
����������
�������

Citation: Manandhar, A.; Haron,

M.H.; Ross, S.A.; Klein, M.L.; Elokely,

K.M. Potential Pro-Inflammatory

Effect of Vitamin E Analogs through

Mitigation of Tetrahydrocannabinol

(THC) Binding to the Cannabinoid 2

Receptor. Int. J. Mol. Sci. 2022, 23,

4291. https://doi.org/10.3390/

ijms23084291

Academic Editor:

Melpo Christofidou-Solomidou

Received: 21 March 2022

Accepted: 11 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Potential Pro-Inflammatory Effect of Vitamin E Analogs
through Mitigation of Tetrahydrocannabinol (THC) Binding
to the Cannabinoid 2 Receptor
Anjela Manandhar 1, Mona H. Haron 2,*, Samir A. Ross 2,3 , Michael L. Klein 1 and Khaled M. Elokely 1,*

1 Institute for Computational Molecular Science and Department of Chemistry, Temple University,
Philadelphia, PA 19122, USA; anjela.manandhar@temple.edu (A.M.); mlklein@temple.edu (M.L.K.)

2 National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA;
sross@olemiss.edu

3 Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi,
University, MS 38677, USA

* Correspondence: mhharon@olemiss.edu (M.H.H.); kelokely@temple.edu (K.M.E.)

Abstract: Vitamin E acetate, which is used as a diluent of tetrahydrocannabinol (THC), has been
reported as the primary causative agent of e-cigarette, or vaping, product use-associated lung
injury (EVALI). Here, we employ in vitro assays, docking, and molecular dynamics (MD) computer
simulations to investigate the interaction of vitamin E with the membrane-bound cannabinoid 2
receptor (CB2R), and its role in modulating the binding affinity of THC to CB2R. From the MD
simulations, we determined that vitamin E interacts with both CB2R and membrane phospholipids.
Notably, the synchronized effect of these interactions likely facilitates vitamin E acting as a lipid
modulator for the cannabinoid system. Furthermore, MD simulation and trajectory analysis show
that when THC binds to CB2R in the presence of vitamin E, the binding cavity widens, facilitating
the entry of water molecules into it, leading to a reduced interaction of THC with CB2R. Additionally,
the interaction between THC and vitamin E in solution is stabilized by several H bonds, which can
directly limit the interaction of free THCs with CB2R. Overall, both the MD simulations and the
in vitro dissociation assay results indicate that THC binding to CB2R is reduced in the presence of
vitamin E. Our study discusses the role of vitamin E in limiting the effect of THCs and its implications
on the reported pathology of EVALI.
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1. Introduction

In 2019, the United States was grappling with an outbreak of flu-like illness named
e-cigarette, or vaping, product use-associated lung injury (EVALI) [1,2]. The patients were a
mostly younger population with a history of using tetrahydrocannabinol (THC)-containing
e-cigarettes, or vaping products within three months prior to the onset of symptoms. As of
February 2020, a total of 2807 hospitalized EVALI cases with 68 deaths have been reported
in the USA [1]. A study by the Lung Injury Response Laboratory Working Group [3]
reported the presence of vitamin E acetate in bronchoalveolar-lavage fluid in 48 of the
51 EVALI patients. Thus, vitamin E acetate has been suggested as the prime toxic agent
for EVALI.

Vitamin E acetate with ester moiety is thermostable and lacks the antioxidant property
of vitamin E [4]. Thus, the acetate form is used as the dietary supplement of vitamin E
that is readily hydrolyzed by cellular esterase as carboxyl ester hydrolase and cholesteryl
ester hydrolase [5,6]. However, vitamin E acetate is hazardous when inhaled as vapor as it
does not undergo esterase-mediated hydrolysis [7]. The CDC has reported that a sticky,
honey-like vitamin E acetate can hang around in the lungs for several hours, affecting
pulmonary functions [8].
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Vitamin E is a major lipid-soluble component in the cell antioxidant defense system [9].
Because of its antioxidant property, it has been found to be effective in the prevention and
reversal of various health conditions including cancer, cataract, cardiovascular disease, and
Alzheimer’s disease [9]. Although vitamin E’s antioxidant property is well recognized,
its non-antioxidant property is slowly gaining interest. Vitamin E’s role in inhibiting
protein kinase C, cell proliferation, and transcription of some genes (for example CD36 and
collagenase) have been attributed to its non-antioxidant property [10]. Crouzin et al. [11]
in their study of rodent hippocampus suggested vitamin E as the new lipid modulator of
the cannabinoid system in the rodent hippocampus. It has been suggested that the novel
“non-anti-radical” property of vitamin E might affect neuronal disorders associated with
vitamin E deficiency.

Herein, we investigated the interaction of vitamin E with cannabinoid 2 receptor
(CB2R) and studied the behavior of vitamin E and its effect on THC binding. CB2R is one
of the two human cannabinoid receptors and belongs to class A of the G-protein coupled
receptor (GPCR) family. CB2R is primarily distributed in the immune system [12,13]. CB2R
has been reported to have a potential role in regulating pain, pruritus, neuropathy, and liver
cirrhosis [14–21]. The first crystal structure of human CB2R in complex with the antagonist
AM10257 was reported in 2019. Like other GPCRs, CB2R consists of seven transmembrane
(TM) helices (H 1 to 7) and one intracellular amphipathic helix (H8) (Figure 1). Residues
of each transmembrane helices is shown in Table S1. These helices are connected by three
extracellular loops (EL 1 to 3) and three intracellular loops (IL 1 to 3). Figure 1 shows a
ligand binding at the orthosteric binding cavity. The cavity is located near the extracellular
region and is surrounded by H2, H4, H5, H6, and H7. Vitamin E structures are differentiated
from one another by the number and position of the methyl groups on the aromatic ring
(Figure 2). For this study, we performed molecular dynamics (MD) simulations of CB2R
with each type of vitamin Es (α, β, γ, and δ) organized around it, and CB2R with THC at
its orthosteric binding site in the presence and absence of α vitamin Es. The study suggests
CB2R has weaker interaction with vitamin Es compared to phospholipids with vitamin
Es. THC has reduced interactions with CB2R in the presence of α vitamin E with a wider
binding cavity and an increased number of water molecules in the cavity. Besides the
interactions of CB2R and vitamin Es, we found the strong interaction between THCs and α

vitamin Es could also limit the interaction of THCs to CB2R.
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binding site is rendered in tan color spheres. 

Figure 1. Structure of the CB2 receptor. (A) Side view. (B) Top view. The transmembrane helices 1, 2,
3, 4, 5, 6, and 7 are shown in blue, green, light pink, orange, pink, yellow and red colors, respectively.
The intracellular and extracellular loops are shown in black, and the extracellular N terminus, helix 8,
and the intracellular C terminus are shown in gray. A representative ligand in the orthosteric binding
site is rendered in tan color spheres.
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2. Results and Discussion
2.1. Effect of Vitamin E Acetate on THC-CB2 Binding Affinity In Vitro

The concentration of vitamin E acetate in bronchoalveolar-lavage fluid samples, as
reported by the CDC, ranges from 23% to 88% [2]. In this study, we explored the possibility
that the presence of vitamin E acetate in e-cigarettes, and vaping THC products, affects
the binding affinity of THC to CB2R. A 50% vitamin E acetate to 50% THC in propylene
glycol (in different concentrations) volume wise in comparison to 50% vegetable glycerin
(a commonly used e-cigarette/vape diluent) 50% THC in propylene glycol (in different
concentrations) were used to test the affinity of THC for CB2R by using a displacement
assay. THC-CB2R binding properties were investigated by applying a classical radioactivity-
based assay wherein a conventional radioligand [3H] CP-55,940, that has low affinities
toward CB2Rs was utilized. THC binding affinity to CB2R is calculated by its ability
to displace [3H] CP-55,940. Our data showed that in the presence of vitamin E acetate,
THC is less able to displace [3H] CP-55,940 and bind to CB2R at concentrations ranging
from 31.25–250 µg/mL by up to 20% (EC50 = 4.97 µg/mL) in comparison to THC without
vitamin E acetate (EC50 = 5.62 µg/mL) with n = 3/assay. No significant displacement was
observed at the lower concentrations in the presence of vitamin E acetate (Figure 3). This
data suggest that vitamin E acetate could decrease THC binding to CB2R and possibly
decrease THC-CBR2 mediated anti-inflammatory activity. The decreased THC binding to
CB2R could be due to the formed THC–vitamin E acetate adduct which decreases the free
THC that could bind to CB2R.
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2.2. Interaction of Vitamin Es with CB2R

Most of the vitamin E molecules organized around CB2R distributed in the solvent
and remained close to the phospholipid bilayer (Figure S1). The analysis of MD trajectories
revealed that the hydrophobic vitamin Es have greater inclination to interact with the phos-
pholipid bilayer of the membrane than with CB2R. Hydrogen bonds contribute favorably
towards the stabilization of ligand binding to its biological target. Interestingly, the number
of hydrogen bonds monitored throughout the MD simulations between vitamin E and the
phospholipid was found to be greater than the hydrogen bonds formed between vitamin
E and CB2R (Figure 4). While, the hydrogen bonds with CB2R fluctuated during the MD
simulations (Figure 4A,B), they were consistent with phospholipids (Figure 4C,D). The
hydrogen bonds were lost between α vitamin Es and the active state structure of CB2R
from 200 ns to 450 ns of the MD simulations (Figure 4A), and lost throughout 200 ns to
300 ns, and 500 ns to 600 ns in the case of the inactive state (Figure 4B).
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Figure 4. Hydrogen bonds between vitamin Es and (A) the active state structure of CB2R, (B) the
inactive state structure of CB2R, (C) the phospholipid bilayer surrounding the active state structure
of CB2R, and (D) the phospholipid bilayer surrounding the inactive state structure of CB2R.

Next, the position of vitamin Es was investigated along the depth of the phospholipid
bilayer membrane (Figure 5). Some of the vitamin E molecules moved across the membrane
from the upper to the lower leaflet. The movement was not specific to the type of vitamin
E, but it took place at a long time scale, after about 300 ns. It suggested that if vitamin Es
can access and interact with the lower POPC layer, they can travel from the upper leaflet
to the lower leaflet of the cell membrane. Vitamin Es fluctuated within 10 Å of the upper
membrane leaflet during the 200 ns MD simulations. γ vitamin E moved to the upper edge
of the lower leaflet at 100 ns. The MD simulations of the α vitamin E system was extended
to 650 ns to have a better understanding for the membrane permeability. α vitamin E
moved to the upper edge of the lower leaflet of the active state structure of CB2R at 450 ns,
and it moved deeper into the lower leaflet of the inactive state starting from ~300 ns, and
almost penetrated the membrane at the end of simulation.
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The contact frequency was monitored between CB2R amino acid residues and vitamin
Es throughout the MD simulations (Figures 6 and 7). For the active state structure of CB2R,
H6 showed the most contacts with α and δ vitamin Es, whereas H1 and H7 were found
to interact more with β, γ, and δ vitamin Es. The CB2R residues that showed interactions
more than 40% of the simulation time with α vitamin E include Ser203, Phe259, Ala263,
Ala266 and His267, whereas with β vitamin E the residues are Ile27, Pro31, Gln32, Ala35, Val36,
Leu169, His267, Lys279 and Phe283, with γ vitamin E residues including Pro31, Gln32, Ala35,
Leu39, Tyr166, Leu264, His267, Gln276, Lys279, Ala280, Phe283 and Met286, and in the case of
δ vitamin E, the residues include Leu108, Ile256, Phe259, Pro260, Ala263, Leu263, Leu264 and
His267. Here, His267 of H6 was the only common residue with contact frequency of more
than 40% with all vitamin Es. For the inactive state structure of CB2R, H5, and H6 showed
prominent contacts with all types of vitamin Es, whereas H4 and H5 were involved in
more contacts with α and β vitamin Es, H1 with β and γ vitamin Es, H2 with β vitamin
E, and H3 with γ vitamin E. The CB2R residues that showed contacts over 40% of the
simulation time with α vitamin E include Val38, Thr41, Ser112, Trp158, Leu160, Val164, Leu167,
Trp172, Tyr190, Ser193, Phe197, Ala266, and His267. For β vitamin E the list includes Val41,
Leu45, Ala88, Cys89, Val92, Asn93, Phe97, Leu108, Trp158, Leu160, Ala162, Leu163, Val164, Tyr166,
Leu169, Met170, Trp172, Tyr190, Ser193, Phe197, Phe259, Ala263 and His267, and for γ vitamin
E the residues are Thr41, Leu82, Val86, Cys89, Leu108, Lys109, Ser112, Leu167, Trp172, Arg177,
Asp189, Tyr190, Ser193, Phe197, Phe200, Ala263, and His267. With δ vitamin E, the residues
include Trp172, Ser193, Phe200, Ala263, Ala266, His267 and Ala270. Trp172, Ser193, and His267

were the common residues with contact frequency greater than 40% with all vitamin Es.
In general, vitamin Es interact with different helices of CB2R which may affect the THC
binding with CB2R.
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2.3. Effect of Vitamin Es on THC Binding to CB2R

It was observed by in vitro studies that the presence of vitamin Es leads to reduced
THC binding to CB2R. To understand this phenomenon, four MD simulations were at-
tempted: first a mixture of THC and α vitamin E in implicit solvent to test the possibility
of aggregate (adduct) formation, the other three systems for the active state structure of
CB2R in complex with THC in the absence and presence of α vitamin Es or its acetate
to test the direct effect of vitamin E on ligand binding. Analysis of the MD simulations
of the equal (1:1) mixture of α vitamin E and THC reveals that THC could participate
in the formation of hydrogen bonds with α vitamin E with a hydrogen bond donor or
receptor group (Figure S2). These hydrogen bonded systems were replicated 64 times for
MD simulations in implicit solvent for 200 ns. The total number of hydrogen bonds in each
system was monitored over the simulation time. As shown in Figure 8, each system had
more than forty hydrogen bonds throughout the simulation, suggesting favorable contacts
between THC and α vitamin E that may lead to an adduct formation. This stable adducts
may limit the availability of free THCs for CB2R binding.

In addition to the direct effect of vitamin Es on THC binding to CB2R through aggre-
gate formation in the cytosol, the indirect effect was explored by studying the influence
of vitamin Es on the ligand binding cavity of CB2R. The active state structure of CB2R
in complex with THC at the orthosteric binding site was simulated in the presence and
absence of α vitamin E and α vitamin E acetate for 200 ns. Although the interaction of CB2R
with THC is affected significantly in the presence of α vitamin Es, the interaction is alike in
presence of α vitamin E acetate. (Figure 9). In the case of system 1 (without α vitamin E and
its acetate) and system 3 (with α vitamin E acetate), THC showed a strong hydrogen bond
with Ser285, π-π stacking with Phe87 and Phe183, and a water-mediated interaction with
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His95. These interactions were consistent throughout the 200-ns MD simulation as shown in
Figure S3 and S4. However, in case of system 2 (with α vitamin E), the interactions between
Ser285, Phe87, Phe183, and His95 with THC demonstrated significant reduction. Moreover,
Ser285 lost the strong hydrogen bond with THC and rather a water-mediated interaction
was developed. Following this, system 1 and system 2 were further investigated. The last
frames of system 1 and system 2 were compared as shown in Figure S5. The orientations
of THC and Ser285 were shifted in system 2 when compared to system 1. Interestingly, by
the end of the simulation in case of system 2, H6 protruded outward in the extracellular
region (Figure S5), and water molecules entered the binding cavity (Figure 10). Thus, we
can conclude that in the presence of α vitamin E, water molecules were attracted to the
ligand binding cavity, leading to a new opening and a new interaction pattern.
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The distance between the hydrogen bond donor, oxygen from Ser285 and acceptor,
hydrogen from THC was analyzed over the simulation time (Figure 11). In the case
of system 2, the hydrogen bond was lost at ~75 ns, and the donor–acceptor distance
increased to more than 3 Å. Whereas, in case of system 1, the hydrogen bond was consistent
throughout the 200 ns, and the donor–acceptor distance was maintained within 2 Å. Next,
the number of water molecules within 8 Å of Ser285 was calculated over the simulation time,
and it was found to increase to more than 4 molecules after about 150 ns. This suggests
that water molecules moved into the binding cavity after the hydrogen bond was broken.
Next, the volume of the binding cavity was calculated for the simulation trajectories by
using Fpocket (Figure 12A) [22]. For system 2, the volume of the ligand cavity increased to
more than 1200 Å3 at about 140 ns, allowing for water molecules to enter the cavity. The
orientations of the amino acid residues, Phe87, His95, Phe183, and Ser285, which showed
the reduced interaction patterns with THC, were compared for the clustered trajectory of
system 2 (green color) with the initial frame (magenta color), and final frame (black color)
of the CB2R (Figure 12B). As shown in Figure 12B, these residues have shifted orientations.
His95 and Phe87 moved upward, the Ser285 side chain moved inward to the binding cavity,
and the aromatic ring of Phe183 oriented itself perpendicular to its original orientation at
the later stage of simulation.
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3. Materials and Methods
3.1. Chemicals

∆9-THC (Neat) was obtained from Coy Waller Laboratory, National Center for Nat-
ural Products Research, University of Mississippi. Propylene glycol (99.7%), vegetable
glycerin (99.7%), and vitamin E acetate (96–102%) were obtained from EC Blend Premium
Artisan Flavor.

3.2. CB2 In Vitro Binding Assay

The affinities of THC for CB2R were examined by using displacement assays, as
previously described [23]. Briefly, cell membranes from CHO cells expressing human CB2Rs
were isolated by using differential centrifugation. THC in PG with and without vitamin
E were incubated with the isolated membrane in binding buffer (50 mM Tris-HCl, 1 mM
EDTA, 3 mM MgCl2, 5 mg/mL BSA, pH 7.4) along with 2.5 nM [3H] CP-55,940. The total
binding was assessed in the presence of equal concentrations of DMSO, whereas nonspecific
binding was determined in the presence of 10µM [3H] CP-55,940, and background binding
was determined in wells lacking a membrane. Following incubation at 30 ◦C for 60 min,
the binding reactions is terminated by filtration through Whatman GF/C filters. The filters
then are washed twice with an ice-cold buffer (50 mM Tris-HCl, 1 mg/mL BSA). A liquid
scintillation cocktail was added to each well and the total tritiated counts per minute were
analyzed by using a TopCount scintillation counter. Background counts were subtracted
from all wells and the percent displacement from total binding was calculated. THC was
screened at 4–250µg/mL of PG concentrations alone or in the presence of 50% vitamin E
acetate. GraphPad Prism 9.3.1 (350) was used to calculate the EC50.

3.3. System Setup for MD Simulation

The crystal structure of inactive state CB2R (PDB 5ZTY) was obtained from the protein
databank [24]. The active state CB2R was modeled by using the active state CB1R [25] as
the template. To facilitate crystallization all structures had been modified with mutations
and fused with a stabilizing protein in ICL3. First, these mutations were transformed back
to wild-type and fusion proteins were removed. Then, the missing segment of ICL3 was
reconstructed by crosslinking the two ends of ICL3 by using the BioLuminate model of the
Schrödinger software suite [26–29]. Next, the CB2R structures were prepared by using the
protein preparation wizard workflow of the Schrödinger suite. For the membrane setup,
the system builder module of the Desmond code was used [30,31]. All CB2R structures
were embedded in the POPC lipid bilayer, neutralized with Na+ and Cl− ions, and solvated
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by TIP3P [32] water. The positions of the CB2R structures in the membrane were based
on the CB2R inactive structure in the membrane from OPM database [33]. Next, a layer
of vitamin Es was added, with five vitamin E molecules around CB2R. The layer had a
diameter of ~40 Å and each vitamin E was inclined at 72◦ with respect to the other vitamin
Es. The layer was positioned such that the -OH group of vitamin Es were at the same level
as that of phosphate of the upper POPC leaflet. In total, eight systems were prepared with
α, β, γ, and δ vitamin Es around active and inactive CB2Rs (Table 1).

Table 1. Different systems and time scales for MD simulation.

Systems
Simulation Time (ns)

Vitamin E

CB2R

Active

α 650

β 200

γ 200

δ 200

Inactive

α 650

β 200

γ 200

δ 200

CB2R + THC α 200

CB2R + THC - 200

CB2R + THC α acetate 200

3.4. Docking of THC

The binding site for active-state CB2R was prepared by using Glide [34–36] along
with the atomic coordinates of the bound agonist AM841 in the active state structure of
CB1R [25]. THC was prepared for docking by using LigPrep [37] to generate appropriate
tautomers and stereoisomers at pH 7.0. Next, THC was docked to active-state CB2R by
using the SP (standard precision) algorithm. For more receptor flexibility, the receptor
potential was softened by scaling the per-atom van der Waals radii and charges to 0.85
and 0.15, respectively. Then, the pose with lowest docking score was selected for further
analysis. Next, the active state CB2R, with docked THC, was prepared with and without α
vitamin Es and its acetate surrounding CB2R (Table 1). The same procedure was employed
as for the 8 systems described above.

3.5. MD Simulations

MD simulations in the NPT ensemble were performed for all 11 systems (Table 1) by us-
ing the Desmond code [30,31] of the Schrödinger suite and the OPLS3e [38] force field. The
pressure and temperature were kept constant at 1 bar and 300 K respectively, by using the
Nosé-Hoover chain and Martyna-Tobias-Klein coupling schemes, respectively [39,40]. For
the numerical integration, the RESPA integrator was employed with a short range/bonded
interaction and long-range/non-bonded interactions updated every 2 ps and 6 ps, respec-
tively [41]. The short-range Coulomb interactions employed a cutoff of 9.0 Å [42]. The
long-range interactions were calculated by using the particle mesh Ewald method with a
tolerance of 1 × 10−9. Images were generated by using VMD visualization tools [43].

3.6. THC and α Vitamin E

THC and α vitamin E were prepared with LigPrep [37] as described before. A mixture
of 64 molecules each was placed to have hydrogen bonds between the two molecules. The
first mixture was placed in a box with the dimensions of 70.0633 Å × 66.1411 Å × 77.067 Å,
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and the second box has the following dimensions 70.1718 Å × 76.9387 Å × 74.2976 Å. The
simulation protocol was carried out in the same way as described above.

4. Conclusions

Herein, we have performed MD simulations of 11 systems of CB2R and vitamin E and
2 systems of THC and vitamin Es to study the direct and indirect effects of vitamin E and
its acetate on THC binding to CB2R. All vitamin E subtypes—α, β, γ, and δ interact with
CB2R helices. Although the interaction of vitamin E with CB2R is weaker compared to that
of vitamin E with phospholipids, the synchronized effect may facilitate vitamin E to act
as lipid modulator for cannabinoid systems as hypothesized by Crouzin et al. [11]. In the
THC-α vitamin E mixture, there were several stable H-bonds indicating vitamin E can limit
the availability of free THCs, thereby reducing THC binding to CB2R. Moreover, in the
presence of vitamin E, the binding cavity of CB2R is wider, with the increased access to
water molecules resulting in reduced interaction of THC with CB2R. The simulation results
of vitamin E agree well with the in vitro data showing reduced THC binding to CB2R in
the presence of vitamin E acetate. Based on the simulation analysis of vitamin E and its
acetate, it is more likely that the vitamin E acetate hydrolyses to vitamin E as observed in a
physiological environment.

Besides having a psychoactive effect, THC also has anti-inflammatory effect through
CB2R [44]. Moreover, THC has anti-oxidant activity independent of CB2R [45,46]. The
EVALI patients have shown a pathological picture indicative of lung inflammation with
unclear etiology. Our study shows that vitamin E could be restricting the ability of THC
binding to CB2R. The restricted binding of THC by vitamin E might be a factor leading to
downregulation of the anti-inflammatory and anti-oxidative responses of THCs leading
to lung inflammation with chronic exposure. Overall, more research is needed to further
understand the role of vitamin E/acetate in EVALI outbreaks.
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