phenomenon, making them 
an essential topic in condensed matter physics. To overcome an exponentially increased dimensions of the Hil-
bert space, as well as the intrinsically strong correlation of SCQMB systems, scientists have strongly advocated 
for efficient and accurate numerical methods1–7. Over the last decades, several numerical methods have been 
proposed, such as the exact diagonalization (ED) method8, the density matrix renormalization group (DMRG) 
method9–11, as well as various quantum Monte Carlo (QMC) methods12–14. There are also many well-developed 
spin-based MC methods, which have been adopted for various correlated systems15,16. These numerical methods 
have played an important role in improving the understanding of SCQMB systems over the past few decades.

In ED methods, the Hamiltonian matrix of systems is directly diagonalized using advanced mathematical 
techniques, but they are limited to relatively small systems. The DMRG method shares some similarities with the 
ED methods but it can handle larger systems, making it a more effective method for low-dimensional systems. 
Some examples of commonly used QMC methods include determinant QMC (DQMC)12,17,18, auxiliary field QMC 
(AFQMC)13,19,20, and diagrammatic MC (DiagMC)14,21. Recently, we have developed a new method to directly 
calculate the ground state properties of elements of the Hamiltonian matrix, for a class of special systems22,23.

The AFQMC method can be considered as a typical example of the DQMC method. For the DQMC method12, 
a number of important advancements24,25 and improved algorithms have been developed17. The DQMC method 
has been used to determine physical properties at zero6,26,27 and finite temperatures26,28. The typical AFQMC 
method is a projection technique in which the operator e−βH continuously acts on a trial wave function; accord-
ingly, the ground state properties13,20,24,27 can be evaluated. To avoid the fermion sign problem or phase problem, 
AFQMC is usually implemented by an advanced restriction on the sample paths29, and recently, the AFQMC has 
additionally been developed for finite temperatures19,30–32. DiagMC14 combines the MC technique with Feyn-
man diagrams of the perturbative expansion to calculate physical quantities21,33–37, and several generations38–41 
and improvements34,37,38,42,43 of this method have been developed based on the original DiagMC. For a more 
comprehensive introduction to various numerical methods, refer to review articles, such as those in Ref.2,3.

In the DQMC methods, the quartic fermion operators (two-body term) are first decomposed into a quadratic 
one (one-body term) and a set of random external auxiliary fields by using the Hubbard–Stratonovich (HS) 
transformation44–46. The advantage of the HS transformation lies in that, in calculating the partition function, 
the trace can be easily evaluated by successive determinant calculations. However, the introduced auxiliary field, 
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as well as determinants, increases the computation time heavily, which results in the computation time scaling 
cubic with the system size. In parallel to determinantal formulation mentioned above, the world-line formula-
tion represents another catalog of QMC47–51. In the world-line QMC, the direct-space and imaginary-time is 
used to interpolate the representation of the fermion fields. The advantage of the world-line QMC is avoiding 
the time-consuming process of evaluating fermion determinants. However, in the world-line QMC, a closed 
path with non-zero weight is not always easy to sample in many-body wavefunction (WF) spaces. At present, 
several successful examples seem to be limited to a few specific Hamiltonians, and a universal algorithm is wait-
ing to propose.

To further reduce the gap between the experimental studies and QMC calculations, more efficient numerical 
methods are needed to meet the current demands for studying SCQMB systems. Thus, there is an urgent need 
to either develop new numerical methods or optimize known ones. In this paper, we propose a new world-line 
QMC method by introducing a representation of the path integral formula in quantum field theory. This method 
can be used to calculate various properties of a system at finite temperature. The new formulation does not 
require the HS transformation, and not require determinants, therefore the calculation time can be significantly 
reduced. The results of the test calculation on the one-dimensional Hubbard model are in excellent agreement 
with exact values52,53.

Proposed formula
To illustrate our method, we chose the simple but representative Hubbard model as an example. It is worth not-
ing that our method can be directly extended to any model or Hamiltonian. The Hamiltonian of the Hubbard 
model reads:

where c+iσ (ciσ ) denotes the creation (annihilation) of an electron with spin σ =↑,↓ at the i-th lattice site. The 
first term on the right-hand side of Eq. (1) represents the one-body term, which accounts for the hopping of 
electrons between different sites, and t > 0 is the hopping amplitude. The second term is the two-body on-site 
Coulomb interaction, where U represents the interaction strength, and niσ = c†iσ ciσ is the number operator for 
spin σ at the site i. For convenience, the spin index ( σ ) is omitted in the following description; yet it is included 
later on to prevent confusion.

One of the key steps of our method is to combine each off-diagonal term in the Hamiltonian and its Hermite 
conjugate into pairs, namely hij = −t

(

c†i cj + c†j ci

)

 . Clearly hij is therefore a Hermitian operator. In the case of a 
general Hamiltonian, hij can be made up of the pair of a quartic fermion operator and its Hermitian conjugation. 
The purpose of this combination is to make hij as a Hermitian operator, and its eigenfunction can be easily 
obtained.

A many-body WF in the occupation number representation is labeled as |ijK� . Here, the occupancy of the 
site i and j is explicitly given, while the occupancy of the rest of the sites is represented by K. For the site i and j, 
the occupation has four cases, which are labeled as |ijK�, |ijK�, |ijK�, and|ijK� . Here, i(j) indicates that there is 
no electron occupying the site i (j) site, while i (j) indicates an electron occupying the site i (j) site.

It is easy to prove that hij has only two eigenstates with non-zero eigenvalues:

where the eigenvalues are equal to −θijt and θijt , respectively. θij is the sign produced by the particle 
exchange as hij acts on |ijK� . When an even number of exchanges occur, θij = 1 , otherwise, θij = −1 . Since 
c†i cj

∣

∣ijK� = θij
∣

∣ijK�, c†j ci|ijK� = θij|ijK� and c†i cj|ijK� = 0, c†j ci|ijK� = 0 , we have hij|ϕij�± = ∓θijt|ϕij�± . The 
remaining WFs orthogonal to |ϕij�+ and |ϕij�− are also the eigenstates of hij , however, the corresponding eigen-
values are zero.

Since the operator hij and e−τhij must share the common eigenvectors, the non-zero matrix elements of the 
local Boltzmann operator (LBO, e−τhij , where τ can be any number) are only present in the following cases:

where the remaining matrix elements of e−τhij are equal to zero. Since the operator e−τUni↑ni↓ is diagonal, the 
non-zero matrix element reads:

Since t > 0 , the matrix elements in Eqs. (3)–(4) are always positive, regardless of the value of θij . The matrix 
element in Eq. (2) is negative if θij is negative, otherwise, it is positive. Equation (2) produces the off-diagonal 
scattering in WF for the site i and j, but Eqs. (3)–(4) are the diagonal scattering in WF.

(1)H = −t
∑

i,j,σ

(

c†iσ cjσ +H .c.
)

+ U
∑

i ni↑ni↓,

|ϕij�+ = 1√
2

(

|ijK� + |ijK�
)

; |ϕij�− = 1√
2

(

|ijK� − |ijK�
)

,

(2)�ijK |e−τhij |ijK ′ � = �ijK |e−τhij |ijK ′ � = 1
2
δK ,K ′

(

eθijτ t−e−θijτ t
)

,

(3)�ijK |e−τhij |ijK ′ � = �ijK |e−τhij |ijK ′ � = 1
2
δK ,K ′

(

eθijτ t+e−θijτ t
)

,

(4)�ijK |e−τhij |ijK ′ � = �ijK |e−τhij |ijK ′ � = δK ,K ′ ,

(5)�i↑i↓K |e−τUni↑ni↓ |i↑i↓K
′ � = δK ,K ′ e−τU .#
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The partition function of a quantum many-body system is expressed as Z = Tr
[

e−βH
]

 , where β is the inverse 
temperature (or imaginary time) and Tr refers the trace of e−βH in WFs space. According to the standard path 
integral formula, the imaginary time (β) is divided into m time slices, where the partition function becomes 
Z = Tr

[(

e−τH
)m] , with the time step τ = β/m . Using the Suzuki–Trotter decomposition44–46, the operator e−τH 

can be further decomposed as.

Finally, the partition function reads:

To calculate the partition function, a complete set of states are inserted between LBOs. For the purpose of our 
discussion, we number each LBO ( e−τh, h = hijorUni↑ni↓ ) in Eq. (6) from right to left as, 1st, 2nd, … i-th LBO. 
The WF following the k-th LBO is then denoted by the k-th WF. A closed world line (a closed WF sequence, 
or a closed path) in the WF space is labeled as ω = {· · · |s� · · · } , where |s� is the s-th WF. ρ(ω) is the associated 
Boltzmann weight of the world line ω.

Because only the matrix elements in Eqs. (2)–(5) are non-zero, for any closed world line, the Boltzmann 
weight has the following form:

where n−, n+, n0 correspond to the number of occurrences of the matrix elements in Eqs. (2), (3), and (5) for 
a closed world line ω , respectively. Evidently ns accounts for the number of occurrences of θij = −1 among n− , 
and determines the sign of the world line ω.

Equation (4) represents the weight of a world line ω based on the path integral formula in the current method. 
From this equation, one can find there are several novel features in our method: (1) The new formula does not 
include the HS transformation, thus it does not require the auxiliary field; (2) Our formula is not based on the 
determinant approach, thus the heavy calculation related to determinants is absent; (3) Our formula improves 
the accuracy of Suzuki–Trotter decomposition. According to the Suzuki–Trotter decomposition, the operator 
e−τ(A+B) can be approximated by e−τAe−τB , where AandB are any two operators. Considering the operator 
identity e−τ(A+B) = e−τAe−τBe0.5τ

2[A,B] with [A,B] = AB− BA . Thus, the error induced by the Suzuki–Trotter 
decomposition is directly related to e0.5τ 2[A,B] . According to E = − 1

Z
∂Z
∂β

 , the error in energies can be estimated 

by −� 1

e0.5τ
2[A,B]

∂e0.5τ
2[A,B]

∂τ
� = −τ �AB− BA� , where �· · · � refers the ensemble average. If AandB are Hermitian 

conjugate, then [A,B] ≡ 1 , which always contributes to the energy with an amount of −τ . If AandB are not 
Hermitian conjugate, as a first-order approximation, �AB− BA� ≈ �A��B� − �B��A� = 0 . Thus, we have enough 
reason to believe that, when AandB are Hermitian conjugate, �AB− BA� contributes the largest error in 
Suzuki–Trotter decomposition. Since in our method, the Hamiltonian is decomposed into Hermitian conjugate 
pairs, this error is automatically disappeared.

New Monte Carlo algorithm
To implement the new formula presented in Eqs. (6)–(7) into the QMC simulations, we have subsequently devel-
oped an efficient algorithm. Although it is easy to calculate the weighting of each path, it is relatively difficult to 
find a closed world line with a non-zero weight due to the fact that the weight of most paths is zero.

The choice of each WF is very significant for obtaining a closed world line with a non-zero weight. Here, 
we design an algorithm similar to the world-line algorithm54 and the multiple time threading algorithm55. 
The current QMC algorithm contains two steps. To illustrate our method, we present an example in Fig. 1, in 
which the 4-site one-dimensional Hubbard model at the half-filled case is shown. Suppose ωo = {· · · |s� · · · } 
is a closed world line from the last QMC step, the red line in Fig. 1 marks ωo . The first step is to generate an 
intermediate world line ( ω′ ) from a randomly selected WF in ωo. Specifically, a WF, say |r� , is randomly selected 
from ωo . In Fig. 1, the randomly chosen WF is marked by the arrow A. Then |r� is scattered by the r-th LBO 
( e−τhr ), and a new WF |r + 1�′ is generated by |r + 1�′ = e−τhr |r� . Next, the (r + 2)-th WF |r + 2�′ is generated 
by |r + 2�′ = e−τhr+1 |r + 1�′ . This process continues until all the LBOs are cycled in the same sequence as in 
Eq. (6). In Fig. 1, this process starts from the arrow A to the right hand.

In the above scattering process, e−τUni↑ni↓ does not produce any bifurcation because it is diagonal. However, 
for the operator e−τhij , if one of the i-th or j-th sites is occupied and the other is empty, the scattering will be 
bifurcated. One side of the bifurcation corresponds to Eq. (2), in which the occupancy of the i-th and j-th sites 
is exchanged before and after scattering (corresponding to the diagonal line in Fig. 1). While the other path 
corresponds to Eq. (3), in which the wave function is unchanged before and after scattering (corresponding to 
the horizontal line in Fig. 1). For the bifurcation, we use a similar heat-bath algorithm56 to select the new path. 
Assuming the first path following Eq. (2) with the probability of ρHB(−) = |eτ t−e−τ t |

2eτ t
 , and the second one fol-

lowing Eq. (3) with the probability of ρHB(+) = (eτ t+e−τ t )
2eτ t

 . Evidently ρHB(−)+ ρHB(+) = 1 . Note ρHB(±) is 
different from that in Ref.54.

e−τH =
∏

ij

e−τhij
∏

i

e−τUni↑ni↓

(6)Z = Tr
∏

ij e
−τhij

∏

i e
−τUni↑ni↓ · · ·

∏

ij e
−τhij

∏

i e
−τUni↑ni↓ =

∑

ω ρ(ω),

(7)ρ(ω) = (−1)ns
(

1
2
(eτ t+e−τ t)

)n+( 1
2
(eτ t−e−τ t)

)n−(
e−τU

)n0
,
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After the scattering process finished, the intermediate world line ω′ =
{

· · · |s�′ · · ·
}

 is successfully generated. 
The blue line in Fig. 1 is the intermediate world line generated by the above scattering process. It needs to point 
out that, ω′ may not be a closed world line. In fact, in most cases, it is an open world line. In Fig. 1, ω′ is opened 
at the arrow A. The key point is that ω′ may have multiple intersections with ωo . The intersection means at which 
the WF is identical in both ωo and ω′ . In Fig. 1, the arrow A and B mark the two intersections. In the second step, 
the fragment between two randomly chosen intersections in ω′ is used to replace the corresponding part in ωo , 
then a new closed world line ( ωn ) is constructed, illustrating in the lower panel of Fig. 1.

The acceptance rate of the new world line is determined by the ratio of two factors, namely accpt = ρ(ωn)
ρ(ωo)

· 1
ρHB

 , 
where ρ(ωn)andρ(ωo) is the Boltzmann weight of the new and old world lines according to Eq. (7). And ρHB is the 

total weight attached to the heat-bath sampling equal to 
∏ |eτ t±e−τ t |

2eτ t
 . The product contains all the contribution 

of each bifurcation in the fragment of ω′ used in the new closed world line ωn . ρHB should be deducted from the 
acceptance rate. If the change is accepted, the updated WFs are implemented. Otherwise, the unchanged WFs 
are implemented.

There are a few differences between the current method and previous ones48,54. (1) Except for the initially 
selected WF |r� from ωo , the scattering process is irrelevant to the rest WFs in ωo , which is different from Ref.54. 
(2) In the current method, the sequence of e−τhij in Eq. (6) can be arranged in any way, the only requirement is 
to combine each off-diagonal term in the Hamiltonian and its Hermite conjugate into pairs; (3) In the current 
method, there are two steps to generate a new closed world line ( ωn ). The first step is to generate an intermediate 
world line ( ω′ ) from a exist closed world line ( ωo ) by scattering process. The second step is to construct ωn from 
ω

′ and ωo . The current procedure does not care whether ω′ is closed or not, but ω′ has at least two intersections 
with ωo . In previous method54, the scattering process is aimed to directly generate a closed world line in a single 
step. Because of this requirement, the previous method54 usually needs a specific break-up or rearrangement of 
Hamiltonian. In comparison, the current algorithm is more straight forward than previous ones, and can be eas-
ily extended to any Hamiltonian. (4) As first feeling, one may expect there should be few intersections between 
ω

′ and ωo . However, the probability of finding a new closed world line using the current method is remarkably 
high, i.e., close to 100%. This may derive from the contribution of the Hermite pairs used in our method. (5) 
Because the scattering keeps the number of particles unchanged, similar to Ref.54, the current method also works 
in a canonical ensemble, which is different from Ref.48.

Figure 1.   The graphic representation of the two-step sampling technique for a ring of four sites half-filled 
Hubbard model. The horizontal and vertical direction refers the time slices and lattice sites, respectively. “sij” is 
the shorthand of e−τhij , indicating the scatting operator between two wavefunctions (vertical lines). The diagonal 
operator e−τUni↑ni↓ is omitted. In upper panel (step 1), the red line denotes a closed world line ( ωo ), while the 
blue line denotes an open world line ( ω′ ). The arrow A and B mark intersections between ωo and ω′ . In lower 
panel (step 2), a closed world line ( ωn ) is constructed by replacing the segment between arrows A and B in ωo 
with that in ω′.
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Tests on Hubbard model
The Hubbard model is a representative for studying typical SCQMB systems. By varying the strength of U, the 
Hubbard model can describe different systems from the weakly coupled case to strongly coupled case. Usu-
ally U = 8, 4 and 2 correspond to the strongly coupled, the intermediate coupled, and the weak coupled cases, 
respectively57. For both the strongly and intermediate coupled cases, the mean field method fails. In this paper, 
our major calculations will be concentrated on U = 8 and 4.

Many studies based on the Hubbard model have been carried out to investigate the metal–insulator transition, 
superconductivity, and magnetic properties caused by electronic correlation. Lieb and Wu58 have obtained the 
exact solution of the ground state for the half-filled one-dimensional Hubbard model. In the last few decades, 
various theoretical calculations have been carried out to study the one-dimensional Hubbard model. However, 
few studies have been conducted using this model at finite temperatures52,53,59–64.

To illustrate the reliability of our new formula and the new QMC algorithm, we have studied the one-dimen-
sional half-filled Hubbard model at finite temperature. In all calculations, t  is taken to have units of energy and 
is set to t  = 1.0. The one-dimensional Hubbard model with the number of lattice size of N = 6, 12, and 24 have 
been systematically studied. For each system, the strength of the interaction has also been investigated for U = 2, 
4, 6 and 8. To determine how the simulation time scaling with N, we also calculate a few larger systems with N 
up to 96. For most simulations, the total number of QMC steps at each temperature or m is more than 107, where 
the first third of the steps are used to equilibrate the system and the remaining two thirds of the steps are used 
to calculate the physical properties.

It needs to point out that, like most QMC methods, our new formula could not give a general solution for the 
sign problem too. However, for particular special cases, the sign problem is not encountered26,65, for example, in 
one-dimensional Hubbard model. By choosing appropriate boundary conditions (periodic or antiperiodic) in 
one-dimensional Hubbard model, θij in Eq. (2) can be always positive, thus the sign problem can be avoided in 
current method. This is why we choose the one-dimensional Hubbard model.

The energy, double occupancy, local magnetic moment, and spin correlation functions have been calculated 
in the temperature range of 0.05 to 4.0. According to thermodynamics, the energy of systems can be calculated 
as E = − 1

Z
∂Z
∂β

 . The double occupancy, denoting the probability of two electrons occupying one site, is written 
as Od = �ni↑ni↓� . L0 = 3

N

∑

i�
(

Szi
)2� is the local magnetic moment, where Szi =

1
2

∑

i

(

ni↑ − ni↓
)

 denotes the 
z-component spin operator at the i-th site. The nearest-neighbor and next-nearest-neighbor spin correlation 
functions are defined as L1 = 1

N �Szi Szi+1� and L2 = 1
N �Szi Szi+2�.

The convergence test on τ is shown in Fig. 2 for N = 6, where the upper and lower panels present the data for 
T = 0.25 and 0.5, respectively. It can be seen that, with an increase of the number of time slices (m), the energy 
converges quickly. For T = 0.25, as m = 80, corresponding to τ = 0.05, the QMC results approach the exact value 

Figure 2.   Energy per site as a function of the number of time slices (m) for systems with six lattice sites at 
temperature of 0.25 (upper panel) and 0.5 (lower panel) at both U = 4 and 8. The symbol, dashed lines, and 
solid line represent the QMC data, the exact value, and the fitting curves, respectively. E0 and Ee refer the QMC 
energy extrapolated at τ = 0 and the exact energy, respectively.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8251  | https://doi.org/10.1038/s41598-022-12259-5

www.nature.com/scientificreports/

with a difference of approximately 1% and 5% for U = 4 and 8, respectively. Owing to the intrinsic characteristics 
of the path integral formula, the exact value can be obtained only as τ approaching to zero. To estimate the QMC 
energy at τ = 0, the extrapolation to τ = 0 is performed. For this purpose, the data shown in Fig. 2 is fitted by 
E = E0 + a ∗M−c , where E0, aandc are fitting parameters. We find the value of c is around 1.5, which is weakly 
dependent on U and slightly reduces with the increase of N. E0 is the extrapolated energy at τ = 0 . The exact 
energy ( Ee ) and extrapolated energy ( E0 ) are shown in Fig. 2. The results show that our QMC method does 
converge to the exact value at τ = 0.

We have tested the convergence speed for several systems with different N and U. To compare the convergence 
speed, we define a convergence criterion ( τ ∗ ), at which the derivative of energy with m is less than 0.0005. This 

Figure 3.   The convergence criterion ( τ ∗ ) varying with the on-site Coulomb interaction strength (U). Square, 
triangle and circle symbols represent the systems with lattice size of N = 6, 12 and 24, respectively.

Figure 4.   The simulation time as a function of the number of time slices m for N = 6 (upper panel) and the 
number of lattice size for m = 40 (lower panel). The symbol and solid line represent the QMC data and the fitting 
curves, respectively. Here the linear fitting to QMC data is adopted in upper panel, while the quadratic function 
is used to fit QMC data in lower panel.
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criterion is equivalent to that the change in energy is less than 0.0005 as m increases by a unit. Figure 3 shows 
how τ ∗ changing with U and N. It can be seen that the convergence speed does not change significantly with N, 
but decreases with the increase of U. For most cases, τ = 0.05 is already a good approximation. In the following 
QMC simulations, τ is fixed at the value of 0.05.

Since our QMC method is independent of determinant, the simulation time should have much better scal-
ing with N and m. To check this point, we have calculated the simulation time as a function of N and m at fixed 
U = 4. These calculations are performed on a desktop computer with the CPU basic frequency of 3.20 GHz 
(Intel Core I7-8700) and a serial QMC program. The simulation time for 200 thousand MC steps is calculated 
for various systems, which is summarized in Fig. 4. From this figure, one can see that, the simulation time has 
the linear scaling with m (upper panel of Fig. 4) and the square-law scaling with N (lower panel of Fig. 4). This 
computational cost is far lower than other QMC methods involving determinant calculations, and is comparable 
with the common first-principles calculations. It should be stressed that, our current QMC code can be further 
improved for the higher efficiency.

Although the Hubbard model is a benchmark system for testing various QMC methods, a single model may 
be not enough to demonstrate the advantage of our method. To remedy this issue, we have done an analysis of 
the computational complexity for our method. The amount of calculation mainly consists of two parts: (1) find-
ing a new closed path. This part needs to calculate the scattering of all LBOs to adjoint WFs, which needs Nm 
operations; And after each scattering, the comparison between the new and old WFs is preformed, which needs 
N operations. Thus, the total amount of calculations is scaling as N2m. (2) The calculation of Eq. (7). In this step, 
the scattering matrix of each LBO is calculated, the corresponding computational costs is proportional to Nm 
too. Combining these two parts, the total amount of calculation scales as N2m. This is also consistent with our 
test results (Fig. 4).

In the following, we will present detailed calculations of various physics quantities for the system with six 
lattice sites. Figure 5 depicts the energy, double occupancy, and specific heat via temperature for U = 4 (left panel) 
and 8 (right panel) of the system with six lattice sites. The energy calculated by the QMC simulation is in excel-
lent agreement with the exact value for the entire range of temperatures within the error bar (upper panel of 
Fig. 5). Compared to U = 4, there is an evident plateau in the temperature range of 1.0 to 2.0 for U = 8. The plateau 
reflects the fact that the on-site Coulomb interaction has a strong effect in suppressing the occurrence of double 
occupancy. The change in double occupancy with temperature in middle panel of Fig. 5 supports this conclusion.

From the middle panel of Fig. 5, it can be seen that, from the high temperature to the lower temperature, 
the double occupancy first decreases and then increases for U = 4 and U = 8. Although the double occupancy 
increases at low temperatures, the total energy is further reduced with a corresponding decrease in temperature. 
This reflects the fact that a small increase of the delocalization doublon further decreases the total energy52,66. The 
minimum indicates the degree of localization of electrons is the largest, which corresponds to the maximum in 
local magnetic moment in upper panel of Fig. 6. For U = 4, the increase in the double occupancy is more evident 

Figure 5.   Energy (upper panels), double occupancy (middle panels), and specific heat (bottom panels) as a 
function of temperature for U = 4 (left panels) and U = 8 (right panels) of the system with six lattice sites. The 
QMC results (symbols) are in excellent agreement with the exact value (dashed lines) across the entire range of 
temperatures.
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than when U = 8 at lower temperatures. At a fixed temperature, the double occupancy is larger than it is for U = 8, 
demonstrating how the on-site interaction has a noticeable impact on the formation of the double occupations.

The specific heat as a function of temperature is shown in the lower panel of Fig. 5. To calculate the specific 
heat, the exponential fitting method67–69 is adopted with the fitting form of E(T) = E(0)+

∑M
n=1 cne

−nα
T  , where 

E(0) , cn and α are the fitting parameters. In this study, the value of M was 8. From Fig. 5, it can be seen that there 
are two obvious peaks in the specific heat for U = 8. Specifically, there is a narrow peak at low temperatures and 
a broad peak at high temperatures. In contrast, for U = 4 the two peaks become much closer and begin to merge 
together. The stronger interaction strength U, the more obvious the peak. The structure of the obtained specific 
heat peak is consistent with previous findings52,61,62. It is believed that this feature in the specific heat is associ-
ated with the spin-wave excitations at low temperatures and the single-particle excitations at high temperatures. 
Thus, spin fluctuations and charge fluctuations are dominant at low and high temperatures, respectively, which 
can be highlighted by the correlation functions. The trends of spin correlations in low panel in Fig. 6 have been 
correlated with the peaks in specific heat. The results we have obtained are consistent with known values.

Figure 6 shows the local moment ( Lα=0) and spin correlation functions ( Lα=1,2) as a function of temperature 
for U = 4 (left panel) and U = 8 (right panel) of the system with six lattice sites. With an increasing temperature, L0 
reaches its maximum at a certain temperature and then gradually decreases. The maximum value obtained for L0 
indicates that at this temperature, the degree of localization of electrons is the largest. The degree of delocalization 
of electrons reflects the formation of doublons; therefore, the trends of local moment and double occupancy are 
reversed, as shown in the upper panels of Fig. 6 and the middle panels of Fig. 5. From the lower panel of Fig. 6, 
one can see that L1 is less than zero, which indicates an antiferromagnetic order at a finite temperature, which 
leads to the emergence of a specific heat peak at a lower temperature. As the temperature increases, L1 decreases 
and tends to zero, reflecting a weakened antiferromagnetic order; this is in agreement with the exact results. In 
contrast, L2 is greater than zero and gradually reduces to zero with a corresponding increase in temperature. It 
can be seen that, the error bar in L1andL2 for U = 8 is relatively large, which may be due to the limited simulation 
time, or the intrinsic large fluctuations in spin correlation functions. Fortunately, the trends of L1andL2 are in 
general consistent with the results of Shiba52,53.

Summary
We have proposed a path integral formula in field theory and a corresponding world-line quantum Monte Carlo 
algorithm. The remarkable feature of the current method is that neither determinants nor the HS transformation 
is needed, which does strongly improve the accuracy and efficiency of Monte Carlo simulations. As an example, 
we have calculated the thermodynamic quantities and correlation functions of the one-dimensional Hubbard 
model at finite temperature. Our results are in excellent agreement with the exact values, confirming the reliability 
of our method. The most encouraging thing is that the computational cost has the square-law scaling with the 
size of systems. We believe that the current approach could be widely used in future.

Figure 6.   Local moment ( Lα=0 ) and spin correlation functions ( Lα=1,2 ) as a function of temperature for U = 4 
(left panel) and U = 8 (right panel) of the system with six lattice sites. L0 , L1 , and L2 represent the local magnetic 
moment, the nearest-neighbor spin correlation, and the next-nearest-neighbor spin correlation, respectively.
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