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ABSTRACT
Neurons can extend branches from a single axon to send signals to multiple target cells. Axonal
arbor morphology must be changed to establish and alternate neuronal wiring properly. For this
purpose, the elongation and retraction rate of each terminal in a single axonal arbor are
differentially regulated. In addition, competitive growth regulation between 2 neighboring branch
processes has been observed. The intracellular systems involved in how neurons differentially
regulate growth and stability of axonal branches within the same arbor remain largely unknown.
Microtubules play critical roles in the formation and maintenance of axonal morphology, and their
functions can be differentially regulated in a region-dependent manner within a single cell. Based
on our findings, we propose a microtubule-dependent model that contributes to the differential
branch growth in axonal arbors.
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Microtubule dynamics are controlled in a region-
dependent manner within the single cell.1-3 Tubulins that
polymerize to form microtubules are known to receive
multiple posttranslational modifications. The tyrosination
(Tyr) and detyrosination (dTyr) cycle of a-tubulin
involves the addition and removal of the carboxyterminal
tyrosine residue by the action of tubulin tyrosine ligase
(Ttl) and tubulin carboxypeptidase. Acetylation (Ac) and
deacetylation in microtubules occurs at lysine 40 in the
amino-terminus of a-tubulin, by the activity of an acetyl-
transferase (aTAT1) and deacetylases (HDAC6, Sirt2).4

Since these modifications are dependent on the microtu-
bule stability,2 dTyr and Ac tubulins are enriched in stable
microtubules. Previous studies have suggested that
kinesin-1 is preferentially recruited on microtubules that
contain dTyr and Ac tubulins.5-7 This molecular regula-
tion contributes to the polarized axonal transport in neu-
rons, as the axonal shaft contains more dTyr and Ac
tubulins than dendrites.6-8

Neurons continuously change their axonal arbor mor-
phology during development and in adult nervous sys-
tems.9-11 Differential branch growth can be observed in
culture,12-14 indicating the existence of cell-autonomous
systems that manipulate arbor morphology in a branch-

dependent manner. In addition, enhancing axonal
growth at an arbor terminal is often accompanied by the
retraction of a neighboring branch terminal14 (Fig. 1).
The mechanisms by which growth of a particular axonal
branch affects another branch on the same arbor remains
to be clarified.

Microtubules near growth cones are unstable and
most of them cause catastrophe, whereas microtubules at
the distal region from the terminal are more stable. Dur-
ing neuronal polarization, microtubule turnover
becomes slower in longer axonal processes compared
with minor processes.15 When the microtubule turnover
of arbor branch pairs is compared in the area proximal
to the branching point, it is more stable in the longer
process than in the shorter one.16 Consequently, the ratio
of dTyr and Ac of tubulin is higher in longer arbor pro-
cesses. Thus, microtubules are differentially labeled by
tubulin-posttranslational modifications dependent on
branch process length within a single axonal arbor.

It is known that a cleaved motor domain of kinesin
acts as a constitutively active, and it specifically accumu-
lates in the axonal terminal when expressed in neu-
rons.7,17,18 Our recent study has revealed that in
branched axonal arbors, the kinesin motor domain is
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preferentially accumulated in longer processes that are
enriched with dTyr and Ac tubulins. Because kinesin-
mediated transport is required for maintaining axonal
morphology,19,20 kinesin sorting in the axonal arbor may
contribute to the differential regulation of axonal termi-
nals. Indeed, axonal retraction is significantly lower at
the branched arbor terminal, where more kinesin signals
are detected.16 Moreover, local inhibition of kinesin
increased the retraction at the same axonal process.16

From these observations, we propose the following
model for the intracellular molecular system that con-
tributes to the differential regulation of arbor branch
length (Fig. 2). At an axonal branching point, kinesin is
preferentially recruited to the longer process because it is
enriched with stable microtubules that contain dTyr and

Ac tubulins. Accumulation of kinesin-1 mediated axonal
transport stabilizes the process by inhibiting the retrac-
tion, thus the process tends to be longer than a neighbor-
ing branch process. This event provides positive feedback
to kinesin-1-dependent transport, since microtubule sta-
bility and subsequent tubulin modification is affected by
the change in process length.15 In contrast, kinesin-1
mediated accumulation of cargo molecules on one side
of the branch process results in the deprivation of mole-
cules in the neighboring process, and causes the retrac-
tion. Thus, this model could explain the mechanisms of
how competitive growth between 2 neighboring branch
processes occurs.
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Figure 1. Differential control of branch growth in the same axonal
arbor. A schematic representation of a neuron that possesses a
branched axon with multiple terminals (top). A pair of axonal termi-
nals is shown in the box with the dashed line (a magnified image is
shown on the right). During the rearrangement of the arbor shape,
the growth of branches in a single arbor is differentially regulated
(bottom). Activation of process elongation on one side of the branch
tends to induce the retraction of another process.

Figure 2. A model for the intracellular system that contributes to
the differential growth control of an axonal branch. At an axonal
branching point, kinesin-1 is preferentially sorted into longer pro-
cesses that contains microtubules (MT) enriched with dTyr and Ac
tubulins. Accumulation of kinesin-1 and its cargo at the terminal
inhibit the retraction, whereby the process becomes longer. At
the same time, deprivation of kinesin-1 in another process causes
retraction.
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