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Abstract: According to the statistics, 40% of unplanned disruptions in electricity distribution grids are
caused by failure of equipment in high voltage (HV) transformer substations. These damages in most
cases are caused by partial discharge (PD) phenomenon which progressively leads to false operation
of equipment. The detection and localization of PD at early stage can significantly reduce repair
and maintenance expenses of HV assets. In this paper, a non-invasive PD detection and localization
solution has been proposed, which uses three ultrasonic sensors arranged in an L shape to detect,
identify and localize PD source. The solution uses a fusion of ultrasonic signal processing, machine
learning (ML) and deep learning (DL) methods to classify and process PD signals. The research
revealed that the support vector machines classifier performed best among two other classifiers in
terms of sensitivity and specificity while classifying discharge and surrounding noise signals. The
proposed ultrasonic signal processing methods based on binaural principles allowed us to achieve
an experimental lateral source positioning error of 0.1 m by using 0.2 m spacing between L shaped
sensors. Finally, an approach based on DL was suggested, which allowed us to detect a single PD
source in optical images and, in such a way, to provide visual representation of PD location.

Keywords: partial discharge; bushing insulators; ultrasonic localization; ultrasonic time-of-flight
evaluation; machine learning; deep learning

1. Introduction

According to the EU study on electricity supply disruptions, in the period 2010–2014,
up to 850 GWh of electricity annually is not supplied to the consumers, which caused a lost
value up to EUR 25 billion per year to the commercial users [1]. The vast majority of these
disruptions occur due to the problems in distribution grids that are caused by the failure of
insulation of the conductors, such as presence of voids and cracks. This leads to a partial
discharge (PD), which can be defined as a localized breakdown of the insulation under
the stress of high voltage [2]. In case of PD, the bridge at the certain part of insulation is
created which transports the electric charge between two electrodes. PD tend to develop
over time, which causes progressive damage to high voltage (HV) assets and leads to false
operation of the distribution grid. Therefore, early-stage PD detection, localization and
monitoring are significant tasks to ensure safe and reliable supply of the electric power.

As the location and type of discharge may impact HV assets differently, the posi-
tioning of the PD source is of considerable practical interest. In the event of the PD, the
energy is transmitted into the surrounded media as electromagnetic waves, heat, light and
acoustic waves, so it can be detected utilizing various sensing technologies [3,4]. Acoustic
measurements have shown several advantages in PD detection over the existing techniques,
such as immunity to electromagnetic interference, ability to localize discharge sources,
easy and non-invasive deployment on-site. Ultrasonic PD localization technologies use
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sensor arrays of different configurations to detect sound waves generated by discharge and
measure time of flight between subsequent channels [5–7]. In such a way, an approximate
position of the source can be determined. Various sensor array configurations, such as
circular and cross-shaped, have been investigated by different research groups, show-
ing PD source angular positioning errors of approximately 5◦ [8–10]. Among the signal
processing approaches, the wavelet transform, Hilber-Huang transform and empirical
mode decomposition are frequently used to describe PD signals [11–13]. In most of the
researches, the spectral signal features are exploited for PD detection, however other works
show that time domain analysis can be beneficial for PD detection, especially when the
repetition rate and signal reverberations within the substation are important [14]. For
the PD classification tasks, recent advances in pattern recognition techniques based on
artificial intelligence have been widely implemented [15,16]. Both unsupervised [17–19]
and supervised [20–22] learning techniques are used to group PD signals according to their
statistical similarities. For example, Lewin et al. [23] used DBSCAN and t-SNE clustering
along with wavelet denoising to discriminate PD signals arriving from multiple sources.
Contin et al. [24] presented K-means based clustering method to separate PD signals in
case of multiple active sources. Li et al. [25] used two back propagation neural networks for
partial discharge recognition in gas insulated switchgear. Choi et al. [26] tested various ML
methods like bagging, k-nearest neighbor, support vector machines and linear discriminant
analysis to detect cap damage of porcelain insulators using frequency response functions.
An increasing number of researches that use deep learning (DL) neural networks for PD
classification can be noticed recently. Florkowski [27] used convolutional neural networks
(CNN) to detect deterioration of electrical insulation from the phased resolved PD images.
In contrast to machine learning methods, DL do not require feature extraction, can handle
large datasets and provide better accuracy [28,29].

Most of the aforementioned advances in sensing and PD classification are applied to
detect, de-noise and localize discharges in oil-filled transformer tanks, where discharge-
induced acoustic signals propagate in oil with relatively low attenuation. For example,
recent research of Hamidreza et al. [30] show that by using the time reversal approach, the
PD source can be localized with superior resolution of λ/10 using one to few sensors. On
the other hand, its estimated that up to 17% of total transformer failures are caused by faulty
bushings in air power lines [31]. These can be produced using resin-bonded paper, resin-
integrated paper or resin-impregnated synthetic technologies, which can be susceptible
to PD. Ultrasonic assessment of PD in transformer bushings can be completed by using
contactless techniques in open-air. This introduces additional challenges, such as high
transmission losses of acoustic signals, noise and multiple reflections within transformer
substation, relatively short inspection distances and increased discharge source positioning
errors. Among the attempts to detect and localize corona discharge, Dong et al. [32] used a
fusion of ultrasonic measurement and ultra-violet imaging to visualize the corona source
locations in optical views with an angular error of 5.32% at 30 m distance.

In this research, hybrid an approach to detect, localize and visualize corona discharge
source is presented. The technique proposed in this study is based on the fusion of
ultrasonic and optical data using machine learning and deep learning methods, which
enable intuitive discharge visualization in a real-scene environment. The technique uses
ultrasonic measurements to detect and localize the source of discharge, while the source
itself is identified and emphasized with optical camera by using deep learning methods.
The proposed methods approach demonstrates increased sensitivity to PD and low lateral
source positioning errors up to 0.1 m. In comparison with similar work conducted by Dong
et al. [23], the proposed technique offers a cost-effective way to detect PD without using
an expensive ultra-violet imaging equipment employing only three acoustic sensors for
PD localization instead of 31. The obtained solution provides lower positioning errors,
due to specific arrangement of ultrasonic sensors with optimized inter-element distance,
successful implementation of machine learning models to filter random noise signals and
precise time of flight (ToF) measurements. The workflow of the proposed approach can
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be described as follows. At first, the proposed technology identifies discharge signals
and differentiates them from random noise using different machine learning methods
like Support Vector Machines (SVM), Naïve Bayes (NB) and Linear Discriminant Analysis
(LDA) classifiers. A comprehensive study based on Pearson correlation, t-test analysis and
Mahalanobis distance evaluation is performed here in order to extract features representing
discharge signals. The identified discharge signals are then analyzed with ultrasonic signal
processing methods to estimate the spatial source position in open-air. The proposed
solution uses only three ultrasonic sensors arranged in an L shape to detect and localize
discharge location, while the inter-element distance is optimized to achieve the desired
accuracy and compact design of the system. The detected position of discharge source
is provided to pan-tilt servo motors which control the movement of an optical camera.
Then, deep learning networks are trained to detect bushing insulators in optical images.
The final output of the proposed technique is an optical image with detected suspicious
bushing elements.

This paper is organized as follows: In the first chapter, the ML methods and discharge
feature extraction are described for discriminating discharge signals from noise. Then
the ultrasonic technique to detect source angular position in two orthogonal planes is
presented and verified with appropriate experiments. Finally, DL methods are described
for transformer bushing detection in optical image at the direction of PD source.

2. Architecture of Proposed Discharge Detection Technique

The architecture of proposed PD detection system is presented in Figure 1. It consists
of hardware parts that detect, digitize and process PD signals and signal processing—part
which is responsible for discharge signal identification—source localization and recognition.
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Figure 1. The architecture of proposed discharge detection system.

The system was designed for discharge signal detection in open-air at 40 kHz fre-
quency with 3 sensors arranged in an L shape (see Figure 2). Such frequency characteristics
of the system was selected taking into the account attenuation of sound in air (−2.6 dB/m,
at 60% relative humidity and 40 kHz) and ensuring operating distance of the device up to
30 m. Such design of the system ensures non-invasive inspection of transformer bushings
and reduces noise that is created by HV assets since all measurements are taken at least
from a distance of 5 m. Commercially available open-structure air coupled 40 kHz ultra-
sonic transducers (MA40S4R produced by Murata Manufacturing Co., Ltd. (Kyoto, Japan)
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with directivity of 80◦, sensitivity of −63 dB and bandwidth of 5 kHz at −6 dB level) were
selected for discharge signal acquisition. The amplification circuit was manufactured using
low noise operational amplifier which provides 50 dB gain (at 40 kHz) and input voltage
noise of 5.8 nV/

√
Hz. The 20 MHz 12bit 4-channel analogue to digital converter was used

to digitize the PD signals. The front view of the proposed PD detector is presented in
Figure 2.
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Figure 2. Front view of the proposed partial discharge detector.

The signal processing part of the system implements ML algorithms to discriminate
signals originating from noise. These ML algorithms act as firewall, so further signal
processing is skipped if the signal is found to be originating from surrounding noise. If the
received signal is originated from the PD, then the ultrasonic signal processing methods
are used to determine spatial location of PD source. Finally, to recognize discharging asset,
DL convolutional neural networks are implemented, which detect suspicious discharging
asset in optical images. In the few following sections, the discharge signal identification,
localization and recognition techniques will be discussed in further details.

3. A technique to Identify Discharge Signals

To complete the purpose of discriminating PD signals from surrounding noise, three
machine learning classifiers were implemented and tested, named Support Vector Machines
(SVM) with Radial Basis Function (RBF) kernel, Naïve Bayes (NB) and Linear Discriminant
Analysis (LDA). The dataset of discharge-induced signals was acquired using laboratory
corona discharge simulator. The PD source was a needle–needle electrode separated at
230 mm distance. The emitted ultrasound signals were collected at 40 kHz with sampling
of 1 MS/s, maintaining 10 m distance from source and sensors. In total, 150 signals
were acquired that represent the PD data. The noise signals were recorded from the
surroundings of the transformer sub-station, registering signals every 12 min for period
of 24 h. This resulted in 120 signals representing acoustical noise in the sub-station. To
represent each of the dataset, nine quantitative ultrasonic time domain features were
evaluated: mean absolute value, variance, simple square integral, kurtosis, root mean
square, average amplitude change, difference absolute standard deviation, modified mean
absolute value and maximum fractal length [33,34]. In this research, time domain features
were investigated only, as the proposed system incorporates narrowband sensors, limiting
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the spectrum of the received signals. The mean absolute value can be defined as the average
of absolute value of the signal:

MAV =
1
N

N

∑
i=1
|xi|, (1)

where xi—is the magnitude of the signal at discrete time instance, N—is the length of the
signal. Variance is expressed as squared sum of instantaneous values:

v =
1

N − 1

N

∑
i=1

(xi)
2. (2)

Simple squared integral is the summation of signal square values, without considera-
tion of signal length:

S =
N

∑
i=1

(xi)
2. (3)

Kurtosis define distribution of the signal relative to normal distribution as:

K =
∑N

i=1(xi − x)4

σ4 , (4)

where x is mean value of x, σ—is the standard deviation. Root mean square is another
feature that defines square root of mean square as:

R =

√√√√ 1
N

N

∑
i=1

(xi)
2. (5)

Average amplitude change is the average magnitude change between neighboring
instantaneous values of the signal expressed as:

A =
1
N

N−1

∑
i=1
|xi+1 − xi|. (6)

Difference absolute standard deviation is an average amplitude change related param-
eter that is defined as the square root of magnitude change square:

D =

√
∑N−1

i=1 (xi+1 − xi)
2

N − 1
. (7)

Modified mean absolute value uses a weight window function in addition to Equation (1) as:

MMAV =
1
N

N

∑
i=1
|xi|wi,wi =

{
1, i f 0.25N ≤ i ≤ 0.75N

0.5, otherwise
, (8)

here wi is the weight coefficient. Finally, maximum fractal length is defined as:

MF = log10


√√√√N−1

∑
i=1

(xi+1 − xi)
2

. (9)

The aforementioned quantitative measures have been applied to datasets representing
discharge and noise signals. All features were standardized, making the mean value of
each feature equal to 0 and variance of 1 as:

Xk =
xk − xk

σk
, (10)
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where Xk is the normalized feature vector, xk is the initial feature vector, xk—is the
mean value of the feature vector xk, σk—is the standard deviation of feature vector xk,
k = 1, 2, . . . m, where m is total number of available features.

As the large number of features can reduce the classification accuracy, redundant
features were removed using Mahalanobis distance evaluation, t-test, Pearson correlation
and principal component analysis. A two sample t-test can be formulated as follows:

t = x1−x2√
s2
(

1
n1

+ 1
n2

) ,

s2 =
∑

n1
i=1(xi−x1)

2+∑
n2
j=1(xj−x2)

2

n1+n2−2 ,

(11)

where x1, x2—are sample means, s2—is the sample variance, n1, n2—are the sample sizes,
t—is a Student t quantile with n1 + n2 − 2 degrees of freedom. The Mahalanobis distance
is expressed as a distance from vector to a distribution with mean and covariance as:

d =

√
(x− µ)∑−1

(x− µ)′, (12)

where x—is a vector from which the distance is being evaluated, µ—is the distribu-
tion mean.

The statistical evaluation of each of the abovementioned features is summarized in
Table 1. The aim of such evaluation was to extract statistically significant features that can
be further used for training and testing of machine learning models. The null hypothesis
h0 in the t-test was formulated as: “there is no significant difference between the discharge
induced signal and random noise”. The p-value was calculated with the confidence interval
of 95%, meaning that p-values higher than 5% will reject the null hypothesis. In Table 1, the
h0 = 0 means that the null hypothesis was rejected during the t-test analysis. The last row
of the Table 1 represents the Pearson correlation value between discharge and noise dataset.

Table 1. T-test and Pearson correlation values between discharge and noise datasets.

Mean
Absolute

Value,
MAV

Variance,
v

Simple
Squared
Integral,

S

Kurtosis,
K

Root
Mean

Square, R

Average
Ampli-

tude
Change,

A

Difference
Absolute
Standard

Deviation,
D

Modified
Mean

Absolute
Value, wi

Maximum
Fractal
Length,

MF

h0 0 1 1 1 1 0 1 0 1

p-value 0.069 0.017 0.017 4.5 ×
10−22 0.016 0.052 0.03 0.267 0.038

corr −0.149 −0.19 −0.19 0.08 −0.14 −0.14 −0.13 −0.02 −0.04

The results presented in Table 1 demonstrate that there are six out of nine features
that are statistically significant according to the t-test analysis named: variance (v); simple
squared integral (S); Kurtosis (K); root mean square (R); difference absolute standard
deviation (D); maximum fractal length (MF). In all cases, there was no significant correlation
between feature vectors of noise and discharge datasets (normalized correlation around
0.2 was considered as very low), hence only the t-test and p-values were used as criteria to
select significant features. The normalized Mahalanobis distance evaluation demonstrated
six significant features at the pre-defined threshold of 0.7. The results of Mahalanobis
distance evaluation correlated well with the t-test analysis, showing the same significant
feature vectors. The normalized values of the Mahalanobis distance for each statistical
feature are illustrated in Figure 3.
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In order to further minimize the number of statistical features, principal component
analysi (PCA) was performed with an intrinsic dimension of 2, indicating following most
significant features for classification task: kurtosis (K) and difference absolute standard
deviation (D).

The abovementioned classifiers (SVM, NB, LDA) were trained and tested for both
cases: using all six statistical features identified with Mahalanobis distance evaluation and
only two features, identified with PCA. The results demonstrated that specificity, sensitivity
and area under the receiver operating curve (ROC) were similar for all classifiers either
using all six or only two feature vectors. This means that kurtosis and difference absolute
standard deviation holds most of the variance in the entire dataset. The ROC curves in the
case of six features and two features (kurtosis and difference absolute standard deviation)
for all three classifiers are illustrated at Figure 4. The comparison between the sensitivity
and specificity of three selected classifiers in the case of six and two feature vectors can be
seen in Table 2.
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of the three classifiers: (a) ROC in case of 6 statistically significant features; (b) ROC in case of 2 statistical features selected
using PCA.
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Table 2. Comparison of sensitivity and specificity of three classifiers in the case of six and two feature
vectors used for classification.

Six Feature Vectors Two Feature Vectors

Sensitivity: Specificity: Sensitivity: Specificity:

RBF SVM 100% 95% 95.6% 92.5%
Naïve Bayes 93.3% 95% 93.3% 92.5%

LDA 100% 95% 93.3% 90%

The results presented both in Figure 4 and Table 2 indicate that classification is accurate
in both cases, either using six or two feature vectors. In case of six feature vectors, the
area under the ROC curve (AUC) is 99.7% for SVM, 99.1% for NB and 99.6% for LDA
classifiers. In contrast, the two-feature vector provides AUC of 98.8% for SVM, 98.7% for
NB and 98.9% for LDA. The results in Table 2 indicate, that the RBF SVM classifier provides
the best performance among all the classifiers in terms of sensitivity and specificity. The
classification boundaries for all three classifiers in the case of the two-feature vector space
is presented in Figure 5.
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The results presented here demonstrate that the classification between the discharge
signal and surrounding noise can be performed quite accurately. These results need to



Sensors 2021, 21, 20 9 of 21

be further verified, as the discharge signals were collected using a laboratory discharge
emulator. It is expected that the performance of the classifiers will slightly degrade going
into the in-situ discharge measurements. The RBF SVM classifier overall demonstrated
best performance, since classification boundary for the dataset appeared to be non-linear.
According to the architecture of the proposed discharge detector, the ML methods presented
in this chapter act as an outlier detector with the aim to filter random noise signals from
further processing. If the signal is identified as a discharge, the ultrasonic localization
algorithms presented in following chapter are used then to localize the source position in
open space.

4. Ultrasonic Localization of PD Source
4.1. Principle of Measurement Method

Proposed acoustic noise localization method assumes that discharge is generating
acoustic signal, which is recognized and received by the ultrasonic measurement system. In
general, the partial discharge position measurement method is based on a binaural principle.
According to this principle, it is necessary to measure the ultrasound propagation time from
the source to the few receivers. The coordinates of the source can be calculated by using
measured time delay and ultrasound velocity. To implement the binaural method, in this
case we used three sensors arranged in an L shape (see Figure 2). Other authors suggest
three main configurations of sensors for PD detection: cross, circular and square [10].
Usually, these set-ups use at least nine sensors. Xie et al. [9,10] showed acoustic comparison
of the three abovementioned sensor arrangements, demonstrating that the circular array
has the lowest mean positioning error of 4.5 cm at distance of 1 m. The cross-shaped
arrangement demonstrated worst mean positioning accuracy of 6.2 cm. This results in
a lateral source positioning error of approximately 5%. Another research conducted by
Li et al. [8] used cross-shaped array of 13 elements and demonstrated source positioning
error less than 5◦. Finally, Dong et al. used 31 sensors in a double-helix configuration
and achieved an error of 5.32% at 30 m distance. In our approach, the L-shaped sensor
arrangement with three sensors was selected with the aim to use the minimum possible
amount of transducers, while maintaining high positioning accuracy in 3D. To achieve this
purpose, large inter-element spacing approximately equal to seven wavelengths of sound
in air (60 cm) was selected, since the spacing mainly determines the source positioning
accuracy for methods based on time difference measurement. Low inter-element distances
provide small source to sensor propagation path difference between neighboring system
channels, resulting in bigger time delay measurement errors. The initial 60 cm spacing
between sensors was selected as a starting point, while later in Section 4.2 it will be
optimized to achieve more compact design of the system. As the system is intended for
open space measurements, it is expected that the PD source will always be located at least
1 m away from the sensor array. Based on this assumption, a plane wave model has been
used in detection of the source position. Three sensors are the minimum amount that can
detect objects in a 3D space. Such an approach allows to detect the spatial position of the
source, but the observation direction (forward or backward) must be known a priori. In
order to obtain the observation direction, an additional sensor must be used. However, in
this research three sensors were considered as sufficient.

According to the measured time difference between different ultrasonic channels, the
angular direction to the discharge source can be reconstructed in two orthogonal planes
from receivers R1 − R2 and R1 − R3. As the signals are non-stationary the best way for the
time difference determination is the cross-correlation method.

The implementation of the binaural approach for measurements of the position of
acoustic noise source in air meets some problems. The ultrasonic waves in air possess
quite essential attenuation, while the ultrasonic transducers possess particular frequency
bandwidth, sensitivity and directivity. All of these parameters need to be optimized in order
to cover required monitoring area. Finally, the general structure of the localization system
should meet required accuracy. This includes number of transducers, orientation, position,
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spacing between sensors etc. The proposed ultrasonic discharge source localization method
is based on the time-of-flight difference measured by two pairs of sensors situated on two
perpendicular axes (R1 − R2 and R1 − R3, see Figure 2). Each pair of the sensors enable to
determine a set of directions in 3D where the source generates the delay time measured
between either the sensors R1 − R2 or R1 − R3. The cross-section of these two sets of 3D
directions determines the direction to the true position of the PD source.

Let assume that the first pair of the transducers R1(x1,y1,z1) and R2(x2,y2,z2) is situated
on the x-axis with particular distance between them (pitch) d12 = (x2 − x1). If the measured
time difference between arrival times of the signal from the sources S to the receivers
R1 and R2 is ∆t12, then the difference of corresponding sound propagation paths can be
expressed as:

DS12 = d1 − d2 = ∆t12 · c (13)

where d1, d2 are the unknown distances from the source to the receivers R1, R2; c is the
ultrasound velocity in air. The direction to the source from the middle point between
transducers is defined by the median of the triangle R1SR2 going through vertex S. For
better understanding this triangle in Figure 6 is presented for the case when the source is
situated in xOy plane. In 3D space the directions forms a cone (green cone in Figure 7) with
vertex angle:

αS12 = arccos

(
d2

m − d2
2 + d2

12/4
dm · d12

)
, (14)

where dm =
√

2 ·
(
d2

1 + d2
2
)
− d2

12/2 is the length of the median. It can be shown that at
sufficiently large distances the angle α12 is dependent only on path difference DS12 and
distance between transducers d12, hence can be calculated according:

αS12 = arccos
(

DS12

d12

)
. (15)
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The delay time ∆t12 can be determined using cross-correlation between signals mea-
sured by the receivers R1 and R2:

∆t12 = argmax
t

[corr(u1(t), u2(t))], (16)

where u1(t), u2(t) are the signals recorded by receivers R1 and R2. As consequence the
beam path difference DS12 = ∆t12 · c can be estimated and an angle αS12 (Figure 6) can be
determined by using Equation (16). In general, such a method gives the direction of plane
wave arrival. The blue line and dashed black line in Figure 6 represent the positions of
the source according to spherical and plane wave approaches respectively. It can be seen
that the essential difference between plane wave and spherical waves can only be seen at
distances less than 0.7 m. At larger distances the solution of both methods asymptotically
approaches each other.

Another pair of receivers, R1(x1, y1, z1) and R3(x3, y2, z3), situated in vertical direc-
tion (along z axis), enable us to determine the angle αS13 by creating another cone C13 (blue
cone in Figure 7) with the vertex in the middle point between the vertical transducers and
the axis coinciding with line connecting these receivers. Note that for the better understand-
ing only halves of cones are presented in Figure 7. The cross-section of these two cones
give the 3D direction to the source. In general, the cross-section gives two directions: one
in the forward direction and one in the backward. However, if the observation direction
is known, the correct one can be easily selected. Otherwise, another pair of transducers
is required.

In order to determine the direction corresponding to cross-section of these two
cones the arbitrary selected distance R essentially longer comparing to the distances
between receivers was introduced. In this case R was set to 10 m. Then the spatial points
P12(x12, y12, z12) determining the directions to noise source according to the cone C12 can
be defined by:

x12 = x2+x1
2 R · cos(α12),

y12(Θx) = R · sin(α12) · cos(Θx),

z12(Θx) = R · sin(α12) · sin(Θx),

(17)

where Θx is the angle around the x axis. In similar way the spatial points P13(x13, y13, z13)
determining the directions according to the cone C13 can be defined by:

x13(Θz) = R · sin(α13) · sin(Θz),

y13(Θz) = R · sin(α13) · cos(Θz),

z13 = z3+z1
2 + R · cos(α13),

(18)
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where Θz is the angle around the z axis. Then the direction approximately corresponding
to the line of the cross-section of cones C12 and C13 can be determined by finding the
angles Θx,min and Θz,min at which the distance between pints P12 and P13 is minimal. The
minimum can be determined according:

[Θx,min; Θz,min]

= arg min
Θx ,Θz

{[√
(x12 − x13(Θz))

2 + (y12(Θx)− y13(Θz))
2 + (z12(Θx)− z13)

2
]}

.
(19)

The spatial angles showing to the direction of the noise are determined according:

ΘzOy = arctan
[

y12(Θx,min)−y0

x12(Θx,min)−x0

]
,

ΘxOy,z = arctan

[
z12(Θx,min)−z0√

(x12(Θx,min)−x0)
2
+(y12(Θx,min)−y0)

2

]
,

(20)

where (x0,y0,z0) are the coordinates of observation point. It was accepted that the distance
along z axis is z = 0. It is more reliable to use Θ’xOy and Θ’xOy,z angles for the further
calculations. They show the direction of the source of the acoustic noise in a horizontal and
vertical planes and can be determined according:

Θ′xOy = 90◦ − arctan
[

y12(Θx,min)−y0

x12(Θx,min)−x0

]
,

Θ′xOy,z = 90◦ − arctan

[
z12(Θx,min)−z0√

(x12(Θx,min)−x0)
2
+(y12(Θx,min)−y0)

2

]
.

(21)

4.2. Experimental Verification of the Proposed Method

In the following chapter, the technique proposed in previous section is verified and op-
timized with the appropriate experiments. The objectives of the experimental investigation
are as follows:

• To determine the correlation strength between signals received by sensors R1, R2, R3
and hereby to investigate the general detectability of the acoustic source.

• To estimate the error and the accuracy of the ultrasonic source localization technique.
• To optimize the pitch between neighboring sensors and to investigate performance of

the system in the case of different distance between ultrasonic sensors.

In order to meet these objectives, two measurement set-ups were implemented.
(Set-up I). The aim of this set-up was to perform experiments for discharge signal

detectability evaluation and estimation of error and accuracy of discharge source localiza-
tion technique. The experimental set-up of the measurements with the positioning of the
transducers and partial discharge (acoustical noise) source is presented in Figure 8. The
experiments were performed with the initial on-axis distance (pitch) between receiving
ultrasonic transducers R1 − R2 and R1 − R3 equal to 60 cm. The location of the source S
was changed. The coordinates of the source S are summarized in the Table 3.

As it can be seen from the Table 3, at first the needle–needle electrode partial discharge
simulator S was placed straight in the observation direction at distance of 6 m. Then the
direction of the source was changed along the x axis to the left (negative x direction) and to
the right (positive x direction) from 2 m to 4 m. At the second stage the experiment was
repeated with the initial distance of 8 m. This time, the direction of the source was changed
once for each side (left and right) by moving the source by 4 m along x axis.
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Table 3. The coordinates of the source S used in the experiments with set-up I and set-up II.

Position no.: x, (m): y, (m): z, (m):

1 0 6 0
2 −2 6 0
3 −4 6 0
4 2 6 0
5 4 6 0
6 0 8 0
7 −4 8 0
8 4 8 0

The reception of the emitted acoustic noise signal was performed by using commer-
cial low frequency open-structure ultrasonic transducers MA40S4R produced by Murata
Manufacturing Co., Ltd. (Kyoto, Japan). At each of the measurement position, the signals
were recorded with three Murata sensors. Then the correlation between the signals was
evaluated and the source positioning error was calculated to determine the accuracy of
detection.

(Set-up II). The second experimental set-up was used for inter-element distance
(pitch) optimization between sensors in order to optimize the design of the system. At
the experiment, the on-axis distance (pitch) between ultrasonic transducers was gradually
changed from 50 cm down to 10 cm and with decrement of 10 cm and the determination
of partial discharge source position was performed, according to the set-up presented in
Figure 9. The measurements were performed in case the partial discharge source is placed
within the distance of 8 m away from the receivers straight in the observation direction.
After that the partial discharge source was moved away for 4 m to the left and right and
the measurements were repeated. In this case, the positions of the source S correspond to
references 6, 7 and 8 in Table 3. At each measurement position, the signals with all three
sensors were collected and source positioning error was estimated in order to determine
the minimal on-axis sensor distance at which the PD source can be reliably detected and
localized.
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4.3. Results and Discussion

The first measurement set-up (Figure 8) was employed in order to investigate the
performance of the proposed measurement system and to identify the possibility to localize
the source of acoustic noise by means of cross-correlation between neighboring system
channels. The waveforms of the received by R1, R2 and R3 sensors when the source S is
located straight in the observation direction at distance 8 m along the y axis (position 6 in
Table 3) are presented in (Figure 10a).
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Figure 10. The example of the waveforms and cross-correlation between neighboring channels in case the source S is located
straight in the observation point 8 m away along the y axis: (a) example of waveforms received by R1, R2, R3 sensors,
(b) correlation between signals in case of receiver pairs R2 − R1 (blue) and receiver pairs R3 − R1 (red).

From the results presented above it can be noticed that time delay between channel R1
(blue) and R2 (yellow) is ∆t = 84.2 µs. Meanwhile the delay between R1 (blue) and R3 (red)
is ∆t = 43.4 µs. The correlation strength of the received signals was further investigated. It
can be seen that correlation between signals is close to 1 for both receiver pairs R2 − R1
and R3 − R1 (Figure 10b), hence the source can be reliably detected.
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Later, the discharge source positioning error was investigated at the certain source
positions as it was presented in the first set-up (Figure 8). The discharge source positioning
error depends on the observation angle α and distance to the sensor and can be expressed as:

∆Lateral = (αmeas − α)·Rs,

Rs =
√

x2
s + y2

s ,
(22)

where αmeas—is experimentally measured observation angle, α—actual observation angle.
The experimentally obtained absolute lateral error dependence on observation angle α is
summarized in Table 4 and presented in Figure 11.

Table 4. Absolute lateral error values dependent on special source position.

No.: Source Position
(x,y,z), (m):

Mean Angle
(Θ’xOy), (◦):

Mean Angle
(Θ’xOy,z), (◦): Lateral Error, (m):

1 (0,6,0) 3,3 –1,8 0.018
2 (–2,6,0) –16,1 –2,2 0.056
3 (–4,6,0) –31,5 –2,3 0.0035
4 (2,6,0) 21,9 –1,4 0.078
5 (4,6,0) 35,5 –0,63 0.038
6 (0,8,0) 2,7 –1,43 0.05
7 (–4,8,0) –25,2 –1 0.083
8 (4,8,0) 29,3 –0,53 0.14
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It can be observed that the distance and the angle dependent lateral error in all cases
does not exceed more than 0.15 m. While the works presented by other research groups
demonstrate lateral source positioning errors of 5% [32], in this case the estimated lateral
error is about 1.3% at 8 m. At such a distance, the experimental time delay between system
channels R1 and R2 is ∆t = 84.2 µs at inter-element distance of 60 cm. It can be expected
that at 30 m distance, which was used by other authors, the delay would be ∆t = 17.5 µs,
which is still an easily measurable value.

Additional analytical calculations were performed to assess the influence of time
difference estimation error to the lateral positioning of the source. The aim of such esti-
mation was to evaluate how the time delay measurement errors influence the positioning
accuracy at different angles and source positions. In this calculation it was assumed that
the time delay measurement error is fixed to ±1 µs. The equations in Section 4.2 were
used to estimate the lateral source position at different source distances and angles. The
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results of analytical calculations are presented in Figure 12. It can be observed that time
measurement error of ±1 µs gives distance and angle dependent lateral error, which is in
range of 0.006 m to 0.05 m. This may add significant error at distances larger than 20 m.
It was estimated that at 30 m, the lateral error can be up to 0.14 m. On the other hand,
time of flight measurement based on cross correlation allow to measure the delay within
sub-microseconds in case of sufficient signal sampling and high signal correlation. For
example, in the same scenario, the ±0.5 µs time measurement error would provide a lateral
source positioning error up 0.07 m at 30 m.
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The second experimental set-up (Figure 9) was implemented with different inter-
element distances between neighboring sensors starting from 50 cm with decrement of
10 cm order to optimize the design of measurement system. The main purpose is to find
the least distance of the receivers, at which source of acoustic noise is still detectable. The
obtained time differences ∆t versus pitch are presented in Figure 13. In which case, when
the source is straight in the observation direction 8 m away along y axis with a pitch of
20 cm, the time delay is ∆t = 2.77 µs. When source is shifted 4 m to the left (Table 3, Pos.7),
the time delay increases significantly to ∆t = 132 µs. Similar results are obtained after
source shifting 4 m to the right (Table 3, Pos. 8), where the time delay is ∆t = 139 µs. It
means that the side position of the source is more appreciated for detectability. In contrast,
the results demonstrate that the source position straight in the observation direction is most
challenging to detect, as the signal propagation paths are relatively close to each other and
the time difference is mainly determined by the pitch between sensors. This is especially
significant when the source in close proximity to the sensors. It was estimated, that the
source can be reliably located in case of 20 cm pitch between the sensors, as it provides
∆t = 2.7 µs delay between neighboring channels at 8 m distance, what is a measurable
value. In the case of a 10 cm pitch, the delay between the sensors at central source position
is equal to ∆t = 1.34 µs. However, in order to increase the reliability of the measurements
in close proximity to the source, the 20 cm pitch was selected for system implementation.
It can be calculated that the time delay between sensors R1 and R2 is ∆t = 1.94 µs at 30 m
distance and inter-element spacing of 20 cm. This demonstrates that the system can be used
for distances up to 30 m. On the other hand, source detection at large distances will require
more sensitive reception, higher signal gain and additional noise suppression approaches.
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5. Recognition of Faulty HV Asset

The proposed discharge detection and localization system incorporates an optical
camera which is controlled from ultrasonic measurement data by means of pan-tilt servo
manipulator (see Figures 1 and 2). The output of ultrasonic signal processing algorithms
presented in previous chapter is an angular position of the PD source in horizontal and
vertical planes. Such data can be fed to pan-tilt motor, to steer the camera to the desired
spatial position. As the camera is positioned in front of the detected discharge source, an
optical image is being recorded for further processing. Typically, in such image, many
bushing insulators are present, depending on the mounting position of the device in the
transformer substation. So it’s important to distinguish a single bushing insulator that
possess a risk of discharge and mark it to the end user. In order to detect and emphasize
single suspicious discharging insulator, deep learning convolutional neural networks
(CNN) are applied and embedded to the system. Usually, if the spatial location of acoustic
source is correctly determined by ultrasonic methods described in previous chapter, the
discharging source should be located somewhere at the center of an image. So, it is assumed
here that the central area of the image most likely will contain the view of discharging asset.
Hence, the convolutional neural networks are used to process the area around center point
of the image and detect the assets of bushing insulators. To achieve this purpose, as a first
step. a small area around the center of an image is cropped and provided to a CNN object
detector. If none of the objects are detected, then the size of an area is increased until the
object detector finds at least one insulator. The final output is the original image captured
by optical camera with boundary of single insulator. The CNN object detector is pre-trained
to detect high voltage transformer bushings. The detector is implemented by using Faster
R-CNN convolutional neural network, which uses a region proposal network (RPN) for
feature map estimation and Fast R-CNN as a detector [35]. Faster R-CNN is an evolution
of its predecessor, Fast R-CNN, and proposes anchors that most likely contains objects to
generate region proposals instead of selective object search. The CNN model was trained
using TensorFlow GPU v1.9 object detection API on NVIDIA Geforce GTX 1060 with CUDA
v9.0.176 and cuDNN v7.0. In total, 430 images of transformer bushing insulators were
labelled and used in training dataset, while the testing dataset was compiled from images
that were acquired from different transformer stations across Lithuania. The model was
trained in 150k epochs (batch size 1) achieving average classification loss of 0.04 and mean
average precision (mAP) of 91.31%. The example of single discharging bushing insulator
which was detected using Faster R-CNN is presented in Figure 14.
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Object detection with CNN is used here for two purposes: first, the single discharging
asset is recognized in the image, which serves as an output of the detection device; second,
if none of the assets are recognized in the image, the measurement is repeated as this is
treated as the measurement error. Hence CNN acts as an additional evaluation loop to
avoid false alarms.

6. Conclusions

The ultrasonic non-invasive approach for detection, localization of the partial dis-
charge (PD) that is designed to assess dielectric conditions of connectors of bushing in-
sulators was proposed. The proposed solution uses machine learning, ultrasonic signal
processing and deep learning methods to detect and localize the source of PD. At the first
stage ML methods act as a firewall to filter acoustic noise signals that are captured by
the system and differentiate between actual PD signals and surrounding noise. Then the
binaural methods are used for PD source localization which exploits the time difference
between arrival time of the same discharge signal received by different ultrasonic sensors.
Based on these methods, the angular direction of PD source is reconstructed in 2D and 3D
space with an average lateral positioning error of 0.1 m. Finally, ultrasonically estimated
positions of PD source are fed to pan-tilt servo manipulators to steer the optical camera to
the detected PD source position. Then the recognition of the discharging asset is performed
by using deep learning convolutional neural networks which identifies single discharging
HV assets.

The proposed ultrasonic PD localization and detection technique was verified and
optimized with the appropriate experiments. At first, ML methods were evaluated for sep-
aration between discharge signals and surrounding noise. It was estimated, that two signal
features (kurtosis and difference absolute standard deviation) holds the most variance and
are most appropriate for determination of the noise origin. Among the different ML classi-
fiers, it was found that RBF-SVM is the one that shows the best sensitivity and specificity
as it provides a non-linear classification boundary. A separate set of the experiments were
performed with the different positions of the discharge source and inter-element distances
between sensors R1, R2, R3 with the aim to investigate the detectability, lateral error and
optimal spacing between sensors. The investigations demonstrated a strong correlation
between PD signals and the lateral error of source positioning was estimated to be up to
0.1 m. The inter-element spacing optimization experiment demonstrated that 20 cm pitch
between the sensors is optimal in order to reliably detect PD source at 8 m distance as it
provides 2.7 µs delay between neighboring channels. It was shown that the inter-element
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spacing plays a significant role for sources that are positioned in front of the detector, while
the sources at some angles are easier to detect due to longer signal propagation paths. As a
result, a smaller pitch such as 10 cm may be insufficient to detect the PD at certain positions.
Finally, the deep learning neural networks was implemented which are capable to detect
single suspicious discharging assets in optical images based on the spatial PD positions
determined by ultrasonic methods. As a result, the output of the proposed system is an
intuitive discharge visualization in a real-scene environment.

As the results presented in this article showed quite good performance both in classifi-
cation of discharge source and localization of it in 3D space, a logical next step would be
to apply these methods in an actual substation with pre-identified faulty insulators. This
would include additional challenges as more significant signal reverberations, changing
environmental conditions, increased noise levels and reduced PD signal energies. As
a result, one might expect to obtain larger positioning errors and a lower classification
accuracy. On the other hand, the ML techniques used in this approach can improve on
each measurement, while receiving more and more data describing the PD signals. With
the advent of ML methods, better understanding of the PD signals may subsequently lead
to an increased overall detection and localization accuracy on the long-term perspective.
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Abbreviations
AUC area under curve
CNN convolutional neural network
DBSCAN density based spatial clustering of applications with noise
DL deep learning
HV high voltage
LDA linear discriminant analysis
ML machine learning
NB Naïve Bayes
PCA principal component analysis
PD partial discharge
RBF radial basis function
ROC receiver operating curve
RPN region proposal network
SVM support vector machines
t-SNE t-distributed stochastic neighbor embedding
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